Skip to main content

Peptide Vaccine

  • Chapter
Glioma

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 746))

Abstract

Current combinations of surgical therapy, radiotherapy and chemotherapy regimens do not significantly improve long-term survival of the patients with malignant glioma. Cancer immunotherapy against malignant glioma is a potentially new therapeutic strategy that primes a patient’s immune system to attack glioma cells. Peptide-based vaccination appears promising as an approach to successfully induce an antineoplastic immune response, produce clinical response and prolong survival in patients with malignant glioma without major side effects. In this chapter, clinical progress is reviewed in developing peptide-based vaccinations for malignant glioma to date.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Satoh J, Lee YB, Kim SU. T-cell costimulatory molecules B7–1 (CD80) and B7–2 (CD86) are expressed in human microglia but not in astrocytes in culture. Brain Res 1995; 704:92–99.

    Article  PubMed  CAS  Google Scholar 

  2. Constam DB, Philipp J, Malipiero UV et al. Differential expression of transforming growth factor-beta 1,-beta 2 and-beta 3 by glioblastoma cells, astrocytes and microglia. J Immunol 1992; 148:1404–1410.

    PubMed  CAS  Google Scholar 

  3. Gabrilovich DI, Ishida T, Nadaf S et al. Antibodies to vascular endothelial growthfactor enhance the efficacy of cancer immunotherapy by improving endogenous dendritic cell function. Clin Cancer Res 1999; 5:2963–2970.

    PubMed  CAS  Google Scholar 

  4. Chen Q, Daniel V, Maher DW et al. Production of IL-10 by melanoma cells: examination of its role in immunosuppression mediated by melanoma. Int J Cancer 1994; 56:755–760.

    Article  PubMed  CAS  Google Scholar 

  5. Yu JS, Wheeler CJ, Zelzer PM et al. Vaccination of malignant glioma patients with peptide-pulsed dendritic cells elicits systemic cytotoxicity and intracranial T-cell infiltration. Cancer Res 2001; 61:842–847.

    PubMed  CAS  Google Scholar 

  6. Yajima N, Yamanaka R, Mine T et al. Immunological evaluation of personalized peptide vaccination for patients with advanced malignant glioma. Clin Cancer Res 2005; 11:5900–5911.

    Article  PubMed  CAS  Google Scholar 

  7. Kikuchi T, Akasaki Y, Irie M et al. Results of a Phase I clinical trial of vaccination of glioma patients with fusions of dendritic and glioma cells. Cancer Immunol Immunother 2001; 50:337–344.

    Article  PubMed  CAS  Google Scholar 

  8. Yamanaka R, Abe T, Yajima N et al. Vaccination of recurrent glioma patients with tumour lysate-pulsed dendritic cells elicits immune responses: results of a clinical Phase I/II trial. Br J Cancer 2003; 89:1172–1179.

    Article  PubMed  CAS  Google Scholar 

  9. Yu JS, Liu G, Ying H et al. Vaccination with tumor lysate-pulsed dendritic cells elicits antigen-specific, cytotoxic T-cells in patients with malignant glioma. Cancer Res 2004; 64:4973–4979.

    Article  PubMed  CAS  Google Scholar 

  10. Kikuchi T, Akasaki Y, Abe T et al. Vaccination of glioma patients with fusions of dendritic and glioma cells and recombinant human interleukin 12. J Immunother 2004; 27:452–459.

    Article  PubMed  CAS  Google Scholar 

  11. Rutkowski S, De Vleeschouwer S, Kaempgen E et al. Surgery and adjuvant dendritic cell-based tumour vaccination for patients with relapsed malignant glioma, a feasibility study. Br J Cancer 2004; 94:1656–1662.

    Google Scholar 

  12. Yamanaka R, Homma J, Yajima N et al. Clinical evaluation of dendritic cell vaccination for patients with recurrent glioma: results of a clinical Phase I/II trial. Clin Cancer Res 2005; 11:4160–4167.

    Article  PubMed  CAS  Google Scholar 

  13. Izumoto S, Tsuboi A, Oka Y et al. Phase II clinical trial of Wilms tumor 1 peptide vaccination for patients with recurrent glioblastoma multiforme. J Neurosurg 2008; 108:963–971.

    Article  PubMed  CAS  Google Scholar 

  14. Heimberger AB, Sun W, Hussain SF et al. Immunological responses in apatient with glioblastomamultiforme treated with sequential courses of temolozomide and immunotherapy: Case study. Neuro Oncol 2008; 10:98–103.

    Article  PubMed  CAS  Google Scholar 

  15. Rosenberg SA Yang JC, Restifo NP. Cancer immunotherapy: moving beyond current vaccines. Nat Med 2004; 10:909–915.

    Article  PubMed  CAS  Google Scholar 

  16. Oka Y, Tsuboi A Elisseeva OA et al. WT1 as a novel target antigen for cancer immunotherapy. Curr Cancer Drug Targets 2002; 2:45–54.

    Article  PubMed  CAS  Google Scholar 

  17. Gaiger A, Reese V, Disis ML et al. Immunity to WTl in the animal model and in patients with acute myeloid leukemia. Blood 2000; 96:1480–1489.

    PubMed  CAS  Google Scholar 

  18. Gaiger A, Carter L, Greinix H et al. WT1-specific serum antibodies in patients with leukemia. Clin Cancer Res 2001; 7:761s–765s.

    PubMed  CAS  Google Scholar 

  19. Elisseeva OA Oka Y, Tsuboi A et al. Humoral immune responses against Wilms tumor gene WT1 product in patients with hematopoietic malignancies. Blood 2002; 99:3272–3279.

    Article  PubMed  CAS  Google Scholar 

  20. Wu F, Oka Y, Tsuboi A et al. Th1-biased humoral immune responses against Wilms tumor gene WT1 product in the patients with hematopoietic malignancies. Leukemia 2005; 19:268–274.

    Article  PubMed  CAS  Google Scholar 

  21. Scheibenbogen C, Letsch A, Thiel E et al. CD8 T-cell responses to Wilms tumor gene product WT1 and proteinase 3 in patients with acute myeloid leukemia. Blood 2002; 100:2132–2137.

    Article  PubMed  CAS  Google Scholar 

  22. Rezvani K, Grube M, Brenchley JM et al. Functional leukemia-associated antigen-specific memory CD8+ T-cells exist in healthy individuals and in patients with chronic myelogenous leukemia before and after stem cell transplantation. Blood 2003; 102:2892–2900.

    Article  PubMed  CAS  Google Scholar 

  23. Rezvani K, Yong AS, Savani BN et al. Graft-versus-leukemia effect associated with detectable Wilms tumor-1 specific T-lymphocytes after allogeneic stem-cell transplantation for acute lymphoblastic leukemia. Blood 2007; 110:1924–1932.

    Article  PubMed  CAS  Google Scholar 

  24. Oka Y, Tsuboi A Taguchi T et al. Induction of WT1 (Wilms’ tumor gene)-specific cytotoxic T-lymphocytes by WT1 peptide vaccine and the resultant cancer regression. Proc Natl Acad Sci USA 2004; 101:13885–13890.

    Article  PubMed  CAS  Google Scholar 

  25. Oka Y, Tsuboi A, Murakami M et al. Wilms tumor gene peptide-based immunotherapy for patients with overt leukemia from myelodysplastic syndrome (MDS) or MDS with myelofibrosis. Int J Hematol 2003; 78:56–61.

    Article  PubMed  CAS  Google Scholar 

  26. Mailaender V, Scheibenbogen C, Thiel E et al. Complete remission in a patient with recurrent acute myeloid leukemia induced by vaccination with WT1 peptide in the absence of hematological or renal toxicity. Leukemia 2004; 18:165–166.

    Article  Google Scholar 

  27. Kawakami M, Oka Y, Tsuboi A et al. Clinical and immunological responses to the vaccination with very low dose (5 mg/body) of WT1 peptide in a patient with chronic myelomonocytic leukemia. Int J Hematol 2007; 85:426–429.

    Article  PubMed  CAS  Google Scholar 

  28. Iiyama T, Udaka K, Takeda S et al. WT1 (Wilms’ Tumor 1) peptide immunotherapy for renal cell carcinoma. Microbiol Immunol 2007; 51:519–530.

    PubMed  CAS  Google Scholar 

  29. Rezvani K, Yong ASM, Mielke S et al. Leukemia-associated antigen specific T-cell responses following combined PR1 and WT1 peptide vaccination in patients with myeloid malignancies. Blood 2008; 111:236–242.

    Article  PubMed  CAS  Google Scholar 

  30. Hashiba T, Izumoto S, Kagawa N et al. Expression of WT1 protein and correlation with cellular proliferation in glial tumors. Neurol Med Chir (Tokyo) 2007; 47:165–170.

    Article  Google Scholar 

  31. Oka Y, Udaka K, Tsuboi A et al. Cancer immunotherapy targeting Wilms’ tumor gene WT1 product. J Immunol 2000; 164:1873–1880.

    PubMed  CAS  Google Scholar 

  32. Tsuboi A, Oka Y, Udaka K et al. Enhanced induction of human WT1-specific cytotoxic T-lymphocytes with a 9-mer WT1 peptide modified at HLA-A*2403-binding residues. Cancer Immunol Immunother 2002; 51:614–620.

    Article  PubMed  CAS  Google Scholar 

  33. Morita S, Oka Y, Tsuboi A et al. A phase I/II trial of a WT1 (Wilms’ tumor gene) peptide vaccine in patients with solid malignancy: safety assessment based on the phase I data. Jpn J Clin Oncol 2006; 36:231–236.

    Article  PubMed  Google Scholar 

  34. Therasse P, Arbuck SG, Eisenhauer EA et al. New guidelines to evaluate the response to treatment in solid tumors. J Natl Cancer Inst 2006; 92:205–216.

    Google Scholar 

  35. Hosli P, Sappino AP, de Tribolet N et al. Malignant glioma: Should chemotherapy be overthrown by experimental treatments? Ann Oncol 1998; 9:589–600.

    Article  PubMed  CAS  Google Scholar 

  36. Nakajima H, Kawasaki K, Oka Y et al. WT1 peptide vaccination combined with BCG-CWS is more efficient for tumor eradication than WT1 peptide vaccination alone. Cancer Immunol Immunother 2004; 53:617–624.

    Article  PubMed  CAS  Google Scholar 

  37. Ito K, Yamada A. Personalized peptide vaccines: a new therapeutic modality for cancer. Cancer Sci 2006; 97:970–976.

    Article  Google Scholar 

  38. Oka Y, Tsuboi A, Oji Y et al. WT1 peptide vaccine for the treatment of cancer. Curr Opin Immunol 2008; 20:211–220.

    Article  PubMed  CAS  Google Scholar 

  39. Mine T, Sato Y, Noguchi M et al. Humoral responses to peptides correlate with overall survival in advanced cancer patients vaccinated with peptides based on pre-existing peptide-specific cellular responses. Clin Cancer Res 2004; 10:929–937.

    Article  PubMed  CAS  Google Scholar 

  40. Yamanaka R. Dendritic-cell-and peptide-based vaccination strategies for glioma. Neurosurg Rev 2009. (Epub ahead of print)

    Google Scholar 

  41. Yamanaka R, Itoh K. Peptide-based immunotherapeutic approaches to glioma: a review. Expert Opin Biol Ther 2007; 7:645–649.

    Article  PubMed  CAS  Google Scholar 

  42. Sampson JH, Archer GE, Mitchell DA et al. Tumorspecific immunotherapy targeting the EGFRvIII mutation in patients with malignant glioma. Semin Immunol 2008; 20:267–275.

    Article  PubMed  CAS  Google Scholar 

  43. Westphal M, Hilt DC, Bortey E et al. A phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma. Neuro Oncol 2003; 5:79–88.

    PubMed  CAS  Google Scholar 

  44. Stupp R, Mason WP, van den Bent MJ et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005; 352:987–996.

    Article  PubMed  CAS  Google Scholar 

  45. Heimberger AB, Hussain FS, Aldape K et al. Tumor-specific peptide vaccination in newly-diagnosed patients with GBM. Proc Am Soc Clin Oncol 2006; 24:2529.

    Google Scholar 

  46. Ahmad M, Rees RC, Ali SA. Escape from immunotherapy: possible mechanisms that influence tumor regression/progression. Cancer Immunol Immunother 2004; 53:844–854.

    Article  PubMed  Google Scholar 

  47. Steinman RM, Dhodapkar M. Active immunization against cancer with dendritic cells: the near future. Int J Cancer 2001; 94:459–473.

    Article  PubMed  CAS  Google Scholar 

  48. Facoetti A, Nano R, Zelini P et al. Human leukocyte antigen and antigen processing machinery component defects in astrocytic tumors. Clin Cancer Res 2005; 11:8304–8311.

    Article  PubMed  CAS  Google Scholar 

  49. Wiendl H, Mitsdoerffer M, Weller M. Hide-and-seek in the brain: a role for HLAG mediating immune privilege for glioma cells. Semin Cancer Biol 2003; 13:343–351.

    Article  PubMed  CAS  Google Scholar 

  50. Fecci PE, Mitchell DA, Whitesides JF et al. Increased regulatory T-cell fraction amidst a diminished CD4 compartment explains cellular immune defects in patients with malignant glioma. Cancer Res 2006; 66:3294–3302.

    Article  PubMed  CAS  Google Scholar 

  51. Jacobs JF, Idema AJ, Bol KF et al. Regulatory T-cells and the PD-L1/PD-1 pathway mediate immune suppression in malignant human brain tumors. Neuro Oncol 2008. [Epub ahead of print]

    Google Scholar 

  52. Knutson KL, Disis ML. Tumor antigen-specific T helper cells in cancer immunity and immunotherapy. Cancer Immunol Immunother 2005; 54:721–728.

    Article  PubMed  CAS  Google Scholar 

  53. Mailaender V, Scheibenbogen C, Thiel E et al. Complete remission in a patient with recurrent acute myeloid leukemia induced by vaccination with WT1 peptide in the absence of hematological or renal toxicity. Leukemia 2004; 18:165–166.

    Article  Google Scholar 

  54. Rezvani K, Yong ASM, Mielke S et al. Leukemia-associated antigen specific T-cell responses following combined PR1 and WT1 peptide vaccination in patients with myeloid malignancies. Blood 2008; 111:236–242.

    Article  PubMed  CAS  Google Scholar 

  55. Kawakami M, Oka Y, Tsuboi A et al. Clinical and immunological responses to the vaccination with very low dose (5 mg/body) of WT1 peptide in a patient with chronic myelomonocytic leukemia. Int J Hematol 2007; 85:426–429.

    Article  PubMed  CAS  Google Scholar 

  56. Tsuboi A, Oka Y, Osaki T et al. WT1 peptide based immunotherapy for patients with lung cancer: report of two cases. Microbiol Immunol 2004; 48:175–184.

    PubMed  CAS  Google Scholar 

  57. Knights AJ, Zaniou A, Rees RC et al. Prediction of an HLA-DR-binding peptide derived from Wilms’ tumour 1 protein and demonstration of in vitro immunogenicity of WT1(124-138)-pulsed dendritic cells generated according to an optimised protocol. Cancer Immunol Immunother 2002; 51:271–281.

    Article  PubMed  CAS  Google Scholar 

  58. Kobayashi H, Nagato T, Aoki N et al. Defining MHC class II T helper epitopes for WT1 tumor antigen. Cancer Immunol Immunother 2006; 55:850–860.

    Article  PubMed  CAS  Google Scholar 

  59. Fujiki F, Oka Y, Tsuboi A et al. Identification and characterization of a WT1 (Wilmstumorgene)protein-derived HLA-DRBl*0405-restrictedl6-merhelperpeptide that promotesthe induction andactivation of WT1-specific cytotoxic T-lymphocytes. J Immunother 2007; 30:282–293.

    Article  PubMed  CAS  Google Scholar 

  60. May RJ, Dao T, Pinilla-Ibarz J et al. Peptide epitopes from the Wilms’ tumor 1 oncoprotein stimulate CD4+ and CD8+ T-cells that recognize and kill human malignant mesothelioma tumor cells. Clin Cancer Res 2007; 13:4547–4555.

    Article  PubMed  CAS  Google Scholar 

  61. Noguchi M, Itoh K, Suekane S et al. Phase I trial of patient-oriented vaccination in HLA-A2-positive patients with metastatic hormone-refractory prostate cancer. Cancer Sci 2004; 95:77–84.

    Article  PubMed  CAS  Google Scholar 

  62. Bocchia M, Gentili S, Abruzzese E et al. Effect of a p210 multipeptide vaccine associated with imatinib or interferon in patients with chronic myeloid leukaemia and persistent residual disease: a multicentre observational trial. Lancet 2005; 365:657–662.

    PubMed  CAS  Google Scholar 

  63. Ercolini AM, Ladle BH, Manning EA et al. Recruitment of latent pools of high-avidity CD8(+) T-cells to the antitumor immune response. J Exp Med 2005; 201:1591–1602.

    Article  PubMed  CAS  Google Scholar 

  64. Chong G, Morse MA. Combining cancer vaccines with chemotherapy. Expert Opin Pharmacother 2005; 6:2813–2820.

    Article  PubMed  CAS  Google Scholar 

  65. Suzuki K, Kapoor V, Jassar AS et al. Gemcitabine selectively eliminates slpenic Gr-l+/CDllb+ myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity. Clin Cancer Res 2005; 11:6713–6721.

    Article  PubMed  CAS  Google Scholar 

  66. Hori A, Kami M, Kim S-W et al. Urgent need for a validated tumor response evaluation system for use in immunotherapy. Bone Marrow Transplant 2004; 33:255–256.

    Article  PubMed  CAS  Google Scholar 

  67. Hoos A, Parmiani G, Hege K et al. A clinical development paradigm for cancer vaccines and related biologies. J Immunother 2007; 30:1–15.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Izumoto, S. (2012). Peptide Vaccine. In: Yamanaka, R. (eds) Glioma. Advances in Experimental Medicine and Biology, vol 746. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3146-6_13

Download citation

Publish with us

Policies and ethics