Skip to main content

Solution-Processed Organic Photovoltaics

  • Chapter
  • First Online:

Part of the book series: Integrated Circuits and Systems ((ICIR))

Abstract

The technology of organic solar cells has matured to an extent that commercialization of first products has already started. However, with the first products pushing into the market, the research community realizes that a qualified product requires more than only high efficiency and good stability. Cost is of course as important as efficiency and lifetime, but to achieve high productivity, multiple technologic challenges have still to be solved. To reduce production costs, printing of functional layers from solution has evolved to a promising manufacturing technology for flexible organic electronics. Current processing of organic photovoltaic devices is mainly based on traditional methods like spin coating or doctor blading. However, these techniques have several disadvantages such as the incompatibility with a roll-to-roll setup and the processing of only small areas at laboratory scale. Enormous benefits in the manufacturing of organic photovoltaics are achieved by using low-cost roll-to-roll capable technologies including screen printing, spray coating, inkjet printing, gravure/flexographic printing and curtain/slot die coating. This review will shed some light on the role and importance of production technologies for organic photovoltaics and give an update on the most recent achievements in the field.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    External quantum efficiency (EQE) is the percentage of the number of electrons extracted out of a solar cell per incident photon.

  2. 2.

    In this chapter, following the widespread convention, J is the symbol of a current density, while I stands for a current.

  3. 3.

    Solar cells are typically measured at AM1.5G and a light intensity of 100 mW/cm². The “Air Mass” (AM) factor is defined as the quotient between the actual optical path length of sunlight and the optical path length when the sun is directly overhead; AM1.5G characterizes white light with a spectral intensity distribution matching that of the sun rising at a tilt angle of 37° on the earth’s surface.

  4. 4.

    The charge transport is field driven and the relevant transport parameters are the carrier mobility µ, carrier lifetime τ and internal electric field E.

References

  1. Sirringhaus H, Brown PJ, Friend RH, Nielsen MM, Bechgaard K, Langeveld-Voss BMW, Spiering AJH, Janssen RAJ, Meijer EW, Herwig P, de Leeuw DM (1999) Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 401:685

    Article  Google Scholar 

  2. Brown AR, Pomp A, Hart CM, de Leeuw DM (1995) Logic Gates Made from Polymer Transistors and Their Use in Ring Oscillators. Science 270:972

    Article  Google Scholar 

  3. Brabec CJ, Dyakonov V, Parisi J, Sariciftci NS (eds) (2003) Organic photovoltaics: concepts and realization. Springer series in materials science, vol 60. Springer, London

    Google Scholar 

  4. Gur I, Fromer NA, Geier ML, Alivisatos AP (2005) Air-stable all-inorganic nanocrystal solar cells processed from solution. Science 310(5474):462–465

    Article  Google Scholar 

  5. Kapur V, Kemmerle R, Bansal A, Haber J, Schmitzberger J, Le P, Guevarra D, Kapur V, Stempien T (2008) Manufacturing of ‘ink based’ CIGS solar cells/modules. Conference record 33rd IEEE photovoltaic specialists conference, IEEE, Piscataway, NJ

    Google Scholar 

  6. Sang B, Adurodija F, Taylor M, Lim A, Taylor J, Chang Y, McWilliams S, Oswald R, Stanbery BJ, Van Hest M, Nekuda J, Miedaner A, Curtis C, Leisch J, Ginley D (2008) Low cost copper indium gallium selenide by the FASST® process. Conference record 33rd IEEE photovoltaic specialists conference, IEEE, Piscataway, NJ

    Google Scholar 

  7. Reyes-Reyes M, Kim K, Carroll DL (2005) High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C61 blends. Appl Phys Lett 87:083506

    Article  Google Scholar 

  8. Ma W, Yang C, Gong X, Lee K, Heeger AJ (2005) Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology. Adv Funct Mater 15:1617

    Article  Google Scholar 

  9. Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K, Yang Y (2005) High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat Mater 4:864

    Article  Google Scholar 

  10. Mühlbacher D, Scharber MC, Morana M, Zhu Z, Waller D, Gaudiana R, Brabec CJ (2006) High Photovoltaic Performance of a Low-Bandgap Polymer. Adv Mater 18:2884

    Article  Google Scholar 

  11. Zhu Z, Waller D, Gaudiana R, Morana M, Mühlbacher D, Scharber MC, Brabec CJ (2007) Panchromatic Conjugated Polymers Containing Alternating Donor/Acceptor Units for Photovoltaic Applications. Macromolecules 40:1981

    Article  Google Scholar 

  12. Peet J, Kim JY, Coates NE, Ma WL, Moses D, Heeger AJ, Bazan GC (2007) Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nat Mater 6:497–500

    Article  Google Scholar 

  13. Soci C, Hwang IW, Moses D, Zhu Z, Waller D, Gaudiana R, Brabec CJ, Heeger AJ (2007) Photoconductivity of a Low-Bandgap Conjugated Polymer. Adv Funct Mater 17:632

    Article  Google Scholar 

  14. Morana M, Wegscheider M, Bonanni A, Kopidakis N, Shaheen S, Scharber MC, Zhu Z, Waller D, Gaudiana R, Brabec CJ (2008) Bipolar charge transport in PCPDTBT-PCBM bulk-heterojunctions for photovoltaic applications. Adv Funct Mater 18:1757–1766

    Article  Google Scholar 

  15. NREL certificate Konarka, 8.29 % PCE (thickness > 200 nm, device area 1.031 cm2) under ASTM G173 global spectrum, 17 November 2010

    Google Scholar 

  16. Blayo A, Pineaux B (2005) Printing Processes and their Potential for RFID Printing. Joint sOc-EUSAI conference, Grenoble

    Google Scholar 

  17. Konarka technologies, hompage www.konarka.com

  18. Yu G, Heeger AJ (1995) Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions. J Appl Phys 78:4510

    Article  Google Scholar 

  19. Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ (1995) Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor- Acceptor Heterojunctions. Science 270:1789

    Article  Google Scholar 

  20. Shaheen SE, Brabec CJ, Sariciftci NS, Padinger F, Fromherz T, Hummelen JC (2001) 2.5% efficient organic plastic solar cells. Appl Phys Lett 78:841

    Article  Google Scholar 

  21. Padinger F, Rittberger RS, Sariciftci NS (2003) Effects of postproduction treatment on plastic solar cells. Adv Funct Mater 13:85

    Article  Google Scholar 

  22. Ma W, Yang C, Gong X, Lee K, Heeger AJ (2005) Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology. Adv Funct Mater 15:1617

    Article  Google Scholar 

  23. Konarka homepage (www.konarka.com), press release 19 May 2009, NREL certificate 6.4 % PCE

  24. Brabec CJ, Padinger F, Hummelen JC, Janssen RA, Sariciftci NS (1999) Realization of Large Area Flexible Plastic Solar Cells Based on Conjugated Polymers and Fullerenes. Synth Metals 102:861

    Article  Google Scholar 

  25. Padinger F, Brabec CJ, Fromherz T, Hummelen JC, Sariciftci NS (2000) Fabrication of Large Area Photovoltaic Devices Containing various blends of Polymer & Fullerene Derviatives by Using the Doctor Blade Technique. Optoelectron Rev 8(4):280

    Google Scholar 

  26. Schilinsky P, Waldauf C, Brabec CJ (2006) Performance analysis of printed organic solar cells. Adv Funct Mater 16:1669

    Article  Google Scholar 

  27. Chang Y-H, Tseng S-R, Chen C-Y, Meng H-F, Chen E-C, Horng S-F, Hsu C-S (2009) Polymer solar cell by blade coating. Org Electron 10(5):741–746

    Article  Google Scholar 

  28. Waldauf C, Schilinsky P, Hauch JA, Brabec CJ (2004) Material and device concepts for organic photovoltaics: towards competitive efficiencies. Thin Solid Films 451–452:503–507

    Article  Google Scholar 

  29. Schilinsky P, Waldauf C, Hauch JA, Brabec CJ (2004) Simulation of light intensity dependent current characteristics of polymer solar cells. J Appl Phys 95:5

    Article  Google Scholar 

  30. Waldauf C, Scharber MC, Schilinsky P, Hauch JA, Brabec CJ (2006) Physics of organic bulk heterojunction devices for photovoltaic applications. J Appl Phys 99:104503

    Article  Google Scholar 

  31. Shaheen SE, Radspinner R, Peyghambarian N, Jabbour GE (2001) Fabrication of bulk heterojunction plastic solar cells by screen printing. Appl Phys Lett 79:2996

    Article  Google Scholar 

  32. Krebs FC, Alstrup J, Spanggaard H, Larsen K, Kold E (2004) Production of large-area polymer solar cells by industrial silk screen printing, lifetime considerations and lamination with polyethyleneterephthalate. Sol Energy Mater Sol Cells 83:293

    Article  Google Scholar 

  33. Krebs FC, Spanggard H, Kjaer T, Biancardo M, Alstrup J (2007) Large area plastic solar cell modules. Mater Sci Eng B 138:106

    Article  Google Scholar 

  34. Aernouts T, Vanlaeke P, Poortmans J, Heremans P (2005) Polymer solar cells: screen-printing as a novel deposition technique. Mater Res Soc Symp Proc 836, art. no. L3.9, 81

    Google Scholar 

  35. Aernouts T, Vanlaeke P, Geens W, Poortmans J, Heremans P, Borghs S, Mertens R, Andriessen R, Leenders L (2004) Printable anodes for flexible organic solar cell modules. Thin Solid Films 451–452:22

    Article  Google Scholar 

  36. Krebs FC (2008) Air stable polymer photovoltaics based on a process free from vacuum steps and fullerenes. Sol Energy Mater Sol Cells 92:715–726

    Article  Google Scholar 

  37. Ishikawa T, Nakamura M, Fujita K, Tsutsui T (2004) Preparation of organic bulk heterojunction photovoltaic cells by evaporative spray deposition from ultradilute solution. Appl Phys Lett 84:2424

    Article  Google Scholar 

  38. Mo XL, Mizokuro T, Mochizuki H, Tanigaki N, Hiraga T (2005) Polymer Solar Cell Prepared by a Novel Vacuum Spray Method. Jpn J Appl Phys, Part 1, 44: 656

    Google Scholar 

  39. Vak D, Kim S, Jo J, Oh S, Na S, Kim J, Kim D (2007) Fabrication of organic bulk heterojunction solar cells by a spray deposition method for low-cost power generation. Appl Phys Lett 91:081102

    Article  Google Scholar 

  40. Green R, Morfa A, Ferguson AJ, Kopidakis N, Rumbles G, Shaheen SE (2008) Performance of bulk heterojunction photovoltaic devices prepared by airbrush spray deposition. Appl Phys Lett 92:033301

    Article  Google Scholar 

  41. Steirer KX, Reese MO, Rupert BL, Kopidakis N, Olson DC, Collins RT, Ginley DS (2009) Ultrasonic Spray Deposition for Production of Organic Solar Cells. Sol Energy Mater Sol Cells 93:447–453

    Article  Google Scholar 

  42. Girotto C, Rand BP, Genoe J, Heremans P (2009) Exploring spray coating as a deposition technique for the fabrication of solution-processed solar cells. Sol Energy Mater Sol Cells 93:454–458

    Article  Google Scholar 

  43. Hoth C (2009) Ink Formulations for Organic Photovoltaics and their Processing with Printing and Coating Technologies. Carl von Ossietzky Universität Oldenburg, Fakultät V, EHF, PhD thesis

    Google Scholar 

  44. Hoth CN, Choulis SA, Schilinsky P, Brabec CJ (2007) High Photovoltaic Performance of Inkjet Printed Polymer:Fullerene Blends. Adv Mater 19:3973

    Article  Google Scholar 

  45. Hoth CN, Steim R, Schilinsky P, Choulis SA, Tedde SF, Hayden O, Brabec CJ (2009) Topographical and morphological aspects of spray coated organic photovoltaics. Org Electron 10:587–593

    Article  Google Scholar 

  46. Hau SK, Yip H-L, Leong K, Jen AK-Y (2009) Spray coating of silver nanoparticle electrodes for inverted polymer solar cells. Org Electron 10:719–723

    Article  Google Scholar 

  47. Girotto C, Rand BP, Steudel S, Genoe J, Heremans P (2009) Nanoparticle-based, spray-coated silver top contacts for efficient polymer solar cells. Org Electron 10:735–740

    Article  Google Scholar 

  48. Gamota DR, Brazis P, Kalyanasundaram K, Zhang J (2004) Printed Organic and Molecular Electronics. Kluwer Academic Publishers, T. Claypole, pp 320–322

    Google Scholar 

  49. Calvert P (2001) Inkjet Printing for Materials and Devices. Chem Mater 13:3299–3305

    Article  Google Scholar 

  50. Liu Y, Varahramyan K, Cui T (2005) Low-Voltage All-Polymer Field-Effect Transistor Fabricated Using an Inkjet Printing Technique. Macromol Rapid Commun 26:1955–1959

    Article  Google Scholar 

  51. Kim D, Jeong S, Lee S, Park BK, Moon J (2007) Organic thin film transistor using silver electrodes by the ink-jet printing technology. Thin Solid Films 515:7692–7696

    Article  Google Scholar 

  52. Song DH, Choi MH, Kim JY, Jang J (2007) Process optimization of organic thin-film transistor by ink-jet printing of DH4T on plastic. Appl Phys Lett 90:053504

    Article  Google Scholar 

  53. Mannerbro R, Ranlöf M, Robinson N, Forchheimer R (2008) Inkjet printed electrochemical organic electronics. Synth Metals 158:556–560

    Article  Google Scholar 

  54. Sirringhaus H, Kawase T, Friend RH, Shimoda T, Inbasekaran M, Wu W, Woo EP (2000) High-Resolution Inkjet Printing of All-Polymer Transistor Circuits. Science 290:2123

    Article  Google Scholar 

  55. Kawase T, Sirringhaus H, Friend RH, Shimoda T (2001) Inkjet Printed Via-Hole Interconnections and Resistors for All-Polymer Transistor Circuits. Adv Mater 13:1601

    Article  Google Scholar 

  56. Kawase T, Shimoda T, Newsome C, Sirringhaus H, Friend RH (2003) Inkjet printing of polymer thin film transistors. Thin Solid Films 438:279–287

    Article  Google Scholar 

  57. Xia Y, Friend RH (2006) Polymer bilayer structure via inkjet printing. Appl Phys Lett 88:163508

    Article  Google Scholar 

  58. Xia Y, Friend RH (2005) Controlled phase separation of polyfluorene blends via inkjet printing. Macromolecules 38:6466–6471

    Article  Google Scholar 

  59. Shimoda T, Morii K, Seki S, Kiguchi H (2003) Inkjet Printing of Light-Emitting Polymer Displays. MRS Bull pp 821–827

    Google Scholar 

  60. Shah VG, Wallace DB (2004) Low-cost Solar Cell Fabrication by Drop-on-Demand Ink-jet Printing. Proceedings of IMAPS 37th annual international symposium on microelectronics, Long Beach, CA, 14–18 Nov 2004, pp 1

    Google Scholar 

  61. Marin V, Holder E, Wienk MM, Tekin E, Kozodaev D, Schubert US (2005) Ink-Jet Printing of Electron Donor/Acceptor Blends: Towards Bulk Heterojunction Solar Cells. Macromol Rapid Commun 26:319–324

    Article  Google Scholar 

  62. Aernouts T, Aleksandrov T, Girotto C, Genoe J, Poortmans J (2008) Polymer based organic solar cells using ink-jet printed active layers. Appl Phys Lett 92:033306

    Article  Google Scholar 

  63. Hoth CN, Schilinsky P, Choulis SA, Brabec CJ (2008) Printing highly efficient organic solar cells. Nano Lett 8:2806–2813

    Article  Google Scholar 

  64. Hoth CN, Choulis SA, Schilinsky P, Brabec CJ (2009) On the effect of poly(3-hexylthiophene) regioregularity on inkjet printed organic solar cells . J Mater Chem 19(30):5398–5405

    Article  Google Scholar 

  65. Nie Z, Kumacheva E (2008) Patterning surfaces with functional polymers. Nature Mater p 7

    Google Scholar 

  66. Tuomikoski M, Suhonen R (2006) Technologies for Polymer Electronics. Proceedings of TPE06, 2nd international symposium technologies for polymer electronics, Rudolstadt, vol 83

