Skip to main content

Fish Metalloproteins as Biomarkers of Environmental Contamination

  • Chapter
  • First Online:
Reviews of Environmental Contamination and Toxicology Volume 218

Abstract

In this review, we explore the fish metalloproteins that have been discovered by ‘omic techniques, and their application as fish biomarkers of environmental contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams SM (1987) Status and use of biological indicators for evaluating the effects of stress on fish. In: Adams SM (ed) Biological indicators of stress in fish. Am Fish Soc Symp 8–18

    Google Scholar 

  • Albertsson E, Kling P, Gunnarsson L, Larsson DGJ, Forlin L (2007) Proteomic analyses indicate induction of hepatic carbonyl reductase/20 beta-hydroxysteroid dehydrogenase B in rainbow trout exposed to sewage effluent. Ecotox Env Saf 68:33–39

    CAS  Google Scholar 

  • Almawi WY, Abou Jaoude MM, Li XC (2002) Transcriptional and post-transcriptional mechanisms of glucocorticoid antiproliferative effects. Hematol Oncol 20:17–32

    Google Scholar 

  • Andersen O, Dehli A, Standal H, Giskegjerde TA, Karstensen R, Rorvik KA (1995) Two ferritin subunits of Atlantic salmon (Salmo salar): cloning of the liver cDNAs and antibody preparation. Mol Mar Biol Biotechnol 4:164–170

    CAS  Google Scholar 

  • Baker M (2005) In biomarkers we trust? Nat Biotechnol 23:297–304

    CAS  Google Scholar 

  • Bayne BL, Brown DA, Burns K, Dixon DR, Ivanovici A, Livingstone DR, Lowe DM, Moore MN, Stebbing ARD, Widdows J (1985) The effects of stress and pollution on marine animals. Praeger, New York, p 384

    Google Scholar 

  • Bayne CJ, Gerwick L (2001) The acute phase response and innate immunity of fish. Dev Comp Immunol 25:725–743

    CAS  Google Scholar 

  • Behne D, Kyriakopoulos A (2001) Mammalian selenium-containing proteins. Annu Rev Nutr 21:453–473

    CAS  Google Scholar 

  • Beyer J (1996) Fish biomarkers in marine pollution monitoring: evaluation and validation in laboratory and field studies. University of Bergen, Norway

    Google Scholar 

  • Blom A, Harder W, Matin A (1992) Unique and overlapping pollutant stress proteins of Escherichia-Coli. Appl Environ Microbiol 58:331–334

    CAS  Google Scholar 

  • Bode W, Maskos K (2003) Structural basis of the matrix metalloproteinases and their physiological inhibitors, the tissue inhibitors of metalloproteinases. Biol Chem 384:863–872

    CAS  Google Scholar 

  • Bradley RW, DuQuesney C, Spargue JB (1985) Acclimation of rainbow trout, Salmo gairdneri Richardson, to zinc: kinetics and mechanism of enhanced tolerance induction. J Fish Biol 27:367–379

    CAS  Google Scholar 

  • Brouwer M, Whaling P, Engel DW (1986) Copper-metallothioneins in the American lobster, Homarus-americanus – potential role as Cu(I) donors to apohemocyanin. Environ Health Perspect 65:93–100

    CAS  Google Scholar 

  • Bueno MR, Daneri A, Armendariz-Borunda J (2000) Cholestasis-induced fibrosis is reduced by interferon alpha-2a and is associated with elevated liver metalloprotease activity. J Hepatol 33:915–925

    CAS  Google Scholar 

  • Chadzinska M, Baginski P, Kolaczkowska E, Savelkoul HFJ, Verburg-van Kemenade BML (2008) Expression profiles of matrix metalloproteinase 9 in teleost fish provide evidence for its active role in initiation and resolution of inflammation. Immunology 125:601–610

    CAS  Google Scholar 

  • Chasteen ND (1998) Ferritin. Uptake, storage, and release of iron. Met Ions Biol Syst 35(35):479–514

