Skip to main content

Cytokine Therapy

  • Chapter
Glioma

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 746))

Abstract

Cytokines are a heterogeneous group of soluble small polypeptides or glycoproteins, which exert pleiotropic and redundant effects that promote growth, differentiation and activation of normal cells. Cytokines can have either pro- or anti-inflammatory activity and immunosuppressive activity, depending on the microenvironments. The tumor microenvironment consists of a variable combination of tumor cells, endothelial cells and infiltrating leukocytes, such as macrophages, T-lymphocytes, natural killer (NK) cells, B cells and antigen-presenting cells (APCs). Cytokine production acts as a means of communication in the tumor microenvironment. In this article, we review the cross-talk between cytokines in the tumor environment and the cytokine therapies that have been used till date for glioma treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Borish LC, Steinke JW. 2. Cytokines and chemokines. J Allergy Clin Immunol 2003; 111:S460–475.

    Article  Google Scholar 

  2. Carson MJ, Doose JM, Melchior B et al. CNS immune privilege: hiding in plain sight. Immunol Rev 2006; 213:48–65.

    Article  PubMed  Google Scholar 

  3. Watters JJ, Schartner JM, Badie B. Microglia function in brain tumors. J Neurosci Res 2005; 81:447–455.

    Article  PubMed  CAS  Google Scholar 

  4. Jacobs SK, Wilson DJ, Kornblith PL et al. Interleukin-2 or autologous lymphokine-activated killer cell treatment of malignant glioma: phase I trial. Cancer Res 1986; 46:2101–2104.

    PubMed  CAS  Google Scholar 

  5. Vaquero J, Martinez R. Intratumoral immunotherapy with interferon-alpha and interleukin-2 in glioblastoma. Neuroreport 1992; 3:981–983.

    Article  PubMed  CAS  Google Scholar 

  6. Hayes RL, Koslow M, Hiesiger EM et al. Improved long term survival after intracavitary interleukin-2 and lymphokine-activated killer cells for adults with recurrent malignant glioma. Cancer 1995; 76:840–852.

    Article  PubMed  CAS  Google Scholar 

  7. Kruse CA, Cepeda L, Owens B et al. Treatment of recurrent glioma with intracavitary alloreactive cytotoxic T-lymphocytes and interleukin-2. Cancer Immunol Immunother 1997; 45:77–87.

    Article  PubMed  CAS  Google Scholar 

  8. Holladay FP, Heitz-Turner T, Bayer WL et al. Autologous tumor cell vaccination combined with adoptive cellular immunotherapy in patients with grade III/IV astrocytoma. J Neurooncol 1996; 27:179–189.

    Article  PubMed  CAS  Google Scholar 

  9. Colombo F, Barzon L, Franchin E et al. Combined HSV-TK/IL-2 gene therapy in patients with recurrent glioblastoma multiforme: biological and clinical results. Cancer Gene Ther 2005; 12:835–848.

    Article  PubMed  CAS  Google Scholar 

  10. Mosmann TR, Cherwinski H, Bond MW et al. Two types of murine helper T-cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 1986; 136:2348–2357.

    PubMed  CAS  Google Scholar 

  11. Yoshimoto T, Paul WE. CD4pos, NK1.1pos T-cells promptly produce interleukin 4 in response to in vivo challenge with anti-CD3. J Exp Med 1994; 179:1285–1295.

    Article  PubMed  CAS  Google Scholar 

  12. Plaut M, Pierce JH, Watson CJ et al. Mast cell lines produce lymphokines in response to cross-linkage of Fc epsilon RI or to calcium ionophores. Nature 1989; 339:64–67.

    Article  PubMed  CAS  Google Scholar 

  13. Moqbel R, Ying S, Barkans J et al. Identification of messenger RNA for IL-4 in human eosinophils with granule localization and release of the translated product. J Immunol 1995; 155:4939–4947.

    PubMed  CAS  Google Scholar 

  14. Velazquez JR, Lacy P, Mahmudi-Azer S et al. Interleukin-4 and RANTES expression in maturing eosinophils derived from human cord blood CD34+ progenitors. Immunology 2000; 101:419–425.

    Article  PubMed  CAS  Google Scholar 

  15. Boulay JL, Paul WE. The interleukin-4-related lymphokines and their binding to hematopoietin receptors. J Biol Chem 1992; 267:20525–20528.

    PubMed  CAS  Google Scholar 

  16. Cabrillat H, Galizzi JP, Djossou O et al. High affinity binding of human interleukin 4 to cell lines. Biochem Biophys Res Commun 1987; 149:995–1001.

    Article  PubMed  CAS  Google Scholar 

  17. Park LS, Friend D, Sassenfeld HM et al. Characterization of the human B-cell stimulatory factor 1 receptor. J Exp Med 1987; 166:476–488.

    Article  PubMed  CAS  Google Scholar 

  18. Foxwell BM, Woerly G, Ryffel B. Identification of interleukin 4 receptor-associated proteins and expression of both high-and low-affinity binding on human lymphoid cells. Eur J Immunol 1989; 19:1637–1641.

    Article  PubMed  CAS  Google Scholar 

  19. Galizzi JP, Zuber CE, Harada N et al. Molecular cloning of a cDNA encoding the human interleukin 4 receptor. Int Immunol 1990; 2:669–675.

    Article  PubMed  CAS  Google Scholar 

  20. Okada H, Kuwashima N. Gene therapy and biologic therapy with interleukin-4. Curr Gene Ther 2002; 2:437–450.

    Article  PubMed  CAS  Google Scholar 

  21. Okada H, Lieberman FS, Edington HD et al. Autologous glioma cell vaccine admixed with interleukin-4 gene transfected fibroblasts in the treatment of recurrent glioblastoma: preliminary observations in a patient with a favorable response to therapy. J Neurooncol 2003; 64:13–20.

    PubMed  Google Scholar 

  22. Weber F, Asher A, Bucholz R et al. Safety, tolerability and tumor response of IL4-Pseudomonas exotoxin (NBI-3001) in patients with recurrent malignant glioma. J Neurooncol 2003; 64:125–137.

    PubMed  Google Scholar 

  23. Wynn TA. IL-13 effector functions. Annu Rev Immunol 2003; 21:425–456.

    Article  PubMed  CAS  Google Scholar 

  24. Debinski W, Obiri NI, Powers SK et al. Human glioma cells overexpress receptors for interleukin 13 and are extremely sensitive to a novel chimeric protein composed of interleukin 13 and pseudomonas exotoxin. Clin Cancer Res 1995; 1:1253–1258.

    PubMed  CAS  Google Scholar 

  25. Mut M, Sherman JH, Shaffrey ME et al. Cintredekin besudotox in treatment of malignant glioma. Expert Opin Biol Ther 2008; 8:805–812.

    Article  PubMed  CAS  Google Scholar 

  26. Kunwar S, Chang SM, Prados MD et al. Safety of intraparenchymal convection-enhanced delivery of cintredekin besudotox in early-phase studies. Neurosurg Focus 2006; 20:E15.

    PubMed  Google Scholar 

  27. Kioi M, Seetharam S, Puri RK. Targeting IL-13Ralpha2-positive cancer with a novel recombinant immunotoxin composed of a single-chain antibody and mutated Pseudomonas exotoxin. Mol Cancer Ther 2008; 7:1579–1587.

    Article  PubMed  CAS  Google Scholar 

  28. Massague J. TGF-beta signal transduction. Annu Rev Biochem 1998; 67:753–791.

    Article  PubMed  CAS  Google Scholar 

  29. Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 2003; 425:577–584.

    Article  PubMed  CAS  Google Scholar 

  30. Jakowlew SB. Transforming growth factor-beta in cancer and metastasis. Cancer Metastasis Rev 2006; 25:435–457.

    Article  PubMed  CAS  Google Scholar 

  31. Kjellman C, Olofsson SP, Hansson O et al. Expression of TGF-beta isoforms, TGF-beta receptors and SMAD molecules at different stages of human glioma. Int J Cancer 2000; 89:251–258.

    Article  PubMed  CAS  Google Scholar 

  32. Uhl M, Aulwurm S, Wischhusen J et al. SD-208, a novel transforming growth factor beta receptor I kinase inhibitor, inhibits growth and invasiveness and enhances immunogenicity of murine and human glioma cells in vitro and in vivo. Cancer Res 2004; 64:7954–7961.

    Article  PubMed  CAS  Google Scholar 

  33. Hjelmeland MD, Hjelmeland AB, Sathornsumetee S et al. SB-431542, a small molecule transforming growth factor-beta-receptor antagonist, inhibits human glioma cell line proliferation and motility. Mol Cancer Ther 2004; 3:737–745.

    PubMed  CAS  Google Scholar 

  34. Hau P, Jachimczak P, Schlingensiepen R et al. Inhibition of TGF-beta2 with AP 12009 in recurrent malignant gliomas: from preclinical to phase I/II studies. Oligonucleotides 2007; 17:201–212.

    Article  PubMed  CAS  Google Scholar 

  35. Tran TT, Uhl M, Ma JY et al. Inhibiting TGF-beta signaling restores immune surveillance in the SMA-560 glioma model. Neuro Oncol 2007; 9:259–270.

    Article  PubMed  CAS  Google Scholar 

  36. Naumann U, Maass P, Gleske AK et al. Glioma gene therapy with soluble transforming growth factor-beta receptors II and III. Int J Oncol 2008; 33:759–765.

    PubMed  CAS  Google Scholar 

  37. Schneider T, Becker A, Ringe K et al. Brain tumor therapy by combined vaccination and antisense oligonucleotide delivery with nanoparticles. J Neuroimmunol 2008; 195:21–27.

    Article  PubMed  CAS  Google Scholar 

  38. Vallieres L. Trabedersen, a TGFbeta2-specific antisense oligonucleotide for the treatment of malignant gliomas and other tumors overexpressing TGFbeta2. IDrugs 2009; 12:445–453.

    PubMed  CAS  Google Scholar 

  39. Parmiani G, Castelli C, Pilla L et al. Opposite immune functions of GM-CSF administered as vaccine adjuvant in cancer patients. Ann Oncol 2007; 18:226–232.

    Article  PubMed  CAS  Google Scholar 

  40. Parney IF, Chang LJ, Farr-Jones MA et al. Technical hurdles in a pilot clinical trial of combined B7-2 and GM-CSF immunogene therapy for glioblastomas and melanomas. J Neurooncol 2006; 78:71–80.

    Article  PubMed  CAS  Google Scholar 

  41. Sloan AE, Dansey R, Zamorano L et al. Adoptive immunotherapy in patients with recurrent malignant glioma: preliminary results of using autologous whole-tumor vaccine plus granulocyte-macrophage colony-stimulating factor and adoptive transfer of anti-CD3-activated lymphocytes. Neurosurg Focus 2000; 9:e9.

    Article  PubMed  CAS  Google Scholar 

  42. Chawla-Sarkar M, Lindner DJ, Liu YF et al. Apoptosis and interferons: role of interferon-stimulated genes as mediators of apoptosis. Apoptosis 2003; 8:237–249.

    Article  PubMed  CAS  Google Scholar 

  43. Wakabayashi T, Hatano N, Kajita Y et al. Initial and maintenance combination treatment with interferon-beta, MCNU (Ranimustine) and radiotherapy for patients with previously untreated malignant glioma. Journal of neuro-oncology 2000; 49:57–62.

    Article  PubMed  CAS  Google Scholar 

  44. Natsume A, Ishii D, Wakabayashi T et al. IFN-beta down-regulates the expression of DNA repair gene MGMT and sensitizes resistant glioma cells to temozolomide. Cancer research 2005; 65:7573–7579.

    PubMed  CAS  Google Scholar 

  45. Natsume A, Wakabayashi T, Ishii D et al. A combination of IFN-beta and temozolomide in human glioma xenograft models: implication of p53-mediated MGMT downregulation. Cancer Chemother Pharmacol 2007; 61:653–659.

    Article  PubMed  Google Scholar 

  46. Natsume A, Mizuno M, Ryuke Y et al. Antitumor effect and cellular immunity activation by murine interferon-beta gene transfer against intracerebral glioma in mouse. Gene therapy 1999; 6:1626–1633.

    Article  PubMed  CAS  Google Scholar 

  47. Natsume A, Tsujimura K, Mizuno M et al. IFN-beta gene therapy induces systemic antitumor immunity against malignant glioma. Journal of neuro-oncology 2000; 47:117–124.

    Article  PubMed  CAS  Google Scholar 

  48. Yoshida J, Mizuno M, Fujii M et al. Human gene therapy for malignant gliomas (glioblastoma multiforme and anaplastic astrocytoma) by in vivo transduction with human interferon beta gene using cationic liposomes. Human gene therapy 2004; 15:77–86.

    Article  PubMed  CAS  Google Scholar 

  49. Wakabayashi T, Natsume A, Hashizume Y et al. A phase I clinical trial of interferon-beta gene therapy for high-grade glioma: novel findings from gene expression profiling and autopsy. J Gene Med 2008; 10:329–339.

    Article  PubMed  CAS  Google Scholar 

  50. Chiocca EA, Smith KM, McKinney B et al. A Phase I Trial of Ad.hIFN-beta Gene Therapy for Glioma. Mol Ther 2008; 16:618–626.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihiko Wakabayashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Ohno, M., Natsume, A., Wakabayashi, T. (2012). Cytokine Therapy. In: Yamanaka, R. (eds) Glioma. Advances in Experimental Medicine and Biology, vol 746. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3146-6_7

Download citation

Publish with us

Policies and ethics