Skip to main content

Antigen-Receptor Gene-Modified T Cells For Treatment Of Glioma

  • Chapter
Glioma

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 746))

Abstract

Immunological effector cells and molecules have been shown to access intracranial tumor sites despite the existence of blood brain barrier (BBB) or immunosuppressive mechanisms associated with brain tumors. Recent progress in T-cell biology and tumor immunology made possible to develop strategies of tumor-associated antigen-specific immunotherapeutic approaches such as vaccination with defined antigens and adoptive T-cell therapy with antigen-specific T cells including gene-modified T cells for the treatment of patients with brain tumors. An array of recent reports on the trials of active and passive immunotherapy for patients with brain tumors have documented safety and some preliminary clinical efficacy, although the ultimate judgment for clinical benefits awaits rigorous evaluation in trials of later phases. Nevertheless, treatment with lymphocytes that are engineered to express tumor-specific receptor genes is a promising immunotherapy against glioma, based on the significant efficacy reported in the trials for patients with other types of malignancy. Overcoming the relative difficulty to apply immunotherapeutic approach to intracranial region, current advances in the understanding of human tumor immunology and the gene-therapy methodology will address the development of effective immunotherapy of brain tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Parney IF, Farr-Jones MA, Chang LJ et al. Human glioma immunobiology in vitro: implications for immunogene therapy. Neurosurgery 2000; 46(5):1169–1177;discussion 77–78.

    Article  PubMed  CAS  Google Scholar 

  2. Neuwelt E, Abbott NJ, Abrey L et al. Strategies to advance translational research into brain barriers. Lancet Neurol 2008; 7(1):84–96.

    Article  PubMed  CAS  Google Scholar 

  3. Davies DC. Blood-brain barrier breakdown in septic encephalopathy and brain tumours. J Anat 2002; 200(6):639–646.

    Article  PubMed  CAS  Google Scholar 

  4. Rascher G, Fischmann A, Kroger S et al. Extracellular matrix and the blood-brain barrier in glioblastoma multiforme: spatial segregation of tenascin and agrin. Acta Neuropathol 2002; 104(1):85–91.

    Article  PubMed  CAS  Google Scholar 

  5. Galea I, Bernardes-Silva M, Forse PA et al. An antigen-specific pathway for CD8 T-cells across the blood-brain barrier. J Exp Med 2007; 204(9):2023–2030.

    Article  PubMed  CAS  Google Scholar 

  6. Miller SD, McMahon EJ, Schreiner B et al. Antigen presentation in the CNS by myeloid dendritic cells drives progression of relapsing experimental autoimmune encephalomyelitis. Ann NY Acad Sci 2007; 1103:179–191.

    Article  PubMed  CAS  Google Scholar 

  7. Bailey-Bucktrout SL, Caulkins SC, Goings G et al. Cutting edge: central nervous system plasmacytoid dendritic cells regulate the severity of relapsing experimental autoimmune encephalomyelitis. J Immunol 2008; 180(10):6457–6461.

    PubMed  CAS  Google Scholar 

  8. Dunn GP, Dunn IF, Curry WT. Focus on TILs: prognostic significance of tumor infiltrating lymphocytes in human glioma. Cancer Immun 2007; 7:12.

    PubMed  Google Scholar 

  9. de Vos AF, van Meurs M, Brok HP et al. Transfer of central nervous system autoantigens and presentation in secondary lymphoid organs. J Immunol 2002; 169(10):5415–5423.

    PubMed  Google Scholar 

  10. Olofsson A, Miyazono K, Kanzaki T et al. Transforming growth factor-beta 1,-beta 2 and-beta 3 secreted by a human glioblastoma cell line. Identification of small and different forms of large latent complexes. J Biol Chem 1992; 267(27):19482–19488.

    PubMed  CAS  Google Scholar 

  11. Weller M, Constam DB, Malipiero U et al. Transforming growth factor-beta 2 induces apoptosis of murine T-cell clones without down-regulating bcl-2 mRNA expression. Eur J Immunol 1994; 24(6):1293–1300.

    Article  PubMed  CAS  Google Scholar 

  12. Sasaki A, Naganuma H, Satoh E et al. Secretion of transforming growth factor-beta 1 and-beta 2 by malignant glioma cells. Neurol Med Chir (Tokyo) 1995; 35(7):423–430.

    Article  CAS  Google Scholar 

  13. Black KL, Chen K, Becker DP et al. Inflammatory leukocytes associated with increased immunosuppression by glioblastoma. J Neurosurg 1992; 77(1):120–126.

    Article  PubMed  CAS  Google Scholar 

  14. Castelli MG, Chiabrando C, Fanelli R et al. Prostaglandin and thromboxane synthesis by human intracranial tumors. Cancer Res 1989; 49(6):1505–1508.

    PubMed  CAS  Google Scholar 

  15. Couldwell WT, Dore-Duffy P, Apuzzo ML et al. Malignant glioma modulation of immune function: relative contribution of different soluble factors. J Neuroimmunol 1991; 33(2):89–96.

    Article  PubMed  CAS  Google Scholar 

  16. Nitta T, Hishii M, Sato K et al. Selective expression of interleukin-10 gene within glioblastoma multiforme. Brain Res 1994; 649(1-2):122–128.

    Article  PubMed  CAS  Google Scholar 

  17. Hishii M, Nitta T, Ishida H et al. Human glioma-derived interleukin-10 inhibits antitumor immune responses in vitro. Neurosurgery 1995; 37(6):1160–1166;discussion 6–7.

    Article  PubMed  CAS  Google Scholar 

  18. Huettner C, Paulus W, Roggendorf W. Messenger RNA expression of the immunosuppressive cytokine IL-10 in human gliomas. Am J Pathol 1995; 146(2):317–322.

    PubMed  CAS  Google Scholar 

  19. Wikstrand CJ, Fredman P, Svennerholm L et al. Detection of glioma-associated gangliosides GM2, GD2, GD3, 3′-isoLM1 3′,6′-isoLD1 in central nervous system tumors in vitro and in vivo using epitope-defined monoclonal antibodies. Prog Brain Res 1994; 101:213–223.

    Article  PubMed  CAS  Google Scholar 

  20. Fredman P, Mansson JE, Dellheden B et al. Expression of the GM1-species, [NeuN]-GM1, in a case of human glioma. Neurochem Res 1999; 24(2):275–279.

    Article  PubMed  CAS  Google Scholar 

  21. Kawai K, Takahashi H, Watarai S et al. Occurrence of ganglioside GD3 in neoplastic astrocytes. An immunocytochemical study in humans. Virchows Arch 1999; 434(3):201–205.

    Article  PubMed  CAS  Google Scholar 

  22. Choi C, Xu X, Oh JW et al. Fas-induced expression of chemokines in human glioma cells: involvement of extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase. Cancer Res 2001; 61(7):3084–3091.

    PubMed  CAS  Google Scholar 

  23. Choi C, Gillespie GY, Van Wagoner NJ et al. Fas engagement increases expression of interleukin-6 in human glioma cells. J Neurooncol 2002; 56(1):13–19.

    Article  PubMed  Google Scholar 

  24. Wintterle S, Schreiner B, Mitsdoerffer M et al. Expression of the B7-related molecule B7-H1 by glioma cells: a potential mechanism of immune paralysis. Cancer Res 2003; 63(21):7462–7467.

    PubMed  CAS  Google Scholar 

  25. Parsa AT, Waldron JS, Panner A et al. Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat Med 2007; 13(1):84–88.

    Article  PubMed  CAS  Google Scholar 

  26. Nakabayashi H, Nakashima M, Hara M et al. Clinico-pathological significance of RCAS1 expression in gliomas: a potential mechanism of tumor immune escape. Cancer Lett 2007; 246(1-2):182–189.

    Article  PubMed  CAS  Google Scholar 

  27. Wischhusen J, Jung G, Radovanovic I et al. Identification of CD70-mediated apoptosis of immune effector cells as a novel immune escape pathway of human glioblastoma. Cancer Res 2002; 62(9):2592–2599.

    PubMed  CAS  Google Scholar 

  28. Held-Feindt J, Mentlein R. CD70/CD27 ligand, a member of the TNF family, is expressed in human brain tumors. Int J Cancer 2002; 98(3):352–356.

    Article  PubMed  CAS  Google Scholar 

  29. Foley EJ. Antigenic properties of methylcholanthrene-induced tumors in mice of the strain of origin. Cancer Res 1953; 13(12):835–837.

    PubMed  CAS  Google Scholar 

  30. Burnet FM. The concept of immunological surveillance. Prog Exp Tumor Res 1970; 13:1–27.

    PubMed  CAS  Google Scholar 

  31. Thomas L. On Immunosurveillance in Human Cancer. Yale J Biol Med 1982; 55:329–333.

    PubMed  CAS  Google Scholar 

  32. van der Bruggen P, Traversari C, Chomez P et al. A gene encoding an antigen recognized by cytolytic T-lymphocytes on a human melanoma. Science 1991; 254(5038):1643–1647.

    Article  PubMed  Google Scholar 

  33. Boon T, Old LJ. Cancer tumor antigens. Curr Opin Immunol 1997; 9(5):681–683.

    Article  PubMed  CAS  Google Scholar 

  34. Dunn GP, Bruce AT, Ikeda H et al. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 2002; 3(11):991–998.

    Article  PubMed  CAS  Google Scholar 

  35. Holladay FP, Heitz-Turner T, Bayer WL et al. Autologous tumor cell vaccination combined with adoptive cellular immunotherapy in patients with grade III/IV astrocytoma. J Neurooncol 1996; 27(2):179–189.

    Article  PubMed  CAS  Google Scholar 

  36. Plautz GE, Barnett GH, Miller DW et al. Systemic T-cell adoptive immunotherapy of malignant gliomas. J Neurosurg 1998; 89(1):42–51.

    Article  PubMed  CAS  Google Scholar 

  37. Plautz GE, Miller DW, Barnett GH et al. T-cell adoptive immunotherapy of newly diagnosed gliomas. Clin Cancer Res 2000; 6(6):2209–2218.

    PubMed  CAS  Google Scholar 

  38. Wood GW, Holladay FP, Turner T et al. A pilot study of autologous cancer cell vaccination and cellular immunotherapy using anti-CD3 stimulated lymphocytes in patients with recurrent grade III/IV astrocytoma. J Neurooncol 2000; 48(2):113–120.

    Article  PubMed  CAS  Google Scholar 

  39. Yu JS, Wheeler CJ, Zeltzer PM et al. Vaccination of malignant glioma patients with peptide-pulsed dendritic cells elicits systemic cytotoxicity and intracranial T-cell infiltration. Cancer Res 2001; 61(3):842–847.

    PubMed  CAS  Google Scholar 

  40. Andrews DW, Resnicoff M, Flanders AE et al. Results of a pilot study involving the use of an antisense oligodeoxynucleotide directed against the insulin-like growth factor type I receptor in malignant astrocytomas. J Clin Oncol 2001; 19(8):2189–2200.

    PubMed  CAS  Google Scholar 

  41. Kikuchi T, Akasaki Y, Irie M et al. Results of a phase I clinical trial of vaccination of glioma patients with fusions of dendritic and glioma cells. Cancer Immunol Immunother 2001; 50(7):337–344.

    Article  PubMed  CAS  Google Scholar 

  42. Schneider T, Gerhards R, Kirches E et al. Preliminary results of active specific immunization with modified tumor cell vaccine in glioblastoma multiforme. J Neurooncol 2001; 53(1):39–46.

    Article  PubMed  CAS  Google Scholar 

  43. Yamanaka R, Abe T, Yajima N et al. Vaccination of recurrent glioma patients with tumour lysate-pulsed dendritic cells elicits immune responses: results of a clinical phase I/II trial. Br J Cancer 2003; 89(7):1172–1179.

    Article  PubMed  CAS  Google Scholar 

  44. Yu JS, Liu G, Ying H et al. Vaccination with tumor lysate-pulsed dendritic cells elicits antigen-specific, cytotoxic T-cells in patients with malignant glioma. Cancer Res 2004; 64(14):4973–4979.

    Article  PubMed  CAS  Google Scholar 

  45. Steiner HH, Bonsanto MM, Beckhove P et al. Antitumor vaccination of patients with glioblastoma multiforme: a pilot study to assess feasibility, safety, and clinical benefit. J Clin Oncol 2004; 22(21):4272–4281.

    Article  PubMed  Google Scholar 

  46. Rutkowski S, De Vleeschouwer S, Kaempgen E et al. Surgery and adjuvant dendritic cell-based tumour vaccination for patients with relapsed malignant glioma, a feasibility study. Br J Cancer 2004; 91(9):1656–1662.

    PubMed  CAS  Google Scholar 

  47. Kikuchi T, Akasaki Y, Abe T et al. Vaccination of glioma patients with fusions of dendritic and glioma cells and recombinant human interleukin 12. J Immunother 2004; 27(6):452–459.

    Article  PubMed  CAS  Google Scholar 

  48. Yamanaka R, Homma J, Yajima N et al. Clinical evaluation of dendritic cell vaccination for patients with recurrent glioma: results of a clinical phase I/II trial. Clin Cancer Res 2005; 11(11):4160–4167.

    Article  PubMed  CAS  Google Scholar 

  49. Liau LM, Prins RM, Kiertscher SM et al. Dendritic cell vaccination in glioblastoma patients induces systemic and intracranial T-cell responses modulated by the local central nervous system tumor microenvironment. Clin Cancer Res 2005; 11(15):5515–5525.

    Article  PubMed  CAS  Google Scholar 

  50. Sloan AE, Dansey R, Zamorano L et al. Adoptive immunotherapy in patients with recurrent malignant glioma: preliminary results of using autologous whole-tumor vaccine plus granulocyte-macrophage colony-stimulating factor and adoptive transfer of anti-CD3-activated lymphocytes. Neurosurg Focus 2000; 9(6):e9.

    Article  PubMed  CAS  Google Scholar 

  51. Ishikawa E, Tsuboi K, Yamamoto T et al. Clinical trial of autologous formalin-fixed tumor vaccine for glioblastoma multiforme patients. Cancer Sci 2007; 98(8):1226–1233.

    Article  PubMed  CAS  Google Scholar 

  52. Okada H, Lieberman FS, Walter KA et al. Autologous glioma cell vaccine admixed with interleukin-4 gene transfected fibroblasts in the treatment of patients with malignant gliomas. J Transl Med 2007; 5:67.

    Article  PubMed  CAS  Google Scholar 

  53. De Vleeschouwer S, Fieuws S, Rutkowski S et al. Postoperative adjuvant dendritic cell-based immunotherapy in patients with relapsed glioblastoma multiforme. Clin Cancer Res 2008; 14(10):3098–3104.

    Article  PubMed  Google Scholar 

  54. Wheeler CJ, Black KL, Liu G et al. Vaccination elicits correlated immune and clinical responses in glioblastoma multiforme patients. Cancer Res 2008; 68(14):5955–5964.

    Article  PubMed  CAS  Google Scholar 

  55. Yajima N, Yamanaka R, Mine T et al. Immunologic evaluation of personalized peptide vaccination for patients with advanced malignant glioma. Clin Cancer Res 2005; 11(16):5900–5911.

    Article  PubMed  CAS  Google Scholar 

  56. Izumoto S, Tsuboi A, Oka Y et al. Phase II clinical trial of Wilms tumor 1 peptide vaccination for patients with recurrent glioblastoma multiforme. J Neurosurg 2008; 108 (5):963–971.

    Google Scholar 

  57. Okada H, Kalinski P, Ueda R et al. Induction of CD8+ T-cell responses against novel glioma-associated antigen peptides and clinical activity by vaccinations with talpha∼-type 1 polarized dendritic cells and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in patients with recurrent malignant glioma. J Clin Oncol 2011; 29(3):330–336.

    Article  PubMed  CAS  Google Scholar 

  58. Gattinoni L, Powell DJ Jr., Rosenberg SA et al. Adoptive immunotherapy for cancer: building on success. Nat Rev Immunol 2006; 6(5):383–393.

    Article  PubMed  CAS  Google Scholar 

  59. Topalian SL, Solomon D, Avis FP et al. Immunotherapy of patients with advanced cancer using tumor-infiltrating lymphocytes and recombinant interleukin-2: a pilot study. J Clin Oncol 1988; 6(5):839–853.

    PubMed  CAS  Google Scholar 

  60. Rosenberg SA, Packard BS, Aebersold PM et al. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N Engl J Med 1988; 319(25):1676–1680.

    Article  PubMed  CAS  Google Scholar 

  61. Rosenberg SA, Yannelli JR, Yang JC et al. Treatment of patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and interleukin 2. J Natl Cancer Inst 1994; 86(15):1159–1166.

    Article  PubMed  CAS  Google Scholar 

  62. Khong HT, Restifo NP. Natural selection of tumor variants in the generation of “tumor escape” phenotypes. Nat Immunol 2002; 3(11):999–1005.

    Article  PubMed  CAS  Google Scholar 

  63. Seder RA, Darrah PA, Roederer M. T-cell quality in memory and protection: implications for vaccine design. Nat Rev Immunol 2008; 8(4):247–258.

    Article  PubMed  CAS  Google Scholar 

  64. Dudley ME, Yang JC, Sherry R et al. Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. J Clin Oncol 2008; 26(32):5233–5239.

    Article  PubMed  CAS  Google Scholar 

  65. Kessels HW, Wolkers MC, van den Boom MD et al. Immunotherapy through TCR gene transfer. Nat Immunol 2001; 2(10):957–961.

    Article  PubMed  CAS  Google Scholar 

  66. Morgan RA, Dudley ME, Wunderlich JR et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 2006; 314(5796):126–129.

    Article  PubMed  CAS  Google Scholar 

  67. Johnson LA, Morgan RA, Dudley ME et al. Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood 2009; 114(3):535–546.

    Article  PubMed  CAS  Google Scholar 

  68. Robbins PF, Morgan RA, Feldman SA et al. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol 2011; 29(7):917–924.

    Article  PubMed  Google Scholar 

  69. Bendle GM, Linnemann C, Hooijkaas AI et al. Lethal graft-versus-host disease in mouse models of T-cell receptor gene therapy. Nat Med 2010; 16(5):565–570, 1p following 70.

    Article  PubMed  CAS  Google Scholar 

  70. Okamoto S, Mineno J, Ikeda H et al. Improved expression and reactivity of transduced tumor-specific TCRs in human lymphocytes by specific silencing of endogenous TCR. Cancer Res 2009; 69(23):9003–9011.

    Article  PubMed  CAS  Google Scholar 

  71. Sadelain M, Brentjens R, Riviere I. The promise and potential pitfalls of chimeric antigen receptors. Curr Opin Immunol 2009; 21(2):215–223.

    Article  PubMed  CAS  Google Scholar 

  72. Kershaw MH, Westwood JA, Parker LL et al. A phase I study on adoptive immunotherapy using gene-modified T-cells for ovarian cancer. Clin Cancer Res 2006; 12(20 Pt 1):6106–6115.

    Article  PubMed  CAS  Google Scholar 

  73. Lamers CH, Sleijfer S, Vulto AG et al. Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: first clinical experience. J Clin Oncol 2006; 24(13):e20–e22.

    Article  PubMed  Google Scholar 

  74. Till BG, Jensen MC, Wang J et al. Adoptive immunotherapy for indolent non Hodgkin lymphoma and mantle cell lymphoma using genetically modified autologous CD20-specific T-cells. Blood 2008; 112(6):2261–2271.

    Article  PubMed  CAS  Google Scholar 

  75. Savoldo B, Ramos CA, Liu E et al. CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T-cells in lymphoma patients. J Clin Invest 2011; 121(5):1822–1826.

    Article  PubMed  CAS  Google Scholar 

  76. Pule MA, Savoldo B, Myers GD et al. Virus-specific T-cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nat Med 2008; 14(11):1264–1270.

    Article  PubMed  CAS  Google Scholar 

  77. Parkhurst MR, Yang JC, Langan RC et al. T-cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol Ther 2011; 19(3):620–626.

    Article  PubMed  CAS  Google Scholar 

  78. Brentjens R, Yeh R, Bernal Y et al. Treatment of chronic lymphocytic leukemia with genetically targeted autologous T-cells: case report of an unforeseen adverse event in a phase I clinical trial. Mol Ther 2010; 18(4):666–668.

    Article  PubMed  CAS  Google Scholar 

  79. Morgan RA, Yang JC, Kitano M et al. Case report of a serious adverse event following the administration of T-cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther 2010; 18(4):843–851.

    Article  PubMed  CAS  Google Scholar 

  80. Hsu C, Hughes MS, Zheng Z et al. Primary human T-lymphocytes engineered with a codon-optimized IL-15 gene resist cytokine withdrawal-induced apoptosis and persist long-term in the absence of exogenous cytokine. J Immunol 2005; 175(11):7226–7234.

    PubMed  CAS  Google Scholar 

  81. Liu K, Rosenberg SA. Interleukin-2-independent proliferation of human melanoma-reactive T-lymphocytes transduced with an exogenous IL-2 gene is stimulation dependent. J Immunother 2003; 26(3):190–201.

    Article  PubMed  CAS  Google Scholar 

  82. Kershaw MH, Wang G, Westwood JA et al. Redirecting migration of T-cells to chemokine secreted from tumors by genetic modification with CXCR2. Hum Gene Ther 2002; 13(16):1971–1980.

    Article  PubMed  CAS  Google Scholar 

  83. Charo J, Finkelstein SE, Grewal N et al. Bcl-2 overexpression enhances tumor-specific T-cell survival. Cancer Res 2005; 65(5):2001–2008.

    Article  PubMed  CAS  Google Scholar 

  84. Topp MS, Riddell SR, Akatsuka Y et al. Restoration of CD28 expression in CD28- CD8+ memory effector T-cells reconstitutes antigen-induced IL-2 production. J Exp Med 2003; 198(6):947–955.

    Article  PubMed  CAS  Google Scholar 

  85. Stephan MT, Ponomarev V, Brentjens RJ et al. T-cell-encoded CD80 and 4-1BBL induce auto-and transcostimulation, resulting in potent tumor rejection. Nat Med 2007; 13(12):1440–1449.

    Article  PubMed  CAS  Google Scholar 

  86. Borkner L, Kaiser A, van de Kasteele W et al. RNA interference targeting programmed death receptor-1 improves immune functions of tumor-specific T-cells. Cancer Immunol Immunother 2010; 59(8):1173–1183.

    Article  PubMed  CAS  Google Scholar 

  87. Hatano M, Eguchi J, Tatsumi T et al. EphA2 as a glioma-associated antigen: a novel target for glioma vaccines. Neoplasia 2005; 7(8):717–722.

    Article  PubMed  CAS  Google Scholar 

  88. Hatano M, Kuwashima N, Tatsumi T et al. Vaccination with EphA2-derived T-cell-epitopes promotes immunity against both EphA2-expressing and EphA2-negative tumors. J Transl Med 2004; 2(1):40.

    Article  PubMed  CAS  Google Scholar 

  89. Miao H, Wei BR, Peehl DM et al. Activation of EphA receptor tyrosine kinase inhibits the Ras/MAPK pathway. Nat Cell Biol 2001; 3(5):527–530.

    Article  PubMed  CAS  Google Scholar 

  90. Okano F, Storkus WJ, Chambers WH et al. Identification of a novel HLA-A*0201-restricted, cytotoxic T-lymphocyte epitope in a human glioma-associated antigen, interleukin 13 receptor alpha2 chain. Clin Cancer Res 2002; 8(9):2851–2855.

    PubMed  CAS  Google Scholar 

  91. Shimato S, Natsume A, Wakabayashi T et al. Identification of a human leukocyte antigen-A24-restricted T-cell epitope derived from interleukin-13 receptor alpha2 chain, a glioma-associated antigen. J Neurosurg 2008; 109(1):117–122.

    Article  PubMed  CAS  Google Scholar 

  92. Debinski W, Gibo DM, Hulet SW et al. Receptor for interleukin 13 is a marker and therapeutic target for human high-grade gliomas. Clin Cancer Res 1999; 5(5):985–990.

    PubMed  CAS  Google Scholar 

  93. Eguchi J, Hatano M, Nishimura F et al. Identification of interleukin-13 receptor alpha2 peptide analogues capable of inducing improved antiglioma CTL responses. Cancer Res 2006; 66(11):5883–5891.

    Article  PubMed  CAS  Google Scholar 

  94. Liu G, Ying H, Zeng G et al. HER-2, gp100 and MAGE-1 are expressed in human glioblastoma and recognized by cytotoxic T-cells. Cancer Res 2004; 64(14):4980–4986.

    Article  PubMed  CAS  Google Scholar 

  95. Pelloski CE, Mahajan A, Maor M et al. YKL-40 expression is associated with poorer response to radiation and shorter overall survival in glioblastoma. Clin Cancer Res 2005; 11(9):3326–3334.

    Article  PubMed  CAS  Google Scholar 

  96. Nutt CL, Betensky RA, Brower MA et al. YKL-40 is a differential diagnostic marker for histologic subtypes of high-grade gliomas. Clin Cancer Res 2005; 11(6):2258–2264.

    Article  PubMed  CAS  Google Scholar 

  97. Schmitz M, Temme A, Senner V et al. Identification of SOX2 as a novel glioma-associated antigen and potential target for T-cell-based immunotherapy. Br J Cancer 2007; 96(8):1293–1301.

    Article  PubMed  CAS  Google Scholar 

  98. Schmitz M, Wehner R, Stevanovic S et al. Identification of a naturally processed T-cell epitope derived from the glioma-associated protein SOX11. Cancer Lett 2007; 245(1-2):331–336.

    Article  PubMed  CAS  Google Scholar 

  99. Bao S, Wu Q, McLendon RE et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 2006; 444(7120):756–760.

    Article  PubMed  CAS  Google Scholar 

  100. Wu AH, Xiao J, Anker L et al. Identification of EGFRvIII-derived CTL epitopes restricted by HLA A0201 for dendritic cell based immunotherapy of gliomas. J Neurooncol 2006; 76(1):23–30.

    Article  PubMed  CAS  Google Scholar 

  101. Liu G, Khong HT, Wheeler CJ et al. Molecular and functional analysis of tyrosinase-related protein (TRP)-2 as a cytotoxic T-lymphocyte target in patients with malignant glioma. J Immunother 2003; 26(4):301–312.

    Article  PubMed  CAS  Google Scholar 

  102. Andersen MH, Pedersen LO, Becker JC et al. Identification of a cytotoxic T-lymphocyte response to the apoptosis inhibitor protein survivin in cancer patients. Cancer Res 2001; 61(3):869–872.

    PubMed  CAS  Google Scholar 

  103. Andersen MH, Pedersen LO, Capeller B et al. Spontaneous cytotoxic T-cell responses against survivin-derived MHC class I-restricted T-cell epitopes in situ as well as ex vivo in cancer patients. Cancer Res 2001; 61(16):5964–5968.

    PubMed  CAS  Google Scholar 

  104. Uematsu M, Ohsawa I, Aokage T et al. Prognostic significance of the immunohistochemical index of survivin in glioma: a comparative study with the MIB-1 index. J Neurooncol 2005; 72(3):231–238.

    Article  PubMed  CAS  Google Scholar 

  105. Blanc-Brude OP, Yu J, Simosa H et al. Inhibitor of apoptosis protein survivin regulates vascular injury. Nat Med 2002; 8(9):987–994.

    Article  PubMed  CAS  Google Scholar 

  106. Imaizumi T, Kuramoto T, Matsunaga K et al. Expression of the tumor-rejection antigen SART1 in brain tumors. Int J Cancer 1999; 83(6):760–764.

    Article  PubMed  CAS  Google Scholar 

  107. Shichijo S, Nakao M, Imai Y et al. A gene encoding antigenic peptides of human squamous cell carcinoma recognized by cytotoxic T-lymphocytes. J Exp Med 1998; 187(3):277–288.

    Article  PubMed  CAS  Google Scholar 

  108. Oji Y, Suzuki T, Nakano Y et al. Overexpression of the Wilms’ tumor gene W T1 in primary astrocytic tumors. Cancer Sci 2004; 95(10):822–827.

    Article  PubMed  CAS  Google Scholar 

  109. Oka Y, Elisseeva OA, Tsuboi A et al. Human cytotoxic T-lymphocyte responses specific for peptides of the wild-type Wilms’ tumor gene (WT1) product. Immunogenetics 2000; 51(2):99–107.

    Article  PubMed  CAS  Google Scholar 

  110. Sugiyama H. Cancer immunotherapy targeting WT1 protein. Int J Hematol 2002; 76(2):127–132.

    Article  PubMed  CAS  Google Scholar 

  111. Oka Y, Tsuboi A, Elisseeva OA et al. WT1 as a novel target antigen for cancer immunotherapy. Curr Cancer Drug Targets 2002; 2(1):45–54.

    Article  PubMed  CAS  Google Scholar 

  112. Iiyama T, Udaka K, Takeda S et al. WT1 (Wilms’ tumor 1) peptide immunotherapy for renal cell carcinoma. Microbiol Immunol 2007; 51(5):519–530.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Ikeda, H., Shiku, H. (2012). Antigen-Receptor Gene-Modified T Cells For Treatment Of Glioma. In: Yamanaka, R. (eds) Glioma. Advances in Experimental Medicine and Biology, vol 746. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3146-6_16

Download citation

Publish with us

Policies and ethics