High-Performance Organic Light-Emitting Diode Displays

Part of the Integrated Circuits and Systems book series (ICIR)


The development of new display devices for the interactive communication between computers and people has accelerated over the past decade and considerable progress has recently been made in the area of organic displays. Organic light-emitting devices (OLEDs) are the most suitable candidate to satisfy the demands of next generation displays among the technological options available so far, owing to simple device configuration, high power efficiency and efficient driving schemes, together with solid state encapsulation and excellent user experience. Efficient OLED structures, processes for OLED fabrication, various driving schemes for OLED displays, the current status of fluorescent and phosphorescent OLEDs, top emitting active matrix OLED (AMOLED), passive matrix driving schemes, white OLEDs for high resolution display applications, and thin film transistor (TFT) backplane technology for active matrix OLEDs are discussed here. Finally, the future scope and directions of the high-performance OLED display in mobile display technology and large area TVs are presented.


Display OLED Active matrix OLED Thin film transistor  Pixel patterning Phosphorescence 


  1. 1.
    Wisnieff RL, Ritsko JJ (2000) Electronic displays for information technology. IBM J Res Develop 44:409CrossRefGoogle Scholar
  2. 2.
    Krasnov AN (2003) Electroluminescent displays: history and lessons learned. Displays 24:73CrossRefGoogle Scholar
  3. 3.
    Hung LS, Chen CH (2002) Recent progress of molecular organic electroluminescent materials and devices. Mater Sci Eng. R Rep 39:143CrossRefGoogle Scholar
  4. 4.
    Ortiz S Jr (2003) New monitor technologies are on display. Comput 36(2):13CrossRefGoogle Scholar
  5. 5.
    Helfrich W, Schneider WG (1965) Recombination radiation in anthracene crystals. Phys Rev Lett 14:229CrossRefGoogle Scholar
  6. 6.
    Tang CW (1982) Organic electroluminescent cell. US Patent No. 4356429 (26th Oct 1982)Google Scholar
  7. 7.
    Tang CW, VanSlyke SA (1987) Organic electroluminescent diodes. Appl Phys Lett 51:913CrossRefGoogle Scholar
  8. 8.
    VanSlyke SA, Tang CW (1985) Organic electroluminescent devices having improved power conversion efficiencies. US Patent 4539507Google Scholar
  9. 9.
    Tang CW, Chen CH, Goswami R (1988) Electroluminescent device with modified thin film luminescent zone. US Patent No. 4769292Google Scholar
  10. 10.
    VanSlyke SA, Chen CH, Tang CW (1996) Organic electroluminescent devices with improved stability. Appl Phys Lett 69:2160CrossRefGoogle Scholar
  11. 11.
    Shirota Y, Kuwabara Y, Inada H, Wakimoto T, Nakada H, Yonemoto Y, Kawami S, Imai K (1994) Multilayered organic electroluminescent device using a novel starburst molecule, 4,4′,4″‐tris(3-methylphenylphenylamino)triphenylamine, as a hole transport material. Appl Phys Lett 65: 807CrossRefGoogle Scholar
  12. 12.
    Deng ZB, Ding XM, Lee ST, Gambling WA (1999) Enhanced brightness and efficiency in organic electroluminescent devices using SiO2 buffer layers. Appl Phys Lett 74: 2227CrossRefGoogle Scholar
  13. 13.
    Adamovich VI, Cordero SR, Djurovich PI, Tamayo A, Thompson ME, D’Andrade BW, Forrest SR (2003) New charge-carrier blocking materials for high efficiency OLEDs. Org Electron 4(2–3):77CrossRefGoogle Scholar
  14. 14.
    Hung LS, Tang CW, Mason MG (1997) Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode. Appl Phys Lett 70:151CrossRefGoogle Scholar
  15. 15.
    Kido J, Lizumi Y (1998) Fabrication of highly efficient organic electroluminescent devices. Appl Phys Lett 73: 2721CrossRefGoogle Scholar
  16. 16.
    Kido J, Matsumoto T (1998) Bright organic electroluminescent devices having a metal-doped electron-injecting layer. App Phys Lett 73: 2866CrossRefGoogle Scholar
  17. 17.
    Endo J, Matsumoto T, Kido J (2002) Organic electroluminescent devices with a vacuum-deposited Lewis-acid-doped hole-injecting layer. Jpn J App Phys 41: L358CrossRefGoogle Scholar
  18. 18.
    Sato Y, Ogata T, Kido J (2000) Organic electroluminescent devices with polymer buffer layer. Proc SPIE 4105: 134CrossRefGoogle Scholar
  19. 19.
    Zhou X, Pfeiffer M, Blochwitz J, Werner A, Nollau A, Fritz T, Leo K (2001) Very-low-operating-voltage organic light-emitting diodes using a p-doped amorphous hole injection layer. App Phys Lett 78:410CrossRefGoogle Scholar
  20. 20.
    Huang J, Pfeiffer M, Werner A, Blochwitz J, Leo K, Liu S (2002) Low-voltage organic electroluminescent devices using pin structures. Appl Phys Lett 80:139CrossRefGoogle Scholar
  21. 21.
    He G, Scvhneider O, Qin D, Zhou X, Pfeiffer M, Leo K (2004) Very high-efficiency and low voltage phosphorescent organic light-emitting diodes based on a p-i-n junction. J App Phys 95:5773CrossRefGoogle Scholar
  22. 22.
    Wellermann P, Hofmann M, Zeika O, Werner A, Bimstock J, Meerheim R, Walzer GF, He K, Pfeiffer M, Leo K (2005) High-efficiency p-i-n organic light-emitting diodes with long lifetime. J Soc Inf Disp 1:393CrossRefGoogle Scholar
  23. 23.
    Arakane T, Funahashi M, Kuma H, Fukuoka K, Ikeda K, Yamamoto H, Moriwaki F, Hosokawa C (2006) Fluorescent RGB OLEDs with high performance. SID 2006 Digest 37Google Scholar
  24. 24.
    Kawamura M, Kawamura Y, Mizuki Y, Funahashi M, Kuma H, Hosokawa C (2010) Highly efficient fluorescent blue OLEDs with efficiency-enhancement layer. SID 2010 Digest 560Google Scholar
  25. 25.
    D’Andrade BW, Weaver MS, Mackenzie PB, Yamamoto H, Brown JJ, Giebink NC, Forrest SR, Thompson ME (2008) Blue phosphorescent organic light emitting device stability analysis. SID 08 Digest, p 712Google Scholar
  26. 26.
    Aziz H, Popovic Z, Tripp CP, Hu N-X, Hor A-M, Xu G (1998) Degradation processes at the cathode/organic interface in organic light emitting devices with Mg:Ag cathodes. Appl Phys Lett 72:2642CrossRefGoogle Scholar
  27. 27.
    Nishimura K, Kawamura Y, Kato T, Numata M, Kawamura M, Ogiwara T, Yamamoto H, Iwakuma T, Jinde Y, Hosokawa C (2009) New green and red phosphorescent host materials for highly-efficient and long-lifetime OLEDs. SID 2009 Digest, p 310Google Scholar
  28. 28.
    Tsuzuki T, Shirasawa N, Suzuki T, Tokito S (2003) Color tunable organic light-emitting diodes using pentafluorophenyl-substituted iridium complexes. Adv Mater 15:1455CrossRefGoogle Scholar
  29. 29.
    Adachi C, Baldo MA, Forrest SR, Thompson ME (2000) High-efficiency organic electrophosphorescent devices with tris(2-phenylpyridine)iridium doped into electron-transporting materials. App Phys Lett 77: 904CrossRefGoogle Scholar
  30. 30.
    Sun Y, Giebink NC, Kanno H, Ma B, Thompson ME, Forrest SR (2006) Management of singlet and triplet excitons for efficient white organic light-emitting devices. Nature 440:908CrossRefGoogle Scholar
  31. 31.
    Baldo MA, O’Brien DF, You Y, Shoustikov A, Sibley S, Thompson ME, Forrest SR (1998) Highly efficient phosphorescent emission from organic electroluminescent devices. Nature (London) 395:151Google Scholar
  32. 32.
    Adachi C, Baldo MA, Forrest SR, Lamansky S, Thompson ME, Kwong RC (2001) High-efficiency red electrophosphorescence devices. Appl Phys Lett 78:1622CrossRefGoogle Scholar
  33. 33.
    Baldo MA, Lamansky S, Burrows PE, Thompson ME, Forrest SR (1999) Very high-efficiency green organic light-emitting devices based on electrophosphorescence. App Phys Lett 75:4CrossRefGoogle Scholar
  34. 34.
    Adachi C, Baldo MA, Thompson ME, Forrest SR (2001) Nearly 100% internal phosphorescence efficiency in an organic light-emitting device. J App Phys 90:5045Google Scholar
  35. 35.
    Adachi C, Kwong RC, Djurovich P, Adamovich V, Baldo MA, Thompson ME, Forrest SR (2001) Endothermic energy transfer: a mechanism for generating very efficient high-energy phosphorescent emission in organic materials. App Phys Lett 79:2082CrossRefGoogle Scholar
  36. 36.
    Holmes RJ, Forrest SR, Tung Y-J, Kwong RC, Brown JJ, Garon S, Thompson ME (2003) Blue organic electrophosphorescence using exothermic host–guest energy transfer. App Phys Lett 82:2422CrossRefGoogle Scholar
  37. 37.
    Chin BD, Suh MC, Kim MH, Lee ST, Kim HD, Chung HK (2005) Carrier trapping and efficient recombination of electrophosphorescent device with stepwise doping profile. Appl Phys Lett 86:133505–133507CrossRefGoogle Scholar
  38. 38.
    Tsuzuki T, Tokito S (2007) Highly efficient and low-voltage phosphorescent organic light-emitting diodes using an iridium complex as the host material. Adv Mater 19:276–280CrossRefGoogle Scholar
  39. 39.
    Gong X, Ostrowski JC, Moses D, Bazan GC, Heeger AJ (2003) Electrophosphorescence from a polymer guest–host system with an Iridium complex as guest: Förster energy transfer and charge trapping. Adv Funct Mater 13:439–444CrossRefGoogle Scholar
  40. 40.
    Kawamura Y, Goushi K, Brooks J, Brown J, Sasabe H, Adachi C (2005) 100% phosphorescence quantum efficiency of Ir(III) complexes in organic semiconductor films. Appl Phys Lett 86:071104CrossRefGoogle Scholar
  41. 41.
    Park TJ, Jeon WS, Park JJ, Kim SY, Lee YK, Jang J, Kwon JH, Pode R (2008) Efficient simple structure red phosphorescent organic light emitting devices with narrow band-gap fluorescent host. Appl Phys Lett 92:113308–113310CrossRefGoogle Scholar
  42. 42.
    Jeon WS, Park TJ, Park JJ, Kim SY, Jang J, Kwon JH, Pode R (2008) Highly efficient bilayer green phosphorescent organic light emitting devices. Appl Phys Lett 92:113311–113313CrossRefGoogle Scholar
  43. 43.
    Jeon WS, Park TJ, Kim SY, Pode R, Jang J, Kwon JH (2009) Ideal host and guest system in phosphorescent OLEDs. Org Elect 10:240CrossRefGoogle Scholar
  44. 44.
    Kim H-K, Byun Y-H, Das RR, Choi B-K, Ahn P-S (2007) Small molecule based and solution processed highly efficient red electrophosphorescent organic light emitting devices. Appl Phys Lett 91:093512CrossRefGoogle Scholar
  45. 45.
    Tokito S, Tsutsui T, Taga Y (1999) Microcavity organic light-emitting diodes for strongly directed pure red, green, and blue emissions. Appl Phys Lett 86:2407Google Scholar
  46. 46.
    Dodabalapur A, Rothberg LJ, Jordan RH, Miller TM, Slusher RE, Philips JM (1996) Physics and applications of organic microcavity light emitting diodes. J Appl Phys 80:6954CrossRefGoogle Scholar
  47. 47.
    Lin C-L, Lin H-W, Wu C-C (2005) Examining microcavity organic light-emitting devices having two metal mirrors. Appl Phys Lett 87:021101CrossRefGoogle Scholar
  48. 48.
    Hsu S-F, Hwang S-W, Chen CH, Lee S-H, Lee C-C (2006) Highly efficient top-emitting organic light-emitting devices. SID 06 Digest, 1201Google Scholar
  49. 49.
    Lee D, Chung J, Rhee J, Wang J, Hong S, Choi B, Cha S, Kim N, Chung K, Gregory H, Lyon P, Creighton C, Carter J, Hatcher M, Bassett O, Richardson M, Jerram P (2005) Ink jet printed full color polymer LED displays. SID 05 Digest, 527Google Scholar
  50. 50.
    Feehery WF (2007) Solution Processing of Small-Molecule OLEDs. SID 07 Digest, p 1834Google Scholar
  51. 51.
    O’Regan M (2008) Reducing AMOLED manufacturing costs. IMID/IDMC/ASIA Display 08 Digest, p 27Google Scholar
  52. 52.
    Lee ST, Lee JY, Kim MH, Suh MC, Kang TM, Choi YJ, Park JY, Kwon JH, Chung HK, Baetzold J, Bellmann E, Savvateev V, Wolk M, Webster S (2004) A novel patterning method for full-color organic light-emitting devices: laser induced thermal imaging (LITI). SID 04 Digest, p 1008Google Scholar
  53. 53.
    Boroson M, Tutt L, Nguyen K, Preuss D, Culver M, Phelan G (2005) Non-contact OLED color patterning by radiation-induced sublimation transfer (RIST). SID 05 Digest, p 972Google Scholar
  54. 54.
    Hirano T, Matsuo K, Kohinata K, Hanawa K, Matsumi T, Matsuda E, Matsuura R, Ishibashi T, Yoshida A, Sasaoka T (2007) Novel laser transfer technology for manufacturing large sized OLED displays. SID 07 Digest, p 1592Google Scholar
  55. 55.
    Xia S, Cheon K-O, Brooks JJ, Rothman M, Ngo T, Hett P, Kwong RC, Inbasekaran M, Brown JJ, Sonoyama T, Ito M, Seki S, Miyashita S (2008) Printable phosphorescent organic light emitting devices. SID 08 Digest, p 295Google Scholar
  56. 56.
    Lee J (2008) Technical challenges for polymer OLED display manufacturing. IMID/IDMC/ASIA Display 08 Digest, p 1163 Google Scholar
  57. 57.
    Murano S, Kucur E, He G, Blochwitz-Nimoth J, Hatwar TK, Spindler J, Slyke SV (2009) White fluorescent PIN OLED with high efficiency and lifetime for display applications. SID 09 Digest, p 417Google Scholar
  58. 58.
    Lee B, Park C, Kim S, Kim T, Yang Y, Oh J, Choi J, Hong M, Sakong D, Chung K, Lee S, Kim C (2003) TFT-LCD with RGBW color system. SID 03 DIGEST, 1212Google Scholar
  59. 59.
    Lee B, Song K, Yang Y, Park C, Oh J, Chai C, Choi J, Roh N, Hong M, Chung K, Lee S, Kim C (2004) Implementation of RGBW color system in TFT-LCDs. SID 04 Digest, p 111Google Scholar
  60. 60.
    Spindler JP, Hatwar TK, Miller ME, Arnold AD, Murdoch MJ, Kane PJ, Ludwicki JE, Alessi PJ, Van Slyke SA (2006) System considerations for RGBW OLED displays. J SID 14:37Google Scholar
  61. 61.
    Spindler JP, Hatwar TK (2007) Development of tandem white architecture for large-sized AMOLED displays with wide color gamut. SID 07 D Digest, p 89Google Scholar
  62. 62.
    Lee B-W, Hwang YI, Lee H-Y, Kim CW, Ju Y-G (2008) Micro-cavity design of RGBW AMOLED for 100% color gamut. SID 08 Digest, p 1050Google Scholar
  63. 63.
    Lee S, Kim M-G, Song J-B, Kim S-Y, Tamura S, Kang S-K, Kim JM, Choi J, Ha J, Lee S, Chu C, Cho S-W, Cho J-Y, Suh M-C (2008) Highly efficient and wide color gamut white OLED architecture for display application. SID 08 Digest, p 826Google Scholar
  64. 64.
    Kim SY, Kim M-G, Lee SH, Song JB, Tamura S, Kang SK, Kim JM, Cho SW, Cho JY, Suh MC, Kim HD (2008) 3.0-in. 308-ppi WVGA AMOLED by top-emitting white OLED with color filter. SID 08 Digest, p 937Google Scholar
  65. 65.
    Tsujimura T et al (2003) A 20-inch OLED display driven by super-amorphous-silicon technology. SID 03 Digest, pp 6–9Google Scholar
  66. 66.
    Chung HK, Lee KY (2005) Alternative approach to large size AMOLED HDTV. SID 05 Digest, pp 956–959Google Scholar
  67. 67.
    Jeong JK, Jeong JH, Choi JH, Im JS, Kim SH, Yang HW, Kang KN, Kim KS, Ahn TK, Chung H-J, Kim M, Gu BS, Park J-S, Mo Y-G, Kim HD, Chung HK (2008) 12.1-inch WXGA AMOLED display driven by indium-gallium-zinc oxide TFTs array. SID ‘08 Digest, pp 1–4Google Scholar
  68. 68.
    Lee HN, Kyung JW, Kang SK, Kim DY, Sung MC, Kim SJ, Kim CN, Kim HG, Kim ST (2006) Current status of, challenges to, and perspective view of AM-OLEDs. Proc IDW. Otsu, Japan, pp 663–666 Google Scholar
  69. 69.
    Matsueda Y, Shin DY, Kim KN, Ryu DH, Chung BY, Kim HK, Chung HK, Kwon OK (2004) 2.2-in. QVGA AMOLED with current de-multiplexer TFT circuits. IDW ‘04, pp 263–266Google Scholar
  70. 70.
    Shin DY, Matsueda Y, Chung HK (2005) New current demultiplexer TFT circuits for AMOLED. IEICE Trans Electron, E88-C(11)Google Scholar
  71. 71.
    Komiya N, Oh CY, Eom KM, Jeong JT, Chung HK, Choi SM, Kwon OK (2003) Comparison of Vth compensation ability among voltage programming circuits for AMOLED panels. IDW ‘03, pp 275–278Google Scholar
  72. 72.
    Inukai K, Kimura H, Mizukami M, Maruyama J, Murakami S, Koyama J, Konuma T, Yamazaki S (2000) 4.0-in TFT-OLED display and a novel digital driving method. SID ‘00 Digest, pp 924–927 Google Scholar
  73. 73.
    Tanada Y, Osame M , Fukumoto R, Saito K, Sakata J, Yamazaki S (2004) A 4.3-in. VGA (188ppi) AMOLED display with a new driving method. SID ‘04 Digest, pp 1398–1401Google Scholar
  74. 74.
    Tagawa A, Numao T, Ohba T (2004) A novel digital-gray-scale driving method with a multiple addressing sequence for AM-OLED displays. IDW ‘04, pp 279–282 Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Information DisplayKyung Hee UniversitySeoulKorea
  2. 2.Department of PhysicsKyung Hee UniversitySeoulKorea
  3. 3.Samsung Mobile Display Co. LtdYongin CityKorea

Personalised recommendations