    Google Scholar 

  67. Yin X, Kumar S (2006) Flow visualization of the liquid-emptying process in scaled-up gravure grooves and cells. Chem Eng Sci 61:1142–1152

    Google Scholar 

  68. Ding JM, De la Fuente Vornbrock A, Ting C, Subramanian V (2009) Patternable polymer bulk heterojunction photovoltaic cells on plastic by rotogravure printing. Sol Energy Mater Sol Cells 93:459–464

    Article  Google Scholar 

  69. Krebs FC (2009) Fabrication and processing of polymer solar cells: A review of printing and coating techniques. Sol Energy Mater Sol Cells 93:394–412

    Article  Google Scholar 

  70. Hübler AC, Kempa H (2008) Flexo printing in organic electronics. In: Brabec CJ, Dyakonov V, Scherf U (eds) Organic photovoltaics. Wiley VCH, New York

    Google Scholar 

  71. Santurri P, Chemsultants, Inc., (2007) Coating methods for producing polymer films & membranes 3rd MEA Manufacturing symposium, Dayton, Ohio

    Google Scholar 

  72. Schultheis K, Blankenburg L, Sensfuss S, Schrödner M (2007) Polymer photo-voltaics: first steps to large scale R2R-production using wet coating techniques. Proceedings of the Cintelliq conference, Frankfurt

    Google Scholar 

  73. Schrödner M, Schultheis K, Blankenburg L, Schache H, Sensfuss S (2008) Reel-to-reel film coating technique for production of functional layers for polymer photovoltaics and electronics. International symposium TPE08, Rudolstadt

    Google Scholar 

  74. Blankenburg L, Schultheis K, Schache H, Sensfuss S, Schrödner M (2009) Reel-to-reel wet coating as an efficient up-scaling technique for the production of bulkheterojunction polymer solar cells. Sol Energy Mater Sol Cells 93:476–483

    Article  Google Scholar 

  75. Tipnis R, Bernkopf J, Jia S, Krieg J, Li S, Storch M, Laird D (2009) Large-area organic photovoltaic module - fabrication and performance. Sol Energy Mater Sol Cells 93:442–446

    Article  Google Scholar 

  76. Hauch JA, Schilinsky P, Choulis SA, Childers R, Biele M, Brabec CJ (2008) Flexible organic P3HT:PCBM bulk-heterojunction modules with more than 1 year outdoor lifetime. Sol Energy Mater Sol Cells 92:727–731

    Article  Google Scholar 

  77. Hauch JA, Schilinsky P, Choulis SA, Rajoelson S, Brabec CJ (2008) The impact of water vapor transmission rate on the lifetime of flexible polymer solar cells. Appl Phys Lett 93:103306

    Article  Google Scholar 

  78. Schuller S, Schilinsky P, Hauch JA, Brabec CJ (2004) Determination of the degradation constant of bulk heterojunction solar cells by accelerated lifetime measurements. Appl Phys A 79:37

    Article  Google Scholar 

  79. Derbyshire K (2003) The future of organic semiconductors. Pira International, Surrey

    Google Scholar 

  80. Frost & Sullivan (2004) Security technology—North American trends and developments in video surveillance D288

    Google Scholar 

  81. Dennler G, Brabec CJ (2008) In: Brabec CJ, Dyakonov V, Scherf U (eds) Organic photovoltaics: Materials, device physics & manufacturing technologies. Organic photovoltaics. Wiley VCH

    Google Scholar 

  82. Press release, Konarka Homepage (www.konarka.com), Eröffnung der New Bedford Produktionsanlage, 2008

  83. Konarka homepage (www.konarka.com), power plastics, products and applications

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia N. Hoth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hoth, C.N., Schilinsky, P., Choulis, S.A., Balasubramanian, S., Brabec, C.J. (2013). Solution-Processed Organic Photovoltaics. In: Cantatore, E. (eds) Applications of Organic and Printed Electronics. Integrated Circuits and Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-3160-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3160-2_2

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-3159-6

  • Online ISBN: 978-1-4614-3160-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics