Advertisement

Electroless Synthesis of Metallic Nanostructures for Biomedical Technologies

Chapter
Part of the Modern Aspects of Electrochemistry book series (MAOE, volume 55)

Abstract

The electroless deposition of metals has emerged as one of the leading growth areas in surface engineering and metal finishing, and, recently, it is gaining interest for the synthesis of metallic nanostructures for biomedical technologies. In this perspective, the fundamental aspects underlying the autocatalytic deposition (ACD) and immersion plating are briefly reviewed, establishing the unique identity of galvanic displacement among electrochemical processes in general, and electroless processes in particular. Numerous biological and biomedical phenomena occur at the nanometer level, and the current research focus of many fields is nanotechnology. Nanostructured metallic systems can provide the ability to probe the sub-optical, molecular level and are becoming powerful tools to study biomolecular processes. Metal nanosystems also hold great promise for the field of nanomedicine, where nanostructures are designed to diagnose and provide therapy at the single-cell level. The exploitation of the electroless methods as an amazingly simple and effective route for generating metal nanostructures will be reviewed within the frame of biomedical technologies, discussing the applications in sensors and microdevices, the preparation and use of nanostructured metals for supporting and wiring biomolecules, for DNA analysis and disease screening. The use of nanostructures such as nanorods and nanoparticles, as these structures show interesting optical, electrical, and mechanical properties, will be analyzed in view of their potential applications in nanobiotechnology.

Keywords

Localize Surface Plasmon Resonance Electroless Plating Electroless Nickel Electroless Deposition Silver Coating 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Carraro C, Maboudian R, Magagnin L (2007) Surf Sci Rep 62:499CrossRefGoogle Scholar
  2. 2.
    Schlesinger M, Paunovic M (2000) Modern electroplating, 4th edn. Wiley, New YorkGoogle Scholar
  3. 3.
    Kanani N (2005) Electroplating: basic principles, processes and practise. Elsevier Science, AmsterdamGoogle Scholar
  4. 4.
    Johnson RW (1961) J Electrochem Soc 108:632CrossRefGoogle Scholar
  5. 5.
    Werbicki JJ (1971) Plating 58:763Google Scholar
  6. 6.
    Ma DH, Levy DJ (1978) J Electrochem Soc 125:1741CrossRefGoogle Scholar
  7. 7.
    Kovac Z, Tu K-N (1984) IBM J Res Dev 28:726CrossRefGoogle Scholar
  8. 8.
    Monteiro FJ, Barbosa MA, Gabe DR, Ross DH (1989) Plat Surf Finish 76:86Google Scholar
  9. 9.
    Keping H, Jingli F (1996) Trans Inst Met Finish 74:95Google Scholar
  10. 10.
    Stoyanova E, Stoychev D (1997) J Appl Electrochem 27:685CrossRefGoogle Scholar
  11. 11.
    Wei Z-L, Tang D, Wang X, You S-X (2005) Jinshu Rechuli/Heat Treat Met 30:262Google Scholar
  12. 12.
    Meeh P (2005) Circuit World 31:28CrossRefGoogle Scholar
  13. 13.
    Hashimoto S, Kiso M, Oda Y, Otake H, Milad G, Gudaczauskas D (2006) Circuit World 32:16CrossRefGoogle Scholar
  14. 14.
    Yang L, Luan B (2005) J Electrochem Soc 152:C474CrossRefGoogle Scholar
  15. 15.
    Brevnov DA, Olson TS, Lopez GP, Atanassov P (2004) J Phys Chem B 108:17531CrossRefGoogle Scholar
  16. 16.
    Guenther B (2000) Trans IMF 78:143Google Scholar
  17. 17.
    Lee D-J, Lee HS (2006) Microelectron Reliab 46:1119CrossRefGoogle Scholar
  18. 18.
