Skip to main content

Toward Computer Modelling of Blood Flow in an Anatomically Accurate Arterial Tree in Endovascular Interventions

  • Conference paper
  • First Online:
Computational Biomechanics for Medicine

Abstract

In this chapter, we present a numerical approach to simulate transient blood flow in an anatomically accurate arterial tree that spans the whole range of arteries involved in typical endovascular neuro-interventions. To serve this purpose, a cerebral arterial tree is coupled with an arterial tree based on the Visual Human Project (VHP). Blood flow in the arterial tree is solved by using a one-dimensional (1D) formulation of the governing viscous flow equations. We propose a strategy for modelling endo-devices in the vascular network. We show some preliminary results, including the transient flow in the arterial tree and the simulation of a balloon–occlusion procedure in vertebral arteries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Prestigiacomo, C.J.: Surgical endovascular neuroradiology in the 21st century: what lies ahead? Neurosurgery 59, 48–55 (2006)

    Google Scholar 

  2. Parodi, J.C., Mura, R.L., Ferreira, L.M., Mendez, M.V., Cersosimo, H., Schonholz, C.: Initial evaluation of carotid angioplasty and stenting with three different cerebral protection devices. J. Vasc. Surg. 32(6), 1127–1136 (2000)

    Article  Google Scholar 

  3. Steinman, D., Milner, J., Norley, C.J., Lownie, S.P., Holdsworth, D.W.: Image-based computational simulation of flow dynamics in a giant intracranial aneurysm. Am. J. Neuroradiol. 24, 559–566 (2003)

    Google Scholar 

  4. Blanco, P.J., Pivello, M., Feijoo, R., Urquiza, S.: Sensitivity of blood flow at the carotid artery to the heart inflow boundary condition. Comput. Methods Appl. Mech. Eng. 196, 4391–4410 (2007)

    Article  MATH  Google Scholar 

  5. Duraiswamy, N., Schoephoerster, R.T., Moreno, M.R., Moore, J.E.: Stented artery flow patterns and their effects on the artery wall. Annu. Rev. Fluid Mech. 39, 357–382 (2007)

    Article  MathSciNet  Google Scholar 

  6. Ho, H., Mithraratne, K., Schmid, H., Sands, G., Hunter, P.: Computer simulation of vertebral artery occlusion in endovascular procedures. Int. J. Comput. Assist. Radiol. Surg. 5(1), 29–37 (2010)

    Article  Google Scholar 

  7. Alastruey, J., Parker, K., Peiro, J., Byrd, S., Sherwin, S.: Modelling the circle of Willis to assess the effects of anatomical variations and occlusions on cerebral flows. J. Biomech. 40, 1794–1805 (2007)

    Article  Google Scholar 

  8. Smith, N.P., Pullan, A.J., Hunter, P.J.: An anatomically based model of transient coronary blood flow in the heart. SIAM J. Appl. Math. 62(3), 990–1018 (2001)

    MathSciNet  Google Scholar 

  9. Xie, W., Thompson, R.P., Perucchio, R.: A topology-preserving parallel 3D thinning algorithm for extracting the curve skeleton. Pattern Recogn. 36(7), 1529–1544 (July 2003)

    Article  MATH  Google Scholar 

  10. Anderson, J.D.: Computational fluid dynamics: the basics with applications. McGraw-Hill, Inc., USA (1995)

    Google Scholar 

  11. Ho, H., Mithraratne, K., Mabotuwana, T., Hunter, P.: A software tool for hemodynamics modeling in large vasculatures. In: World congress on medical physics and biomedical engineering, IFMBE Proceedings 25/IV. pp. 97–100 (2009)

    Google Scholar 

  12. Schierling, W., Troidl, K., Mueller, C., Troidl, C., Wustrack, H., Bachmann, G., Kasprzak, P.M., Schaper, W., Schmitz-Rixen, T.: Increased intravascular flow rate triggers cerebral arteriogenesis. J. Cereb. Blood Flow Metab. 29(4), 726–737 (2009)

    Article  Google Scholar 

  13. Wu, X., Allard, J., Cotin, S.: Real-time modeling of vascular flow for angiography simulation. In: Proceedings of the 10th international conference on medical image computing and computer-assisted intervention—Volume Part I. Springer, Brisbane, pp. 557–565 (2007)

    Google Scholar 

Download references

Acknowledgment

This project was partly funded by @neurIST, a European aneurysm project, which we gratefully acknowledge.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harvey Ho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this paper

Cite this paper

Ho, H., Mithraratne, K., Zhang, C., Xie, X., Holden, A., Hunter, P. (2012). Toward Computer Modelling of Blood Flow in an Anatomically Accurate Arterial Tree in Endovascular Interventions. In: Nielsen, P., Wittek, A., Miller, K. (eds) Computational Biomechanics for Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3172-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3172-5_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3171-8

  • Online ISBN: 978-1-4614-3172-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics