Skip to main content

Adoptive Cell Transfer Therapy For Malignant Gliomas

  • Chapter
Glioma

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 746))

Abstract

To date, various adoptive immunotherapies have been attempted for treatment of malignant gliomas using nonspecific and/or specific effector cells. Since the late 1980s, with the development of rIL-2, the efficacy of lymphokine-activated killer (LAK) cell therapy with or without rIL-2 for malignant gliomas had been tested with some modifications in therapeutic protocols. With advancements in technology, ex vivo expanded tumor specific cytotoxic T-lymphocytes (CTL) or those lineages were used in clinical trials with higher tumor response rates. In addition, combinations of those adoptive cell transfer using LAK cells, CTLs or natural killer (NK) cells with autologous tumor vaccine (ATV) therapy were attempted. Also, a strategy of high-dose (or lymphodepleting) chemotherapy followed by adoptive cell transfer has been drawing attentions recently. The most important role of these clinical studies using cell therapy was to prove that these ex vivo expanded effector cells could kill tumor cells in vivo. Although recent clinical results could demonstrate radiologic tumor shrinkage in a number of cases, cell transfer therapy alone has been utilized less frequently, because of the high cost of ex vivo cell expansion, the short duration of antitumor activity in vivo, and the recent shift of interest to vaccine immunotherapy. Nevertheless, NK cell therapy using specific feeder cells or allergenic NK cell lines have potentials to be a good choice of treatment because of easy ex vivo expansion and their efficacy especially when combined with vaccine therapy as they are complementary to each other. Also, further studies are expected to clarify the efficacy of the high-dose chemotherapy followed by a large scale cell transfer therapy as a new therapeutic strategy for malignant gliomas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Grimm EA, Mazumder A, Zhang HZ et al. Lymphokine-activated killer cell phenomenon. Lysis of natural killer-resistant fresh solid tumor cells by interleukin 2-activated autologous human peripheral blood lymphocytes. J Exp Med 1982; 155(6):1823–1841.

    Article  PubMed  CAS  Google Scholar 

  2. Carpentier AF, Meng Y. Recent advances in immunotherapy for human glioma. Curr Opin Oncol 2006; 18(6):631–636.

    Article  PubMed  Google Scholar 

  3. Jaeckle KA. Immunotherapy of malignant gliomas. Semin Oncol 1994; 21:249–259.

    PubMed  CAS  Google Scholar 

  4. Kushen MC, Sonabend AM, Lesniak MS. Current immunotherapeutic strategies for central nervous system tumors. Surg Oncol Clin N Am 2007; 16:987–1004, xii.

    Article  PubMed  Google Scholar 

  5. Mitchell DA, Fecci PE, Sampson JH. Immunol Rev 2008; 222:70–100.

    Article  PubMed  CAS  Google Scholar 

  6. Parney IF, Hao C, Petruk KC. Glioma immunology and immunotherapy. Neurosurgery 2000; 46:778–791.

    PubMed  CAS  Google Scholar 

  7. Rosenberg SA, Lotze MT, Muul LM et al. Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N Engl J Med 1985; 313:1485–1492.

    Article  PubMed  CAS  Google Scholar 

  8. Dillman RO, Duma CM, Schiltz PM et al. Intracavitary placement of autologous lymphokine-activated killer (LAK) cells after resection of recurrent glioblastoma. J Immunother 2004; 27:398–404.

    Article  PubMed  Google Scholar 

  9. Hayes RL, Koslow M, Hiesinger EM. Improved long term survival after intracavitary interleukin-2 and lymphokine-activated killer cells for adults with recurrent malignant glioma. Cancer 1995; 76:840–852.

    Article  PubMed  CAS  Google Scholar 

  10. Hayes RL, Arbit E, Odaimi M et al. Adoptive cellular immunotherapy for the treatment of malignant gliomas. Crit Rev Oncol Hematol 2001; 39:31–42.

    Article  PubMed  CAS  Google Scholar 

  11. Jacobs SK, Wilson DJ, Kornblith PL et al. Interleukin-2 and autologous lymphokine-activated killer cells in the treatment of malignant glioma. Preliminary report. J Neurosurg 1986; 64:743–749.

    Article  PubMed  CAS  Google Scholar 

  12. Lillehei KO, Mitchell DH, Johnson SD et al. Long-term follow-up of patients with recurrent malignant gliomas treated with adjuvant adoptive immunotherapy. Neurosurgery 1991; 28:16–23.

    Article  PubMed  CAS  Google Scholar 

  13. Merchant RE, Grant AJ, Merchant LH et al. Adoptive immunotherapy for recurrent glioblastoma multiforme using lymphokine activated killer cells and recombinant interleukin-2. Cancer 1988; 62:665–671.

    Article  PubMed  CAS  Google Scholar 

  14. Okamoto Y, Shimizu K, Tamura K et al. An adoptive immunotherapy of patients with medulloblastoma by lymphokine-activated killer cells (LAK). Acta Neurochir (Wien) 1988; 94:47–52.

    Article  CAS  Google Scholar 

  15. Sankhla SK, Nadkarni JS, Bhagwati SN. Adoptive immunotherapy using lymphokine-activated killer (LAK) cells and interleukin-2 for recurrent malignant primary brain tumors. J Neurooncol 1996; 27:133–140.

    Article  PubMed  CAS  Google Scholar 

  16. Yoshida S, Tanaka R, Takai N et al. Local administration of autologous lymphokine-activated killer cells and recombinant interleukin 2 to patients with malignant brain tumors. Cancer Res 1988; 48:5011–5016

    PubMed  CAS  Google Scholar 

  17. Barba D, Saris SC, Holder C et al. Intratumoral LAK cell and interleukin-2 therapy of human gliomas. J Neurosurg 1989; 70:175–182.

    Article  PubMed  CAS  Google Scholar 

  18. Blancher A, Roubinet F, Grancher AS et al. Local immunotherapy of recurrent glioblastoma multiforme by intracerebral perfusion of interleukin-2 and LAK cells. Eur Cytokine Netw 1993; 4:331–341.

    PubMed  CAS  Google Scholar 

  19. Boiardi A, Silvani A, Ruffini PA et al. Locoregional immunotherapy with recombinant interleukin-2 and adherent lymphokine-activated killer cells (A-LAK) in recurrent glioblastoma patients. Cancer Immunol Immunother 1994; 39:193–197.

    Article  PubMed  CAS  Google Scholar 

  20. Bordignon C, Carlo-Stella C, Colombo MP et al. Cell therapy: Achievements and perspectives. Haematologica 1999; 84:1110–1149.

    PubMed  CAS  Google Scholar 

  21. Arai S, Meagher R, Swearingen M et al. Infusion of the allogeneic cell line NK-92 in patients with advanced renal cell cancer or melanoma: A phase I trial. Cytotherapy 2008; 10:625–632.

    Article  PubMed  CAS  Google Scholar 

  22. Ishikawa E, Tsuboi K, Saijo K et al. Autologous natural killer cell therapy for human recurrent malignant glioma. Anticancer Res 2004; 24:1861–1871.

    PubMed  Google Scholar 

  23. Harada H, Saijo K, Watanabe S et al. Selective expansion of human natural killer cells from peripheral blood mononuclear cells by the cell line, HFWT. Jpn J Cancer Res 2002; 93:313–319.

    Article  PubMed  CAS  Google Scholar 

  24. Wang RF. The role of MHC class II-restricted tumor antigens and CD4+ T-cells in antitumor immunity. Trends Immunol 2001; 22:269–276.

    Article  PubMed  Google Scholar 

  25. Kruse CA, Cepeda L, Owens B et al. Treatment of recurrent glioma with intracavitary alloreactive cytotoxic T-lymphocytes and interleukin-2. Cancer Immunol Immunother 1997; 45:77–87.

    Article  PubMed  CAS  Google Scholar 

  26. Quattrocchi KB, Miller CH, Cush S et al. Pilot study of local autologous tumor infiltrating lymphocytes for the treatment of recurrent malignant gliomas. J Neuro-Oncol 1999; 45:141–157.

    Article  CAS  Google Scholar 

  27. Tsuboi K, Saijo K, Ishikawa E et al. Effects of local injection of ex vivo expanded autologous tumor-specific T-lymphocytes in cases with recurrent malignant gliomas. Clin Cancer Res 2003; 9:3294–3302.

    PubMed  Google Scholar 

  28. Tsurushima H, Liu SQ, Tuboi K et al. Reduction of end-stage malignant glioma by injection with autologous cytotoxic T-lymphocytes. Jpn J Cancer Res 1999; 90:536–545.

    Article  PubMed  CAS  Google Scholar 

  29. Tsurushima H, Liu SQ, Tsuboi K et al. Induction of human autologous cytotoxic T-lymphocytes against minced tissues of glioblastoma multiforme. J Neurosurg 1996; 84:258–263.

    Article  PubMed  CAS  Google Scholar 

  30. Holladay FP, Heitz-Turner T, Bayer WL et al. Autologous tumor cell vaccination combined with adoptive cellular immunotherapy in patients with grade III/IV astrocytoma. J Neurooncol 1996; 27:179–189.

    Article  PubMed  CAS  Google Scholar 

  31. Plautz GE, Miller DW, Barnett GH et al. T-cell adoptive immunotherapy of newly diagnosed gliomas. Clin Cancer Res 2000; 6:2209–2218.

    PubMed  CAS  Google Scholar 

  32. Sloan AE, Dansey R, Zamorano L et al. Adoptive immunotherapy in patients with recurrent malignant glioma: Preliminary results of using autologous whole-tumor vaccine plus granulocyte-macrophage colony-stimulating factor and adoptive transfer of anti-CD3-activated lymphocytes. Neurosurg Focus 2000; 9:e9.

    Article  PubMed  CAS  Google Scholar 

  33. Wood GW, Holladay FP, Turner T et al. A pilot study of autologous cancer cell vaccination and cellular immunotherapy using anti-CD3 stimulated lymphocytes in patients with recurrent grade III/IV astrocytoma. J Neurooncol 2000; 48:113–120.

    Article  PubMed  CAS  Google Scholar 

  34. Dudley ME, Wunderlich JR, Yang JC et al. Adoptive cell transfer therapy following nonmyeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J Clin Oncol 2005; 23:2346–2357.

    Article  PubMed  CAS  Google Scholar 

  35. Peres E, Wood GW, Poulik J et al. High-dose chemotherapy and adoptive immunotherapy in the treatment of recurrent pediatric brain tumors. Neuropediatrics 2008; 39:151–156.

    Article  PubMed  CAS  Google Scholar 

  36. Ferrara TA, Hodge JW, Gulley JL. Combining radiation and immunotherapy for synergistic antitumor therapy. Curr Opin Mol Ther 2009; 11:37–42.

    PubMed  CAS  Google Scholar 

  37. Ishikawa E, Tsuboi K, Saijo K et al. X-irradiation to human malignant glioma cells enhances the cytotoxicity of autologous killer lymphocytes under specific conditions. Int J Radiat Oncol Biol Phys 2004; 59:1505–1512.

    Article  PubMed  Google Scholar 

  38. Ishikawa E, Tsuboi K, Takano S et al. Intratumoral injection of IL-2-activated NK cells enhances the antitumor effect of intradermally injected paraformaldehyde-fixed tumor vaccine in a rat intracranial brain tumor model. Cancer Sci 2004; 95:98–103.

    Article  PubMed  CAS  Google Scholar 

  39. Motohashi S, Ishikawa A, Ishikawa E et al. A phase I study of in vitro expanded natural killer T-cells in patients with advanced and recurrent nonsmall cell lung cancer. Clin Cancer Res 2006; 12(20 Pt 1):6079–86.

    Article  PubMed  CAS  Google Scholar 

  40. Das S, Raizer JJ, Muro K. Immunotherapeutic treatment strategies for primary brain tumors. Curr Treat Options Oncol 2008; 9:32–40.

    Article  PubMed  Google Scholar 

  41. Yamanaka R. Dendritic-cell-and peptide-based vaccination strategies for glioma. Neurosurg Rev 2009; 32:265–273.

    Article  PubMed  Google Scholar 

  42. Ishikawa E, Tsuboi K, Yamamoto T et al. Clinical trial of autologous formalin-fixed tumor vaccine for glioblastoma multiforme patients. Cancer Sci 2007; 98:1226–1233.

    Article  PubMed  CAS  Google Scholar 

  43. de Vleeschouwer S, Rapp M, Sorg RV et al. Dendritic cell vaccination in patients with malignant gliomas: Current status and future directions. Neurosurgery 2006; 59:988–999.

    PubMed  Google Scholar 

  44. Yamanaka R, Homma J, Yajima N et al. Clinical evaluation of dendritic cell vaccination for patients with recurrent glioma: Results of a clinical phase I/II trial. Clin Cancer Res 2005; 11:4160–4167.

    Article  PubMed  CAS  Google Scholar 

  45. Bracci L, Moschella F, Sestili P et al. Cyclophosphamide enhances the antitumor efficacy of adoptively transferred immune cells through the induction of cytokine expression, B-cell and T-cell homeostatic proliferation and specific tumor infiltration. Clin Cancer Res 2007; 15:644–653.

    Article  Google Scholar 

  46. Liu G, Black KL, Yu JS. Sensitization of malignant glioma to chemotherapy through dendritic cell vaccination. Expert Rev Vaccines 2006; 5:2332–47.

    Article  Google Scholar 

  47. Guinn BA, Kasahara N, Farzaneh F et al. Recent advances and current challenges in tumor immunology and immunotherapy. Mol Ther 2007; 15:1065–1071.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Tsuboi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Ishikawa, E., Takano, S., Ohno, T., Tsuboi, K. (2012). Adoptive Cell Transfer Therapy For Malignant Gliomas. In: Yamanaka, R. (eds) Glioma. Advances in Experimental Medicine and Biology, vol 746. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3146-6_9

Download citation

Publish with us

Policies and ethics