    CAS  Google Scholar 

  • Chen SL, Xu MY, Hu SN, Li L (2004) Analysis of immune-relevant genes expressed in red sea bream (Chrysophrys major) spleen. Aquaculture 240:115–130

    CAS  Google Scholar 

  • Cinier CD, Petit-Ramel M, Faure R, Bortolato M (1998) Cadmium accumulation and metallothionein biosynthesis in Cyprinus carpio tissues. Bull Environ Contam Toxicol 61:793–799

    Google Scholar 

  • De Smet H, Blust R, Moens L (2001) Cadmium-binding to transferrin in the plasma of the common carp Cyprinus carpio. Comp Biochem Physiol C: Toxicol Pharmacol 128:45–53

    Google Scholar 

  • Depledge MH, Amaral-Mendes JJ, B. Daniel RSH, Kloepper-Sams P, Moore MN Peakall DB (1992) The conceptual basis of the biomarker approach. In: (eds) D. B. Peakall L. R. Shugart Biomarkers: Research and Application in the Assessment of Environmental Health. Berlin: pp 15–29

    Google Scholar 

  • Diaconescu C, Urdes L, Marius H, Ianitchi D, Popa D (2008) The influence of heavy metal content on superoxide dismutase and glutathione peroxidase activity in the fish meat originated frown different areas of Danube river. Romanian Biotechnol Lett 13:3859–3862

    CAS  Google Scholar 

  • Dowling VA, Sheehan D (2006) Proteomics as a route to identification of toxicity targets in environmental toxicology. Proteomics 6:5597–5604

    CAS  Google Scholar 

  • Ellis AE (1999) Immunity to bacteria in fish. Fish Shellfish Immunol 9:291–308

    Google Scholar 

  • Geetha C, Deshpande V (1999) Purification and characterization of fish liver ferritins. Comp Biochem Physiol B Biochem Mol Biol 123:285–294

    CAS  Google Scholar 

  • Gladyshev VN (2006) Selenoproteins and selenoproteomes. In: Hatfield DL, Berry MJ, Gladyshev VN (eds) Selenium: its molecular biology and role in human health. Springer Science + Business Media LLC, Philadelphia, pp 99–114

    Google Scholar 

  • Goering PL, Klaassen CD (1984) Tolerance to cadmium-induced hepatotoxicity following cadmium pretreatment. Toxicol Appl Pharmacol 74:308–313

    CAS  Google Scholar 

  • Gomez-Ariza JL, Garcia-Barrera T, Lorenzo F, Bernal V, Villegas MJ, Oliveira V (2004) Use of mass spectrometry techniques for the characterization of metal bound to proteins (metallomics) in biological systems. Analyt Chim Acta 524:15–22

    CAS  Google Scholar 

  • Gonzalez-Fernandez M, Garcia-Barrera T, Jurado J, Prieto-Alamo MJ, Pueyo C, Lopez-Barea J, Gomez-Ariza JL (2008) Integrated application of transcriptomics, proteomics, and metallomics in environmental studies. Pure Appl Chem 80:2609–2626

    CAS  Google Scholar 

  • Haraguchi H (2004) Metallomics as integrated biometal science. J Anal At Spectrom 19:5–14

    CAS  Google Scholar 

  • Harrison PM, Arosio P (1996) Ferritins: molecular properties, iron storage function and cellular regulation. Biochim Biophys Acta – Bioenergetics 1275:161–203

    Google Scholar 

  • Hillegass JM, Villano CM, Cooper KR, White LA (2007) Matrix metalloproteinase-13 is required for zebra fish (Danio rerio) development and is a target for glucocorticoids. Toxicol Sci 100:168–179

    CAS  Google Scholar 

  • Hogstrand C, Balesaria S, Glover CN (2002) Application of genomics and proteomics for study of the integrated response to zinc exposure in a non-model fish species, the rainbow trout. Comp Biochem Physiol B Biochem Mol Biol 133:523–535

    Google Scholar 

  • Hylland K, Nissen-Lie T, Christensen PG, Sandvik M (1998) Natural modulation of hepatic metallothionein and cytochrome P4501A in flounder, Platichthys flesus L. Mar Environ Res 46:51–55

    CAS  Google Scholar 

  • IPCS (1984) Paraquat and Diquat, environmental health criteria. WHO, Geneva, p 128

    Google Scholar 

  • Jellum E, Thorsrud AK, Karasek FW (1983) Two-dimensional electrophoresis for determining toxicity of environmental substances. Anal Chem 55:2340–2344

    CAS  Google Scholar 

  • Kaegi JHR, Schaeffer A (1988) Biochemistry of metallothionein. Biochemistry 27:8509–8515

    CAS  Google Scholar 

  • Kanaya S, Ujiie Y, Hasegawa K, Sato T, Imada H, Kinouchi M, Kudo Y, Ogata T, Ohya H, Kamada H, Itamoto K, Katsura K (2000) Proteome analysis of Oncorhynchus species during embryogenesis. Electrophoresis 21:1907–1913

    CAS  Google Scholar 

  • Karim M, Puiseux-Dao S, Edery M (2011) Toxins and stress in fish: proteomic analyses and response network. Toxicon 57:959–969

    CAS  Google Scholar 

  • Ken C-F, Lin C-T, Shaw J-F Wu J-L (2003) Characterization of fish Cu/Zn–superoxide dismutase and its protection from oxidative stress. Mar Biotechnol 5:167–173

    CAS  Google Scholar 

  • Kimmel DG, Bradley BP (2001) Specific protein responses in the calanoid copepod Eurytemora affinis (Poppe, 1880) to salinity and temperature variation. J Exp Mar Biol Ecol 266:135–149

    CAS  Google Scholar 

  • Kimura A, Shinohara M, Ohkura R, Takahashi T (2001) Expression and localization of transcripts of MT5-MMP and its related MMP in the ovary of the medaka fish Oryzias latipes. Biochim Biophys Acta – Gene Struct Expr 1518:115–123

    CAS  Google Scholar 

  • Kling P, Norman A, Andersson PL, Norrgren L, Forlin L (2008) Gender-specific proteomic responses in zebrafish liver following exposure to a selected mixture of brominated flame retardants. Ecotoxicol Environ Saf 71:319–327

    CAS  Google Scholar 

  • Komada F, Nishiguchi K, Tanigawara Y, Akamatsu T, Wu XY, Iwakawa S, Okumura K (1996) Effect of transfection with superoxide dismutase expression plasmid on superoxide anion induced cytotoxicity in cultured rat lung cells. Biol Pharm Bull 19:274–279

    CAS  Google Scholar 

  • Kong B, Huang HQ, Lin QM, Kim WS, Cai ZW, Cao TM, Miao H, Luo DM (2003) Purification, electrophoretic behavior, and kinetics of iron release of liver ferritin of Dasyatis akajei. J Protein Chem 22:61–70

    CAS  Google Scholar 

  • Kultz D, Somero GN (1996) Differences in protein patterns of gill epithelial cells of the fish Gillichthys mirabilis after osmotic and thermal acclimation. J Comp Physiol B Biochem Syst Environ Physiol 166:88–100

    CAS  Google Scholar 

  • Lambris JD, Lao Z, Pang J, Alsenz J (1993) Third component of trout complement. cDNA cloning and conservation of functional sites. J Immunol 151:6123–6134

    CAS  Google Scholar 

  • Langston WJ, Chesman BS, Burt GR, Pope ND, McEvoy J (2002) Metallothionein in liver of eels Anguilla anguilla from the Thames Estuary: an indicator of environmental quality? Mar Environ Res 53:263–293

    CAS  Google Scholar 

  • Li L, Wu G, Sun J, Li B, Li YF, Chen CY, Chai ZF, Iida AS, Gao YX (2008) Detection of mercury-, arsenic-, and selenium-containing proteins in fish liver from a mercury polluted area of Guizhou Province, China. J Toxicol Environ Health – Part A - Curr Iss 71:1266–1269

    CAS  Google Scholar 

  • Ling XP, Zhu JY, Huang L, Huang HQ (2009) Proteomic changes in response to acute cadmium toxicity in gill tissue of Paralichthys olivaceus. Environ Toxicol Pharmacol 27:212–218

    CAS  Google Scholar 

  • Loftus IM, Naylor AR, Bell PRF, Thompson MM (2002) Matrix metalloproteinases and atherosclerotic plaque instability. Br J Surg 89:680–694

    Google Scholar 

  • López-Barea J, Gómez-Ariza JL (2006) Environmental proteomics and metallomics. Proteomics 6:S51–S62

    Google Scholar 

  • Malecot M, Mezhoud K, Marie A, Praseuth D, Puiseux-Dao S, Edery M (2009) Proteomic study of the effects of microcystin-LR on organelle and membrane proteins in medaka fish liver. Aquat Toxicol 94:153–161

    CAS  Google Scholar 

  • Mandl M, Ghaffari-Tabrizi N, Haas J, Nohammer G, Desoye G (2006) Differential glucocorticoid effects on proliferation and invasion of human trophoblast cell lines. Reproduction 132:159–167

    CAS  Google Scholar 

  • Marigomez I, Soto M, Cajaraville MP, Angulo E, Giamberini L (2002) Cellular and subcellular distribution of metals in molluscs. Microsc Res Tech 56:358–392

    CAS  Google Scholar 

  • Martin S, Cash P, Blaney S, Houlihan D (2001) Proteome analysis of rainbow trout (Oncorhynchus mykiss) liver proteins during short term starvation. Fish Physiol Biochem 24:259–270

    CAS  Google Scholar 

  • Martin SAM, Vilhelmsson O, Medale F, Watt P, Kaushik S, Houlihan DF (2003) Proteomic sensitivity to dietary manipulations in rainbow trout. Biochim Biophys Acta – Proteins Proteomics 1651:17–29

    CAS  Google Scholar 

  • Matrisian LM (1992) The matrix-degrading metalloproteinases. Bioessays 14:455–463

    CAS  Google Scholar 

  • Mazzucotelli G, Viarengo A (1988) Rapid-determination of zinc, copper and cadmium organometallics in mussels by gel-permeation high-pressure liquid-chromatography and in-line detection by inductively coupled plasma atomic emission-spectrometry. Aquat Toxicol 11:416–416

    Google Scholar 

  • Mezhoud K, Bauchet AL, Chateau-Joubert S, Praseuth D, Marie A, Francois JC, Fontaine JJ, Jaeg JP, Cravedi JP, Puiseux-Dao S, Edery M (2008) Proteomic and phosphoproteomic analysis of cellular responses in medaka fish (Oryzias latipes) following oral gavage with microcystin-LR. Toxicon 51:1431–1439

    CAS  Google Scholar 

  • Miguel JL, Pablos MI, Agapito MT, Recio JM (1991) Isolation and characterization of ferritin from the liver of the rainbow-trout (Salmo-Gairdneri R). Biochem Cell Biol 69:735–741

    CAS  Google Scholar 

  • Miracle AL, Ankley GT (2005) Ecotoxicogenomics: linkages between exposure and effects in assessing risks of aquatic contaminants to fish. Reprod Toxicol 19:321–326

    CAS  Google Scholar 

  • Moldovan M, Krupp EM, Holliday AE, Donard OFX (2004) High resolution sector field ICP-MS and multicollector ICP-MS as tools for trace metal speciation in environmental studies: a review. J Anal At Spectrom 19:815–822

    CAS  Google Scholar 

  • Nagase H, Visse R, Murphy G (2006) Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res 69:562–573

    CAS  Google Scholar 

  • Neves JV, Wilson JM, Rodrigues PNS (2009) Transferrin and ferritin response to bacterial infection: the role of the liver and brain in fish. Dev Comp Immunol 33:848–857

    CAS  Google Scholar 

  • Novoselov SV, Hua D, Lobanov AV, Gladyshev VN (2006) Identification and characterization of Fep15, a new selenocysteine-containing member of the Sep15 protein family. Biochem J 394:575–579

    CAS  Google Scholar 

  • NRC (1987) National Research Council Committee on Biological Markers – Biological markers in environmental health research. Environ Health Perspect 74:3–9

    Google Scholar 

  • Oberemm A, Onyon L, Gundert-Remy U (2005) How can toxicogenomics inform risk assessment? Toxicol Appl Pharmacol 207:592–598

    Google Scholar 

  • Olsson GB, Friis TJ, Jensen E, Cooper M (2007) Metabolic disorders in muscle of farmed Atlantic cod (Gadus morhua). Aquacult Res 38:1223–1227

    CAS  Google Scholar 

  • Olsson PE, Kling P, Petterson C, Silversand C (1995) Interaction of cadmium and Estradiol-17-beta on metallothionein and vitellogenin synthesis in rainbow-trout (Oncorhynchus-Mykiss). Biochem J 307:197–203

    CAS  Google Scholar 

  • Olsson PE, Larsson A, Haux C (1996) Influence of seasonal changes in water temperature on cadmium inducibility of hepatic and renal metallothionein in rainbow trout. Mar Environ Res 42:41–44

    CAS  Google Scholar 

  • Orino K, Lehman L, Tsuji Y, Ayaki H, Torti S, Torti FM (2001) Ferritin and the response to oxidative stress. Biochem J 357:241–247

    CAS  Google Scholar 

  • Pedrajas JR, Peinado J, Lopezbarea J (1993) Purification of Cu, Zn-superoxide dismutase isoenzymes from fish liver – appearance of new isoforms as a consequence of pollution. Free Radic Res Commun 19:29–41

    CAS  Google Scholar 

  • Powers DA (1989) Fish as model systems. Science 246:352–358

    CAS  Google Scholar 

  • Prange A, Profrock D (2005) Application of CE-ICP-MS and CE-ESI-MS in metalloproteomics: challenges, developments, and limitations. Anal Bioanal Chem 383:372–389

    CAS  Google Scholar 

  • Quackenbush J (2001) Computational analysis of microarray data. Nat Rev Genet 2:418–427

    CAS  Google Scholar 

  • Radi AA, Marcovics B (1988) Effects of metal ions on the antioxidant enzyme activities, protein contents and lipid peroxidation of carp tissues. Comp Biochem Physiol C 90:69–72

    CAS  Google Scholar 

  • Rath NC, Huff WE, Huff GR, Balog JM, Xie H (2001) Matrix metalloproteinase activities of turkey (Meleagris gallopavo) bile. Comp Biochem Physiol C Toxicol Pharmacol 130:97–105

    CAS  Google Scholar 

  • Roesijadi G (1992) Metallothioneins in metal regulation and toxicity in aquatic animals. Aquat Toxicol 22:81–114

    CAS  Google Scholar 

  • Roesijadi G, Bogumil R, Vasak M, Kagi JHR (1998) Modulation of DNA binding of a tramtrack zinc finger peptide by the metallothionein-thionein conjugate pair. J Biol Chem 273:17425–17432

    CAS  Google Scholar 

  • Sato H, Okada Y, Seiki M (1997) Membrane-type matrix metalloproteinase (mt-mmp) in cell invasion. Thromb Haemost 78:497–500

    CAS  Google Scholar 

  • Schlenk D (1999) Necessity of defining biomarkers for use in ecological risk assessments. Mar Poll Bull 39:48–53

    CAS  Google Scholar 

  • Schonbeck U, Mach F, Libby P (1998) Generation of biologically active IL-1 beta by matrix metalloproteinases: a novel caspase-1-independent pathway of IL-1 beta processing. J Immunol 161:3340–3346

    CAS  Google Scholar 

  • Scudiero R, Temussi PA, Parisi E (2005) Fish and mammalian metallothioneins: a comparative study. Gene 345:21–26

    CAS  Google Scholar 

  • Shepard JL, Bradley BP (2000) Protein expression signatures and lysosomal stability in Mytilus edulis exposed to graded copper concentrations. Mar Environ Res 50:457–463

    CAS  Google Scholar 

  • Shepard JL, Olsson B, Tedengren M, Bradley BP (2000) Protein expression signatures identified in Mytilus edulis exposed to PCBs, copper and salinity stress. Mar Environ Res 50:337–340

    CAS  Google Scholar 

  • Shi W, Chance MR (2008) Metallomics and metalloproteomics. Cell Mol Life Sci 65:3040–3048

    CAS  Google Scholar 

  • Smith RW, Cash P, Ellefsen S, Nilsson GE (2009) Proteomic changes in the crucian carp brain during exposure to anoxia. Proteomics 9:2217–2229

    CAS  Google Scholar 

  • Snape JR, Maund SJ, Pickford DB, Hutchinson TH (2004) Ecotoxicogenomics: the challenge of integrating genomics into aquatic and terrestrial ecotoxicology. Aquat Toxicol 67:143–154

    CAS  Google Scholar 

  • Sreejith P, Oommen OV (2008) Tri-iodothyronine alters superoxide dismutase expression in a teleost Anabas testudineus. Indian J Biochem Biophys 45:393–398

    CAS  Google Scholar 

  • Stafford JL, Belosevic M (2003) Transferrin and the innate immune response of fish: identification of a novel mechanism of macrophage activation. Dev Comp Immunol 27:539–554

    CAS  Google Scholar 

  • Stegeman JJ, Brower M, Di Giulio RT, Förlin L, Fowler BA, Sanders BM, Van Veld PA (1992) Molecular responses to environmental contamination: enzyme and protein systems as indicators of chemical exposure and effect. In: RJ Huggett, Kimerle RA, Mehrle Jr PP, Bergman HL (eds) Biomarkers: biochemical, physiological and histological markers of anthropogenic stress. Lewis, Chelsea, MI, pp 235–335

    Google Scholar 

  • Stentiford GD, Viant MR, Ward DG, Johnson PJ, Martin A, Wei WB, Cooper HJ, Lyons BP, Feist SW (2005) Liver tumors in wild flatfish: a histopathological, proteomic, and metabolomic study. Omics 9:281–299

    CAS  Google Scholar 

  • Stetler-Stevenson WG (1996) Dynamics of matrixturnover during pathologic remodeling of the extracellular matrix. Am J Pathol 148:1345–1350

    CAS  Google Scholar 

  • Surai PF (2006) Selenium in nutrition and health. Nottingham University Press, Nottingham

    Google Scholar 

  • Sveinsdottir H, Vilhelmsson O, Gudmundsdottir A (2008) Proteome analysis of abundant proteins in two age groups of early Atlantic cod (Gadus morhua) larvae. Comp Biochem Physiol Part D Genomics Proteomics 3:243–250

    Google Scholar 

  • Tay TL, Lin QS, Seow TK, Tan KH, Hew CL, Gong ZY (2006) Proteomic analysis of protein profiles during early development of the zebrafish, Danio rerio. Proteomics 6:3176–3188

    CAS  Google Scholar 

  • Theret N, Musso O, L’Helgoualc’h A, Campion JP, Clement B (1998) Differential expression and origin of membrane-type 1 and 2 matrix metalloproteinases (mt-mmps) in association with mmp2 activation in injured human livers. Am J Pathol 153:945–954

    CAS  Google Scholar 

  • Torti FM, Torti SV (2002) Regulation of ferritin genes and protein. Blood 99:3505–3516

    CAS  Google Scholar 

  • Torti SV, Kwak EL, Miller SC, Miller LL, Ringold GM, Myambo KB, Young AP, Torti FM (1988) The molecular-cloning and characterization of murine ferritin heavy-chain, a tumor necrosis factor-inducible gene. J Biol Chem 263:12638–12644

    CAS  Google Scholar 

  • Tyers M, Mann M (2003) From genomics to proteomics. Nature 422:193–197

    CAS  Google Scholar 

  • Vasak M (2005) Advances in metallothionein structure and functions. J Trace Elem Med Biol 19:13–17

    CAS  Google Scholar 

  • Velkova-Jordanoska L, Kostoski G, Jordanoska B (2008) Antioxidative enzymes in fish as biochemical indicators of aquatic pollution. Bulg J Agric Sci 14:235–237

    Google Scholar 

  • Viarengo A, Ponzano E, Dondero F, Fabbri R (1997) A simple spectrophotometric method for metallothionein evaluation in marine organisms: an application to Mediterranean and Antarctic molluscs. Mar Environ Res 44:69–84

    CAS  Google Scholar 

  • Vilhelmsson OT, Martin SAM, Medale F, Kaushik SJ, Houlihan DF (2004) Dietary plant-protein substitution affects hepatic metabolism in rainbow trout (Oncorhynchus mykiss). Br J Nutr 92:71–80

    CAS  Google Scholar 

  • Wang JS, Wei YH, Wang DZ, Chan LL, Dai JY (2008) Proteomic study of the effects of complex environmental stresses in the livers of goldfish (Carassius auratus) that inhabit Gaobeidian Lake in Beijing, China. Ecotoxicology 17:213–220

    CAS  Google Scholar 

  • Woessner JF (1994) The family of matrix metalloproteinases. Ann NY Acad Sci 732:11–21

    CAS  Google Scholar 

  • Yamashita M, Ojima N, Sakamoto T (1996) Molecular cloning and cold-inducible gene expression of ferritin H subunit isoforms in rainbow trout cells. J Biol Chem 271:26908–26913

    CAS  Google Scholar 

  • Yang FM, Lum JB, Mcgill JR, Moore CM, Naylor SL, Vanbragt PH, Baldwin WD, Bowman BH (1984) Human transferrin – Cdna characterization and chromosomal localization. Proc Natl Acad Sci USA – Biol Sci 81:2752–2756

    CAS  Google Scholar 

  • Yang MZ, Hayashi K, Hayashi M, Fujii JT, Kurkinen M (1996) Cloning and developmental expression of a membrane-type matrix metalloproteinase from chicken. J Biol Chem 271:25548–25554

    CAS  Google Scholar 

  • Yoneda S, Suzuki KT (1997) Equimolar Hg-Se complex binds to selenoprotein P. Biochem Biophys Res Commun 231:7–11

    CAS  Google Scholar 

  • Zhang JS, Bai S, Tanase C, Nagase H, Sarras MP (2003) The expression of tissue inhibitor of metalloproteinase 2 (TIMP-2) is required for normal development of zebrafish embryos. Dev Gene Evol 213:382–389

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank CNPq—National Counsel of Technological and Scientific Development for the doctorate scholarship of the main author and the Brazilian National Science and Technology Institute (Instituto Nacional de Ciência e Tecnologia—INCT de Bioanalítica) for financial support. Special thanks to David Whitacre for his invaluable suggestions, time, and patience in reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel Ann Hauser-Davis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hauser-Davis, R.A., de Campos, R.C., Ziolli, R.L. (2012). Fish Metalloproteins as Biomarkers of Environmental Contamination. In: Whitacre, D. (eds) Reviews of Environmental Contamination and Toxicology Volume 218. Reviews of Environmental Contamination and Toxicology, vol 218. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-3137-4_2

Download citation

Publish with us

Policies and ethics