Skip to main content

Printed Organic Chemical Sensors and Sensor Systems

  • Chapter
  • First Online:
Applications of Organic and Printed Electronics

Part of the book series: Integrated Circuits and Systems ((ICIR))

Abstract

Printed and organic electronics has tremendous potential for the realization of new classes of very low-cost, ubiquitously deployable chemical sensors. The ability to cheaply integrate diverse materials through printing of appropriately formulated inks offers the possibility to realize highly integrated electronic nose sensors for such diverse applications as product quality checking, environmental monitoring, and other consumer-focused sensing applications. We review the state of the art in printed organic electronic sensors, discuss the major issues to be resolved, and identify potential pathways to success for this dynamic and rapidly emerging field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burns SE, Kuhn C, Jacobs K, MacKenzie JD, Ramsdale C, Arias AC, Watts J, Etchells M, Chalmers K, Devine P, Murton N, Norval S, King J, Mills J, Sirringhaus H, Friend RH (2003) Printing of polymer thin-film transistors for active-matrix-display applications. J Soc Inform Display 11(4):599–604

    Article  Google Scholar 

  2. Subramanian V, Fréchet JMJ, Chang PC, Huang D, Lee JB, Molesa SE, Murphy AR, Redinger DR, Volkman SK (2005) Progress towards development of all-printed RFID tags: materials, processes, and devices. Proc IEEE 93:1330–1338

    Article  Google Scholar 

  3. Gardner JW, Barlett PN (1994) A brief history of electronic noses. Sens Actuators B 18:211

    Google Scholar 

  4. Dimitrakopoulos C, Malenfant P (2002) Organic thin film transistors for large area electronics. Adv Mater 14:99–117

    Article  Google Scholar 

  5. Torsi L, Dodabalapur A, Sabbatini L, Zambonin PG (2000) Multi-parameter gas sensors based on organic thin-film-transistors. Sens Actuators B 67:312

    Article  Google Scholar 

  6. Chang JB, Liu V, Subramanian V, Sivula K, Luscombe C, Murphy AR, Liu J, Frechet JMJ (2006) Printable polythiophene gas sensor array for low-cost electronic noses. J Appl Phys 100:014506

    Article  Google Scholar 

  7. Subramanian V, Lee JB, Liu V, Molesa S (2006) Printed electronic nose vapor sensors for consumer product monitoring, 2006 IEEE international solid-state circuits conference digest of technical papers, pp 1052–1059, 6–9 Feb 2006

    Google Scholar 

  8. Natale CD, Davide FAM, D’Amico A, Sberveglieri G, Nelli P, Faglia G, Perego C (1995) Complex chemical pattern recognition with sensor array: the discrimination of vintage years of wine. Sens Actuators B 24:801

    Article  Google Scholar 

  9. Persaud K, Dodd GH (1982) Analysis of discrimination mechanisms of the mammalian olfactory system using a model nose. Nature 299:352

    Article  Google Scholar 

  10. Gardner JW, Bartlett PN (1999) Electronic noses principles and applications. Oxford University Press, New York

    Google Scholar 

  11. Nagle HT, Gutierrez-Osuna R, Schiffman SS (1998) The how and why of electronic noses. IEEE Spectr 35:22

    Article  Google Scholar 

  12. Pearce TC, Schiffman SS, Nagle HT, Gardner JW (eds) (2003) Handbook of machine olfaction electronic nose technology. Wiley-VCH, Weinheim

    Google Scholar 

  13. Taylor RF, Schultz JS (1996) Handbook of chemical and biological sensors. Institute of Physics Publishing, Philadelphia

    Book  Google Scholar 

  14. Persaud KC (2005) Polymers for chemical sensing. Mater Today 8:38

    Article  Google Scholar 

  15. Janata J, Josowicz M (2003) Conducting polymers in electronic chemical sensors. Nature 2:19

    Article  Google Scholar 

  16. Albert KJ, Lewis NS, Schauer CL, Sotzing GA, Stitzel SE, Vaid TP, Walt DR (2000) Cross-reactive chemical sensor arrays. Chem Rev 100:2595

    Article  Google Scholar 

  17. Severin EJ (1999) Array-based vapor sensing using conductive carbon black-polymer composite thin film detectors. Dissertation submitted to California Institute of Technology

    Google Scholar 

  18. Gao T, Tillman ES, Lewis NS (2005) Detection and classification of volatile organic amines and carboxylic acids using arrays of carbon black-dendrimer composite vapor detectors. Chem Mater 17:2904

    Article  Google Scholar 

  19. Polk BJ, Janata J (2002) ChemFET arrays for chemical sensing microsystems IEEE sensors conference, Orlando, 5.13

    Google Scholar 

  20. Liao F, Chen C, Subramanian V (2005) Organic TFTs as gas sensors for electronic nose applications. Sens Actuators B 17:849

    Article  Google Scholar 

  21. Tanese MC, Fine D, Dodabalapur A, Torsi L (2005) Interface and gate bias dependence responses of sensing organic thin-film transistors. Biosens Bioelectron 21:782

    Article  Google Scholar 

  22. Torsi L, Tanese MC, Cioffia N, Gallazzi MC, Sabbatini L, Zambonin PG (2004) Alkoxy-substituted polyterthiophene thin-film-transistors as alcohol sensors. Sens Actuators B 98:204

    Article  Google Scholar 

  23. Bäcklund TG, Österbacka R, Stubb H, Bobacka J, Ivaska A (2005) Operating principle of polymer insulator organic thin-film transistors exposed to moisture. J Appl Phys 98:074504

    Article  Google Scholar 

  24. Persaud KC, Travers PJ (1997) Arrays of broad specificity films for sensing volatile chemicals. CRC Press, Inc, New York

    Google Scholar 

  25. Charlesworth JM, Partridge AC, Garrard N (1993) Mechanistic studies on the interactions between poly(pyrro1e) and organic vapors. J Phys Chem 97:5418

    Article  Google Scholar 

  26. Adhikari B, Majumdar S (2004) Polymers in sensor applications. Prog Polym Sci 29:699

    Article  Google Scholar 

  27. Topart P, Josowicz M (1992) Transient effects in the interaction between polypyrrole and methanol vapor. J Phys Chem 96:8662

    Article  Google Scholar 

  28. Torsi L, Lovinger AJ, Crone B, Someya T, Dodabalapur A, Katz HE, Gelperin A (2002) Correlation between oligothiophene thin film transistor morphology and vapor response. J Phys Chem B 106:12563

    Article  Google Scholar 

  29. Puntambekar KP, Pesavento PV, Frisbie CD (2003) Surface potential profiling and contact resistance measurements on operating pentacene thin-film transistors by Kelvin probe force microscopy. Appl Phys Lett 83:5539

    Article  Google Scholar 

  30. Higgins SJ, Mouffouk F, Brown F, Sedghi N, Eccleston B, Reeman S (2005) Functionalized regioregular polyalkylthiophene for biosensing applications. Organic Thin-Film Electron, In: Arias AC, Tessler, Burgi L, Emerson JA (ed) Materials Research Society Symposium Proceedings 871E, Warrendale, I1.3

    Google Scholar 

  31. Liu J, McCullough RD (2002) End group modification of regioregular polythiophene through postpolymerization functionalization. Macromolecules 35:9882

    Article  Google Scholar 

  32. Liu J, Tanaka T, Sivula K, Alivisatos AP, Fréchet JMJ (2004) Employing end-functional polythiophene to control the morphology of nanocrystal-polymer composites in hybrid solar cells. J Am Chem Soc 126:6550

    Article  Google Scholar 

  33. Subramanian V, Chang JB, Fuente Vornbrock de la A, Huang DC, Jagannathan L, Liao F, Mattis B, Molesa S, Redinger DR, Soltman D, Volkman SK, Zhang Q (2008) Printed electronics for low-cost electronic systems: technology status and application development. Proc ESSDERC pp 17–24

    Google Scholar 

  34. Gardner JW, Shurmer HV, Tan TT (1992) Application of an electronic nose to the discrimination of coffees. Sens Actuators B 6:71

    Article  Google Scholar 

  35. Crone B, Dodabalapur A, Gelperin A, Torsi L, Katz HE, Lovinger AJ, Bao Z (2001) Electronic sensing of vapors with organic transistors. Appl Phys Lett 78:3965

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Subramanian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Subramanian, V., Chang, J., Liao, F. (2013). Printed Organic Chemical Sensors and Sensor Systems. In: Cantatore, E. (eds) Applications of Organic and Printed Electronics. Integrated Circuits and Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-3160-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3160-2_8

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-3159-6

  • Online ISBN: 978-1-4614-3160-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics