Skip to main content
Book cover

Glioma pp 143–150Cite as

Animal Models for Vaccine Therapy

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 746))

Abstract

Animal models are important for defining paradigms of tumor immunology and for evaluating therapeutic efficacy of immunotherapy. Many animal models have been used for evaluating in vivo characteristics of malignant gliomas and their responses to therapy. No animal model, however, is perfect because malignant glioma has a very heterogeneous biological behavior. There are so many parallels between mouse and human immunology, but there are significant discrepancies in immune system. Animal models for vaccine therapy can be classified as transplantable tumor models and models of spontaneous tumor in genetically engineered animals. Although transplantable tumor models have been used to test immunotherapeutic efficacy and remain a mainstay in study of brain tumor immunology, a lot of tumor vaccines that look promising in experimental animals have turned out to be ineffective clinically. Recent advances of laboratory techniques and understanding of genetic and molecular characteristics of gliomas allows for animal models of gliomas with similar biologic characteristics. Well-designed glioma models that accurately reflect the biology, pathology and clinical behaviors of human gliomas can provide more useful preclinical informations to predict clinical efficacy of novel immunotherapies and cancer vaccines.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mestas J, Hughes CCW. Of mice and not men: differences between mouse and human immunology. J Immunol 2004; 172:2731–2738.

    PubMed  CAS  Google Scholar 

  2. Fomchenko EI, Holland EC. Mouse models of brain tumors and their applications in preclinical trials. Clin Cancer Res 2006; 12:5288–5297.

    Article  PubMed  CAS  Google Scholar 

  3. Smilowitz HM, Weissenberger J, Weis J et al. Orthotopic transplantation of v-src-expressing glioma cell lines into immunocompetent mice: establishment of a new transplatanble in vivo model for malignant glioma. J Neurosurg 2007; 106:652–659.

    Article  PubMed  Google Scholar 

  4. Barth RF. Rat brain tumor models in experimental neuro-oncology: the 9L, C6, T9, F98, RG2 (D74), RT-2 and CNS-1 gliomas. J Neurooncol 1998; 36:91–102.

    Article  PubMed  CAS  Google Scholar 

  5. Fleshner M, Watkins LR, Redd JM et al. A 9L gliosarcoma transplantation model for studying adoptive immunotherapy in the brains of conscious rats. Cell Transplant 1992; 1:307–312.

    PubMed  CAS  Google Scholar 

  6. Parsa AT, Chakrabarti I, Hurley PT et al. Limitations of the C6/Wistar rat intracerebral glioma model: implications for evaluating immunotherapy. Neurosurgery 2000; 47:993–1000.

    Article  PubMed  CAS  Google Scholar 

  7. Heimberger AB, Crotty LE, Archer GE et al. Bone marrow-derived dendritic cells pulsed with tumor homogenate induce immunity against syngeneic intracerebral glioma. J Neuroimmunol 2000, 103:16–25.

    Article  PubMed  CAS  Google Scholar 

  8. Albright L, Madigan JC, Gaston MR et al. Therapy in an intracerebral murine glioma model, using Bacillus Calmette-Guerin, neuramindase-treated tumor cells and 1-(2-Chloroethyl)-3-cyclohexyl-1-nitrosourea. Cancer Res 1975; 35:658–665.

    PubMed  CAS  Google Scholar 

  9. Finkelstein SD, Black P, Nowak TP et al. Histological characteristics and expression of acidic and basic fibroblast growth factor genes in intracerebral xenogeneic transplants of human glioma cells. Neurosurgery 1994; 34:136–143.

    Article  PubMed  CAS  Google Scholar 

  10. Ostrand-Rosenberg S. Animal models of tumor immunity, immunotherapy and cancer vaccines. Curr Opin Immunol 2004; 16:143–150.

    Article  PubMed  CAS  Google Scholar 

  11. Hann B, Balmain A. Building “validated” mouse models of human cancer. Curr Opin Cell Biol 2001; 13:778–784.

    Article  PubMed  CAS  Google Scholar 

  12. Smilowitz HM, Weissenberger J, Weis J et al. Orthotopic transplantation of v-src-expressing glioma cell lines into immunocompetent mice: establishment of a new transplatanble in vivo model for malignant glioma. J Neurosurg 2007; 106:652–659.

    Article  PubMed  Google Scholar 

  13. Theurillat JP, Hainfellner J, Maddalena A et al. Early induction of angiogenetic signals in gliomas of GFAP-v-src transgenic mice. Am J Pathol 1999; 154:581–590.

    Article  PubMed  CAS  Google Scholar 

  14. Weissenberger J, Steinbach JP, Malin G et al. Development and malignant progression of astrocytomas in GFAP-v-src transgenic mice. Oncogene 1997; 14:2005–2013.

    Article  PubMed  CAS  Google Scholar 

  15. Aguzzi A, Brandner S, Isenmann S et al. Transgenic and gene disruption techniques in the study of neurocarcinogenesis. Glia 1995; 15:348–364.

    Article  PubMed  CAS  Google Scholar 

  16. Weiss WA, Israel M, Cobbs C et al. Neuropathology of genetically engineered mice: Consensus report and recommendations from an international forum. Oncogene 2002; 21:7453–7463.

    Article  PubMed  CAS  Google Scholar 

  17. Watanabe K, Tachibana O, Sata K et al. Overexpression of the EGF receptor and p53 mutations are mutually exclusive in the evolution of primary and secondary glioblastomas. Brain Pathol 1996; 6:217–224.

    Article  PubMed  CAS  Google Scholar 

  18. Ding H, Shannon P, Lau N et al. Oligodendrogliomas result from the expression of an activated mutant epidermal growth factor receptor in a RAS transgenic mouse astrocytoma model. Cancer Res 2003; 63:1106–1113.

    PubMed  CAS  Google Scholar 

  19. Donehower LA, Harvey M, Slagle BL et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 1992; 356:215–221.

    Article  PubMed  CAS  Google Scholar 

  20. Holland EC, Hively WP, DePinho RA et al. A constitutively active epidermal growth factor receptor cooperates with disruption of G1 cell-cycle arrest pathways to induce glioma-like lesions in mice. Genes Dev 1998; 12:3675–3685.

    Article  PubMed  CAS  Google Scholar 

  21. Bachoo RM, Maher EA, Ligon KL et al. Epidermal growth factor receptor and Ink4a/Arf: convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. Cancer Cell 2002; 1:269–277.

    Article  PubMed  CAS  Google Scholar 

  22. Zhu Y, Guignard F, Zhao D et al. Early inactivation of p53 tumor suppressor gene cooperating with NF1 loss induces malignant astrocytoma. Cancer Cell 2005; 8:119–130.

    Article  PubMed  CAS  Google Scholar 

  23. Kwon CH, Zhao D, Chen J et al. Pten haploinsufficiency accelerates formation of high-grade astrocytomas. Cancer Res 2008; 68:3286–3294.

    Article  PubMed  CAS  Google Scholar 

  24. Stambolic V, Suzuki A, de la Pompa JL et al. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 1998; 95:29–39.

    Article  PubMed  CAS  Google Scholar 

  25. Ohgaki H, Dessen P, Jourde B et al. Genetic pathways to glioblastoma: a population-based study. Cancer Res 2004; 64:6892–6899.

    Article  PubMed  CAS  Google Scholar 

  26. Fraser MM, Zhu X, Kwon CH et al. Pten loss causes hypertrophy and increased proliferation of astrocytes in vivo. Cancer Res 2004; 64:7773–7779.

    Article  PubMed  CAS  Google Scholar 

  27. Wei Q, Clarke L, Scheidenhelm DK et al. High-grade glioma formation results from postnatal pten loss or mutant epidermal growth factor receptor expression in a transgenic mouse glioma model. Cancer Res 2006; 66:7429–7437.

    Article  PubMed  CAS  Google Scholar 

  28. Holland EC, Celestino J, Dai C et al. Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nat Genet 2000; 25:55–57.

    Article  PubMed  CAS  Google Scholar 

  29. Uhrbom L, Dai C, Celestino JC et al. Ink4-Arf loss cooperates with KRas activation in astrocytes and neural progenitors to generate glioblastomas of various morphologies depending on activated Akt. Cancer Res 2002; 62:2065–2069.

    Google Scholar 

  30. Ding H, Shannon P, Lau N et al. Oligodendrogliomas result from the expression of an activated mutant epidermal growth factor receptor in a RAS transgenic mouse astrocytoma model. Cancer Res 2003; 63:1106–1113.

    PubMed  CAS  Google Scholar 

  31. Ding H, Roncari L, Shannon P et al. Astrocyte-specific expression of activated p21-ras results in malingnant astrocytoma formation in a transgenic mouse model of human gliomas. Cancer Res 2001; 61:3826–3836.

    PubMed  CAS  Google Scholar 

  32. Shannon P, Sabha N, Lau N et al. Pathological and molecular progression of astrocytomas in a GFAP: 12 V-Ha-Ras mouse astrocytoma model. Am J Pathol 2005; 167:859–869.

    Article  PubMed  CAS  Google Scholar 

  33. Weiss WA, Burns MJ, Hackett C et al. Genetic determinants of malignancy in a mouse for oligodendroglioma. Cancer Res 2003; 63:1589–1595.

    PubMed  CAS  Google Scholar 

  34. Holland EC, Varmus HE. Basic fibroblast growth factor induces cell migration and proliferation after glia-specific gene transfer in mice. Proc Natl Acad Sci USA 1998; 95:1218–1223.

    Article  PubMed  CAS  Google Scholar 

  35. Uhrbom I, Hesselager G, Nister M et al. Induction of brain tumors in mice using a recombinant platelet-derived growth factor B-chain retrovirus. Cancer Res 1998; 58:5275–5279.

    PubMed  CAS  Google Scholar 

  36. Assanah M, Lochhead R, Ogden A et al. Glial progenitors in adult white matter are driven to form malignant gliomas by platelet-derived growth factor-expressing retroviruses. J Neurosci 2006; 26:781–790.

    Article  Google Scholar 

  37. Marumoto T, Tashiro A, Friedmann-Morvinski D et al. Development of a novel mouse glioma model using lentiviral vectors. Nat Med 2009; 15:110–116.

    Article  PubMed  CAS  Google Scholar 

  38. Abdallah B, Hassan A, Benoist C et al. A powerful nonviral vector for in vivo gene transfer into the adult mammalian brain: polyethylenimine. Hum Gene Ther 1996; 7:1947–1954.

    Article  PubMed  CAS  Google Scholar 

  39. Hirko AC, Buethe DD, Meyer EM et al. Plasmid delivery in the rat brain. Biosci Rep 2002; 22:297–308.

    Article  PubMed  CAS  Google Scholar 

  40. Wiesner SM, Decker SA, Larson JD et al. De novo induction of genetically engineered brain tumors in mice using plasmd DNA. Cancer Res 2009; 69:431–439.

    Article  PubMed  CAS  Google Scholar 

  41. Charest A, Wilker EW, McLaughlin ME et al. ROS fusion tyrosine kinase activates a SH2 domain-containing phosphatase-2/phosphatidylinositol 3-kinase/mammalian target of rapamycine signaling axis to form glioblastoma in mice. Cancer Res 2006; 66:7473–7481.

    Article  PubMed  CAS  Google Scholar 

  42. Koutcher JA, Hu X, Xu S et al. MRI of mouse models for gliomas shows similarities to humans and can be used to identify mice for preclinical trials. Neoplasia 2002; 4:480–485.

    Article  PubMed  Google Scholar 

  43. Uhrbom L, Nerio E, Holland EC. Dissecting tumor maintenance requiredments using bioluminescence imaing of cell proliferation in a mouse glioma model. Nat Med 2004; 10:1257–1260.

    Article  PubMed  CAS  Google Scholar 

  44. Pittet MJ, Valmori D, Dunbar PR et al. High frequencies of naive Melan-A/MART-1-specific CD8(+) T-cells in a large proportion of human histocompatibility leukocyte antigen (HLA)-A2 individuals. J Exp Med 1999; 190:705–715.

    Article  PubMed  CAS  Google Scholar 

  45. Gnjatic S, Nagata Y, Jager E et al. Strategy for monitoring T-cell responses to NY-ESO-1 in patients with any HLA class I allele. Proc Natl Acad Sci USA 2000; 97:10917–10922.

    Article  PubMed  CAS  Google Scholar 

  46. Harris JE, Ryan L, Hoover Jr HC et al. Adjuvant active specific immunotherapy for stage II and III colon cancer with an autologous tumor cell vaccine: Eastern Cooperative Oncology Group Study E5283. J Clin Oncol 2000; 18:148–157.

    PubMed  CAS  Google Scholar 

  47. Porgador A, Snyder D, Gilboa E. Induction of antitumor immunity using bone marrow-generated dendritic cells. J Immunol 1996; 156:2918–2926.

    PubMed  CAS  Google Scholar 

  48. Ardavin C, Amigorena S, Reis e Sousa C. Dendritic cells: immunobiology and cancer immunotherapy. Immunity 2004; 20:17–23.

    Google Scholar 

  49. Dunn GP, Bruce AT, Ikeda H et al. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 2002; 3:991–998.

    Article  PubMed  CAS  Google Scholar 

  50. Bauer C, Bauernfeind F, Sterzik A et al. Dendritic cell-based vaccination combined with gemcitabine increases survival in a murine pancreatic carcinoma model. Gut 2007; 56:1275–1282.

    Article  PubMed  CAS  Google Scholar 

  51. Park SD, Kim CH, Kim CK et al. Cross-priming by temozolomide enhances antitumor immunity of dendritic cell vaccination in murine brain tumor model. Vaccine 2007; 25:3485–3491.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Kil Hong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Chung, DS., Kim, CH., Hong, YK. (2012). Animal Models for Vaccine Therapy. In: Yamanaka, R. (eds) Glioma. Advances in Experimental Medicine and Biology, vol 746. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3146-6_11

Download citation

Publish with us

Policies and ethics