High Efficiency OLEDs for Lighting Applications

Completing the Solid State Lighting Portfolio
Part of the Integrated Circuits and Systems book series (ICIR)


Organic Light-Emitting Diode (OLED) technology is developing as a promising option for large area lighting applications, with basic properties such as efficiency, color stability and lifetime which approach or even exceed those of conventional lighting and inorganic LED technology and with various interesting additional complementing features. In this Chapter, an introduction is given on the development of OLED technology for lighting applications. We discuss the working principles of efficient white multilayer OLEDs, the factors which determine the efficiency, several key elements of the fabrication technology including encapsulation methods, and the state-of-the-art as realized in various institutes and companies.


OLED Lighting Charg-carrier mobility Efficiency Lifetime Fluorescence Phosphorescence Fabrication Encapsulation 



The authors wish to thank P. van de Weijer and S. Grabowski for useful comments. This research has received funding from the European Community’s Program No. FP7–213708 (AEVIOM, contribution R.C.).


  1. 1.
    Peter Loebl, Volker van Elsbergen, Herbert Boerner, Claudia Goldmann, Stefan Grabowski, Dietrich Bertram (2009) White OLEDs for lighting applications, Proceedings of SPIE, Optics and Photonics 2009: Photonic devices and applications, San Diego August 2–6, 7415:74151A–1Google Scholar
  2. 2.
    D’Andrade BW, Forrest SR (2004) White organic light-emitting devices for solid state lighting. Adv Mater 16:1585CrossRefGoogle Scholar
  3. 3.
    Shinar ZJ (2004) Organic light-emitting diodes—a survey. Springer, New YorkGoogle Scholar
  4. 4.
    Kalinovski J (2005) Organic light-emitting diodes: principles characteristics and processes. Marcel Dekker, New YorkGoogle Scholar
  5. 5.
    Brütting W (ed) (2005) Physics of organic semiconductors. Wiley, WeinheimGoogle Scholar
  6. 6.
    Mullen K, Scherf U (2006) Organic light emitting devices: synthesis properties and applications. Wiley, WeinheimGoogle Scholar
  7. 7.
    Li ZR, Meng H (eds) (2007) Organic light-emitting materials and devices. Taylor and Francis, Boca RatonGoogle Scholar
  8. 8.
    So F, Kido J, Burrows P (2008) Organic light-emitting devices for solid-state lighting. MRS Bulletin 33:663–669CrossRefGoogle Scholar
  9. 9.
    Pope M, Svenberg CE (1982) Electronic processes in organic molecular crystals. Oxford University Press, New YorkGoogle Scholar
  10. 10.
    Tang CW, VanSlyke SA (1987) Organic electroluminescent diodes. Appl Phys Lett 51:913CrossRefGoogle Scholar
  11. 11.
    Pfeiffer M, Leo K, Zhou X et al (2003) Doped organic semiconductors: physics and application in light emitting diodes. Org Electron 4:89–103CrossRefGoogle Scholar
  12. 12.
    Cao Y, Parker ID, Yu G, Zhang C, Heeger AJ (1999) Improved quantum efficiency for electroluminescence in semiconducting polymers. Nature 397:414–417CrossRefGoogle Scholar
  13. 13.
    Wilson JS et al (2001) Spin-dependent exciton formation in p-conjugated compounds. Nature 413:828–831CrossRefGoogle Scholar
  14. 14.
    Baldo MA, O’Brien DF, You Y et al (1998) Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395:151–154CrossRefGoogle Scholar
  15. 15.
    Forrest SR, Bradley DDC, Thomson ME (2003) Measuring the efficiency of organic light-emitting diodes. Adv Mater 15:1043CrossRefGoogle Scholar
  16. 16.
    He G, Pfeiffer M, Leo K, Hofmann M, Birnstock J, Pudzich R, Salbeck J (2004) High-efficiency and low-voltage p-i-n electrophosphorescent organic light-emitting diodes with double-emission. Appl Phys Lett 85:3911CrossRefGoogle Scholar
  17. 17.
    Giebink NC, Forrest SR (2008) Quantum efficiency roll-off at high brightness in fluorescent and phosphorescent organic light emitting diodes. Phys Rev B 77:235215CrossRefGoogle Scholar
  18. 18.
    Sun Y, Giebink NC, Kanno H, Thompson ME, Forrest SR (2006) Management of singlet and triplet excitons for efficient white organic light-emitting devices. Nature 440:908–912CrossRefGoogle Scholar
  19. 19.
    Schwartz G, Fehse K, Pfeiffer M, Walzer K, Leo K (2008) Reduced efficiency roll-off in high-efficiency hybrid white organic light-emitting diodes. Appl Phys Lett 92:053311CrossRefGoogle Scholar
  20. 20.
    Segal M, Singh M, Rivoure K, Difley S, Van Voorhis T, Baldo MA (2007) Extrafluorescent electroluminescence in organic light-emitting devices. Nature Mater 6:374CrossRefGoogle Scholar
  21. 21.
    Jeon SO, Yook KS, Joo CW, Lee JY (2009) Highly efficient single-layer phosphorescent white organic light-emitting diodes using a spirofluorene-based host material. Opt Lett 34:407CrossRefGoogle Scholar
  22. 22.
    Reineke S et al (2009) White organic light-emitting diodes with fluorescent tube efficiency. Nature 459:234–239CrossRefGoogle Scholar
  23. 23.
    Sun Y, Forrest SR (2008) Enhanced light-outcoupling of light-emitting devices using embedded low-index grids. Nat Photonics 2:483CrossRefGoogle Scholar
  24. 24.
    Lu MH, Sturm JC (2002) Optimization of external coupling and light emission in organic light-emitting devices: modeling and experiment. J Appl Phys 91:595CrossRefGoogle Scholar
  25. 25.
    Bulovic V, Khalfin VB, Gu G, Burrows PE, Gharbuzow DZ, Forrest SR (1998) Weak microcavity effects in organic light-emitting device. Phys Rev B 58:3730CrossRefGoogle Scholar
  26. 26.
    Greiner H (2004) Exploring particlelike nanostructures for light outcoupling from organic LEDs by first principles calculations. Proc SPIE 5450:376–387CrossRefGoogle Scholar
  27. 27.
    Bässler H (1993) Charge transport in disordered organic photoconductors - A Monte Carlo simulation study. Phys Stat Sol B 175:15CrossRefGoogle Scholar
  28. 28.
    Pasveer WF et al (2005) Unified description of charge-carrier mobilities in disordered semiconducting polymers A. Phys Rev Lett 94:206601CrossRefGoogle Scholar
  29. 29.
    Coehoorn R, Pasveer WF, Bobbert PA, Michels MAJ (2005) Charge-carrier concentration dependence of the hopping mobility in organic materials with Gaussian disorder. Phys Rev Lett 94:206601CrossRefGoogle Scholar
  30. 30.
    Gartstein YN, Conwell EM (1995) High-field hopping mobility in molecular systems with spatially correlated energetic disorder. Chem Phys Lett 245:351CrossRefGoogle Scholar
  31. 31.
    Bouhassoune M, van Mensfoort SLM, Bobbert PA, Coehoorn R (2009) Carrier-density and field-dependent charge-carrier mobility in organic semiconductors with correlated Gaussian disorder. Org Electr 10:437CrossRefGoogle Scholar
  32. 32.
    van Mensfoort SLM, Vulto SIE, Janssen RAJ, Coehoorn R (2008) Hole transport in polyfluorene-based sandwich-type devices: Quantitative analysis of the role of energetic disorder. Phys Rev B 78:085208CrossRefGoogle Scholar
  33. 33.
    van Mensfoort SLM, Shabro V, de Vries RJ, Janssen RAJ, Coehoorn R (2010) Hole transport in the organic small-molecule material a-NPD: evidence for the presence of correlated disorder. J Appl Phys 107:113710Google Scholar
  34. 34.
    Tutis EE, Batistic I, Berner D (2004) Injection and strong current channeling in organic disordered media. Phys Rev 70:161202(R)Google Scholar
  35. 35.
    van der Holst JJM et al (2009) Modeling and analysis of the three-dimensional current density in sandwich-type single-carrier devices of disordered organic semiconductors. Phys Rev B 79:085203CrossRefGoogle Scholar
  36. 36.
    Shtein M, Gossenberger HF, Benzinger JB, Forrest SR (2001) Material transport regimes and mechanisms for growth of molecular organic thin films using low-pressure organic vapor phase deposition. J Appl Phys 98:1470CrossRefGoogle Scholar
  37. 37.
    Neyts K, Real A, Marescaux M, Mladenovski S, Beeckman J (2008) Conductor grid optimization for luminance loss reduction in organic light emitting diodes. J Appl Phy 103:093113–093115CrossRefGoogle Scholar
  38. 38.
    Berntsen AJM et al (1998) Stability of polymer light-emitting diodes. Philips J Res 51:511–525CrossRefGoogle Scholar
  39. 39.
    Kim J-S et al (2002) Nature of non-emissive black spots in polymer light-emitting diodes by in-situ micro-Raman spectroscopy. Adv Mater 14:206–209CrossRefGoogle Scholar
  40. 40.
    Burrows PE et al (2001) Ultra-barrier flexible substrates for flat panel displays. Display 22:65–69CrossRefGoogle Scholar
  41. 41.
    Young ND et al (2003) Low temperature poly-Si on flexible polymer substrates for active matrix displays and other applications. Proc MRS 769:17–29Google Scholar
  42. 42.
    T. v. Mol (2008) Flexible barrier films. N. Holst Centre, (ed.) Berlin: 4th International plastic electronics conference and showcase 2008Google Scholar
  43. 43.
  44. 44.
    Köhnen A et al (2009) The simple way to solution-processed multilayer OLEDs—layered block-copolymer networks by living cationic polymerization. Adv Mat 21:879CrossRefGoogle Scholar
  45. 45.
  46. 46.
  47. 47.

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Philips Research LaboratoriesEindhovenThe Netherlands
  2. 2.Philips Research LaboratoriesAachenGermany

Personalised recommendations