Advertisement

Printed Organic Chemical Sensors and Sensor Systems

Chapter
Part of the Integrated Circuits and Systems book series (ICIR)

Abstract

Printed and organic electronics has tremendous potential for the realization of new classes of very low-cost, ubiquitously deployable chemical sensors. The ability to cheaply integrate diverse materials through printing of appropriately formulated inks offers the possibility to realize highly integrated electronic nose sensors for such diverse applications as product quality checking, environmental monitoring, and other consumer-focused sensing applications. We review the state of the art in printed organic electronic sensors, discuss the major issues to be resolved, and identify potential pathways to success for this dynamic and rapidly emerging field.

Keywords

Organic transistors Sensors Electronic nose 

References

  1. 1.
    Burns SE, Kuhn C, Jacobs K, MacKenzie JD, Ramsdale C, Arias AC, Watts J, Etchells M, Chalmers K, Devine P, Murton N, Norval S, King J, Mills J, Sirringhaus H, Friend RH (2003) Printing of polymer thin-film transistors for active-matrix-display applications. J Soc Inform Display 11(4):599–604CrossRefGoogle Scholar
  2. 2.
    Subramanian V, Fréchet JMJ, Chang PC, Huang D, Lee JB, Molesa SE, Murphy AR, Redinger DR, Volkman SK (2005) Progress towards development of all-printed RFID tags: materials, processes, and devices. Proc IEEE 93:1330–1338CrossRefGoogle Scholar
  3. 3.
    Gardner JW, Barlett PN (1994) A brief history of electronic noses. Sens Actuators B 18:211Google Scholar
  4. 4.
    Dimitrakopoulos C, Malenfant P (2002) Organic thin film transistors for large area electronics. Adv Mater 14:99–117CrossRefGoogle Scholar
  5. 5.
    Torsi L, Dodabalapur A, Sabbatini L, Zambonin PG (2000) Multi-parameter gas sensors based on organic thin-film-transistors. Sens Actuators B 67:312CrossRefGoogle Scholar
  6. 6.
    Chang JB, Liu V, Subramanian V, Sivula K, Luscombe C, Murphy AR, Liu J, Frechet JMJ (2006) Printable polythiophene gas sensor array for low-cost electronic noses. J Appl Phys 100:014506CrossRefGoogle Scholar
  7. 7.
    Subramanian V, Lee JB, Liu V, Molesa S (2006) Printed electronic nose vapor sensors for consumer product monitoring, 2006 IEEE international solid-state circuits conference digest of technical papers, pp 1052–1059, 6–9 Feb 2006Google Scholar
  8. 8.
    Natale CD, Davide FAM, D’Amico A, Sberveglieri G, Nelli P, Faglia G, Perego C (1995) Complex chemical pattern recognition with sensor array: the discrimination of vintage years of wine. Sens Actuators B 24:801CrossRefGoogle Scholar
  9. 9.
    Persaud K, Dodd GH (1982) Analysis of discrimination mechanisms of the mammalian olfactory system using a model nose. Nature 299:352CrossRefGoogle Scholar
  10. 10.
    Gardner JW, Bartlett PN (1999) Electronic noses principles and applications. Oxford University Press, New YorkGoogle Scholar
  11. 11.
    Nagle HT, Gutierrez-Osuna R, Schiffman SS (1998) The how and why of electronic noses. IEEE Spectr 35:22CrossRefGoogle Scholar
  12. 12.
    Pearce TC, Schiffman SS, Nagle HT, Gardner JW (eds) (2003) Handbook of machine olfaction electronic nose technology. Wiley-VCH, WeinheimGoogle Scholar
  13. 13.
    Taylor RF, Schultz JS (1996) Handbook of chemical and biological sensors. Institute of Physics Publishing, PhiladelphiaCrossRefGoogle Scholar
  14. 14.
    Persaud KC (2005) Polymers for chemical sensing. Mater Today 8:38CrossRefGoogle Scholar
  15. 15.
    Janata J, Josowicz M (2003) Conducting polymers in electronic chemical sensors. Nature 2:19CrossRefGoogle Scholar
  16. 16.
    Albert KJ, Lewis NS, Schauer CL, Sotzing GA, Stitzel SE, Vaid TP, Walt DR (2000) Cross-reactive chemical sensor arrays. Chem Rev 100:2595CrossRefGoogle Scholar
  17. 17.
    Severin EJ (1999) Array-based vapor sensing using conductive carbon black-polymer composite thin film detectors. Dissertation submitted to California Institute of TechnologyGoogle Scholar
  18. 18.
    Gao T, Tillman ES, Lewis NS (2005) Detection and classification of volatile organic amines and carboxylic acids using arrays of carbon black-dendrimer composite vapor detectors. Chem Mater 17:2904CrossRefGoogle Scholar
  19. 19.
    Polk BJ, Janata J (2002) ChemFET arrays for chemical sensing microsystems IEEE sensors conference, Orlando, 5.13Google Scholar
  20. 20.
    Liao F, Chen C, Subramanian V (2005) Organic TFTs as gas sensors for electronic nose applications. Sens Actuators B 17:849CrossRefGoogle Scholar
  21. 21.
    Tanese MC, Fine D, Dodabalapur A, Torsi L (2005) Interface and gate bias dependence responses of sensing organic thin-film transistors. Biosens Bioelectron 21:782CrossRefGoogle Scholar
  22. 22.
    Torsi L, Tanese MC, Cioffia N, Gallazzi MC, Sabbatini L, Zambonin PG (2004) Alkoxy-substituted polyterthiophene thin-film-transistors as alcohol sensors. Sens Actuators B 98:204CrossRefGoogle Scholar
  23. 23.
    Bäcklund TG, Österbacka R, Stubb H, Bobacka J, Ivaska A (2005) Operating principle of polymer insulator organic thin-film transistors exposed to moisture. J Appl Phys 98:074504CrossRefGoogle Scholar
  24. 24.
    Persaud KC, Travers PJ (1997) Arrays of broad specificity films for sensing volatile chemicals. CRC Press, Inc, New YorkGoogle Scholar
  25. 25.
    Charlesworth JM, Partridge AC, Garrard N (1993) Mechanistic studies on the interactions between poly(pyrro1e) and organic vapors. J Phys Chem 97:5418CrossRefGoogle Scholar
  26. 26.
    Adhikari B, Majumdar S (2004) Polymers in sensor applications. Prog Polym Sci 29:699CrossRefGoogle Scholar
  27. 27.
    Topart P, Josowicz M (1992) Transient effects in the interaction between polypyrrole and methanol vapor. J Phys Chem 96:8662CrossRefGoogle Scholar
  28. 28.
    Torsi L, Lovinger AJ, Crone B, Someya T, Dodabalapur A, Katz HE, Gelperin A (2002) Correlation between oligothiophene thin film transistor morphology and vapor response. J Phys Chem B 106:12563CrossRefGoogle Scholar
  29. 29.
    Puntambekar KP, Pesavento PV, Frisbie CD (2003) Surface potential profiling and contact resistance measurements on operating pentacene thin-film transistors by Kelvin probe force microscopy. Appl Phys Lett 83:5539CrossRefGoogle Scholar
  30. 30.
    Higgins SJ, Mouffouk F, Brown F, Sedghi N, Eccleston B, Reeman S (2005) Functionalized regioregular polyalkylthiophene for biosensing applications. Organic Thin-Film Electron, In: Arias AC, Tessler, Burgi L, Emerson JA (ed) Materials Research Society Symposium Proceedings 871E, Warrendale, I1.3Google Scholar
  31. 31.
    Liu J, McCullough RD (2002) End group modification of regioregular polythiophene through postpolymerization functionalization. Macromolecules 35:9882CrossRefGoogle Scholar
  32. 32.
    Liu J, Tanaka T, Sivula K, Alivisatos AP, Fréchet JMJ (2004) Employing end-functional polythiophene to control the morphology of nanocrystal-polymer composites in hybrid solar cells. J Am Chem Soc 126:6550CrossRefGoogle Scholar
  33. 33.
    Subramanian V, Chang JB, Fuente Vornbrock de la A, Huang DC, Jagannathan L, Liao F, Mattis B, Molesa S, Redinger DR, Soltman D, Volkman SK, Zhang Q (2008) Printed electronics for low-cost electronic systems: technology status and application development. Proc ESSDERC pp 17–24Google Scholar
  34. 34.
    Gardner JW, Shurmer HV, Tan TT (1992) Application of an electronic nose to the discrimination of coffees. Sens Actuators B 6:71CrossRefGoogle Scholar
  35. 35.
    Crone B, Dodabalapur A, Gelperin A, Torsi L, Katz HE, Lovinger AJ, Bao Z (2001) Electronic sensing of vapors with organic transistors. Appl Phys Lett 78:3965CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Electrical Engineering and Computer SciencesUniversity of CaliforniaBerkeleyUSA

Personalised recommendations