    Djokic SS (2002) In: Conway BE, White RE (eds) Modern apsects of electrochemistry, No. 35. Kluwer Academic/Plenum, New York, p 51Google Scholar
  19. 19.
    Laser D, Bard AJ (1976) J Electrochem Soc 123:1828CrossRefGoogle Scholar
  20. 20.
    Laser D, Bard AJ (1976) J Phys Chem 80:459CrossRefGoogle Scholar
  21. 21.
    Nozik AJ (1980) Faraday Discuss Chem Soc 70:7CrossRefGoogle Scholar
  22. 22.
    Magagnin L, Cojocaru P, Cavallotti PL (2011) ECS Trans 33:1CrossRefGoogle Scholar
  23. 23.
    Fan T-X, Chow S-K, Zhang D (2009) Prog Mater Sci 54:542Google Scholar
  24. 24.
    Rosi NL, Thaxton CS, Mirkin CA (2004) Angew Chem Int Ed 43:5500CrossRefGoogle Scholar
  25. 25.
    D’Asaro LA, Nakahara S, Okinaka Y (1980) J Electrochem Soc 127:1935CrossRefGoogle Scholar
  26. 26.
    Ting CH, Paunovic M, Pai PL, Chiu G (1989) J Electrochem Soc 136:462CrossRefGoogle Scholar
  27. 27.
    Nagahara LA, Ohmori T, Hashimoto K, Fujishima A (1992) J Electroanal Chem 333:363CrossRefGoogle Scholar
  28. 28.
    Nagahara LA, Ohmori T, Hashimoto K, Fujishima A (1993) J Vac Sci Technol A 11:763CrossRefGoogle Scholar
  29. 29.
    Dryfe RAW, Walter EC, Penner RM (2004) Chem Phys Chem 5:1879CrossRefGoogle Scholar
  30. 30.
    Lide DR (2007) CRC handbook of chemistry and physics, 87th edn. Taylor and Francis, Boca Raton, FLGoogle Scholar
  31. 31.
    Gorostiza P, Diaz R, Sanz F, Morante JR (1997) J Electrochem Soc 144:4119CrossRefGoogle Scholar
  32. 32.
    Gorostiza P, Allongue P, Diaz R, Morante JR, Sanz F (2003) J Phys Chem B 107:6454CrossRefGoogle Scholar
  33. 33.
    Chyan OMR, Chen JJ, Chien HY, Sees J, Hall LJ (1996) Electrochem Soc 143:92CrossRefGoogle Scholar
  34. 34.
    Jeon JS, Raghavan S, Parks HG, Lowell JK, Ali I (1996) J Electrochem Soc 143:2870CrossRefGoogle Scholar
  35. 35.
    Lee MK, Wang HD, Wang JJ (1997) J Solid State Electron 41:695CrossRefGoogle Scholar
  36. 36.
    dos Santos FSG, Martins LFO, D’Ajello PCT, Pasa AA, Hasenack CM (1997) Microelectron Eng 33:59CrossRefGoogle Scholar
  37. 37.
    dos Santos FSG, Pasa AA, Hasenack CM (1997) Microelectron Eng 33:149CrossRefGoogle Scholar
  38. 38.
    Lee MK, Wang JJ, Wang HD (1997) J Electrochem Soc 144:1777CrossRefGoogle Scholar
  39. 39.
    Li G, Kneer EA, Vermiere B, Parks HG, Raghavan S, Jeon JS (1998) J Electrochem Soc 145:241CrossRefGoogle Scholar
  40. 40.
    Srinivasan R, Suni II (1998) Surf Sci 408:L698CrossRefGoogle Scholar
  41. 41.
    Srinivasan R, Suni II (1999) J Electrochem Soc 146:570CrossRefGoogle Scholar
  42. 42.
    Rossiter C, Suni II (1999) Surf Sci 430:L553CrossRefGoogle Scholar
  43. 43.
    Balashova NA, Eletskii VV, Medyntsev VV (1965) Elektrokhimiya 1:274Google Scholar
  44. 44.
    Krikshtopaitis IB, Kudzhmauskaite ZP (1971) Elektrokhimiya 7:1579Google Scholar
  45. 45.
    Magagnin L, Maboudian R, Carraro C (2002) J Phys Chem B 106:401CrossRefGoogle Scholar
  46. 46.
    Perfetti P, Katnani AD, Zhao T-X, Margaritondo G, Bisi O, Calandra C (1982) J Vac Sci Technol 21:628CrossRefGoogle Scholar
  47. 47.
    Calandra C, Bisi O, Ottaviani G (1985) Surf Sci Rep 4:271CrossRefGoogle Scholar
  48. 48.
    Liu F-M, Green M (2004) J Mater Chem 14:1526CrossRefGoogle Scholar
  49. 49.
    Peng K, Zhu J (2004) Electrochim Acta 49:2563CrossRefGoogle Scholar
  50. 50.
    Aizawa M, Buriak JM (2006) J Am Chem Soc 128:5877CrossRefGoogle Scholar
  51. 51.
    Dhingra S, Sharma R, George PJ (1999) Solid State Electron 43:2231CrossRefGoogle Scholar
  52. 52.
    Cheng X, Li G, Kneer EA, Vermiere B, Parks HG, Raghavan S, Jeon JS (1998) J Electrochem Soc 145:352CrossRefGoogle Scholar
  53. 53.
    Ogata YH, Sasano J, Itoh T, Sakka T, Rayon E, Pastor E, Parkhutik V (2005) J Electrochem Soc 152:C537CrossRefGoogle Scholar
  54. 54.
    Oskam G, Long JG, Natarajan A, Searson PC (1998) J Phys D Appl Phys 31:1927CrossRefGoogle Scholar
  55. 55.
    Magagnin L, Maboudian R, Carraro C (2001) Electrochem Solid State Lett 4:C5CrossRefGoogle Scholar
  56. 56.
    Xu J, Jordan RB (1990) Inorg Chem 29:2933CrossRefGoogle Scholar
  57. 57.
    Gorostiza P, Diaz R, Servat J, Sanz F (1997) J Electrochem Soc 144:909CrossRefGoogle Scholar
  58. 58.
    Porter LA Jr, Choi HC, Schmeltzer JM, Ribbe AE, Elliott LCC, Buriak JM (2002) Nano Lett 2:1369CrossRefGoogle Scholar
  59. 59.
    Ye XR, Wai CM, Zhang D, Kranov Y, McIlroy DN, Lin Y, Engelhard M (2003) Chem Mater 15:83CrossRefGoogle Scholar
  60. 60.
    Karmalkar S, Banerjee J (1999) J Electrochem Soc 146:580CrossRefGoogle Scholar
  61. 61.
    Messori L, Marcon G (2004) In: Sigel A (ed) Metal ions and their complexes in medication. CRC, Boca Raton, p 280Google Scholar
  62. 62.
    Lewinski N, Colvin V, Drezek R (2008) Small 4:26CrossRefGoogle Scholar
  63. 63.
    Cobley CM, Xia Y (2010) Mater Sci Eng R 70:44CrossRefGoogle Scholar
  64. 64.
    Stuart DA, Haes AJ, Yonzon CR, Hicks EM, Van Duyne RP (2005) IEE Proc Nanobiotechnol 152:13Google Scholar
  65. 65.
    Sherman AI, Ter-pogossian M (1953) Cancer 6:1238CrossRefGoogle Scholar
  66. 66.
    Paciotti GF, Myer L, Weinreich D, Goia D, Pavel N, McLaughlin RE, Tamarkin L (2004) Drug Deliv 11:169CrossRefGoogle Scholar
  67. 67.
    Love J, Estroff L, Kriebel J, Nuzzo R, Whitesides G (2005) Chem Rev 105:1103CrossRefGoogle Scholar
  68. 68.
    Alkilany AM, Nagaria PK, Hexel CR, Shaw TJ, Murphy CJ, Wyatt MD (2009) Small 5:701CrossRefGoogle Scholar
  69. 69.
    Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nat Nanotechnol 2:751CrossRefGoogle Scholar
  70. 70.
    Au L, Zhang Q, Cobley CM, Gidding M, Schwartz AG, Chen J, Xia Y (2010) ACS Nano 4:35CrossRefGoogle Scholar
  71. 71.
    Cho EC, Au L, Zhang Q, Xia Y (2010) Small 6:517CrossRefGoogle Scholar
  72. 72.
    Cobley CM, Chen J, Chul Cho E, Wang LV, Xia Y (2011) Chem Soc Rev 40:44CrossRefGoogle Scholar
  73. 73.
    Daniel M-C, Astruc D (2004) Chem Rev 104:293CrossRefGoogle Scholar
  74. 74.
    Yavuz MS, Cheng Y, Chen J, Cobley CM, Zhang Q, Rycenga M, Xie J, Kim C, Song KH, Schwartz AG, Wang LV, Xia Y (2009) Nat Mater 8:935CrossRefGoogle Scholar
  75. 75.
    Kreibig U, Vollmer M (1995) Optical properties of metal clusters, vol 25, Springer series in material science. Springer, BerlinGoogle Scholar
  76. 76.
    Kelly K, Coronado E, Zhao L, Schatz GC (2003) J Phys Chem B 107:668CrossRefGoogle Scholar
  77. 77.
    Wiley BJ, Im SH, Li Z-Y, McLellan J, Siekkinen AR, Xia Y (2006) J Phys Chem B 110:15666CrossRefGoogle Scholar
  78. 78.
    Lei Y, Chen H, Dai H, Zeng Z, Lin Y, Zhou F, Pang D (2008) Biosens Bioelectron 23:1200CrossRefGoogle Scholar
  79. 79.
    Samanta B, Yan H, Fischer NO, Shi J, Jerry DJ, Rotello VM (2008) J Mater Chem 18:1204CrossRefGoogle Scholar
  80. 80.
    Cherukuri P, Glazer ES, Curley SA (2010) Adv Drug Deliv Rev 62:339CrossRefGoogle Scholar
  81. 81.
    Chen C-M, Yeh M-L, Chien C-S, Chuang Y-T, Lin C-H (2009) IEEE SENSORS Conf 2009:1788Google Scholar
  82. 82.
    Lu Z-X, Wood LF, Ohman DE, Collinson MM (2009) Chem Commun 4200Google Scholar
  83. 83.
    Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Chem Rev 108:2065CrossRefGoogle Scholar
  84. 84.
    Pankhurst QA, Thanh NKT, Jones SK, Dobson J (2009) J Phys D Appl Phys 42:224001CrossRefGoogle Scholar
  85. 85.
    Suzuki D, Kawaguchi H (2005) Langmuir 21:8175CrossRefGoogle Scholar
  86. 86.
    Suzuki D, Kawaguchi H (2005) Langmuir 21:12016CrossRefGoogle Scholar
  87. 87.
    Schwarz A, Hakuzimana J, Kaczynska A, Banaszczyk J, Westbroek P, McAdams E, Moody G, Chronis Y, Priniotakis G, De Mey G, Tseles D, Van Langenhove L (2010) Surf CoatTechnol 204:1412CrossRefGoogle Scholar
  88. 88.
    Shao W, Zhao Q (2010) Surf CoatTechnol 204:1288CrossRefGoogle Scholar
  89. 89.
    Schierholz JM, Lucas LJ, Rump A, Pulverer G (1998) J Hosp Infect 40:257CrossRefGoogle Scholar
  90. 90.
    McArdle P (2005) Am J Infect Control 33:130CrossRefGoogle Scholar
  91. 91.
    Zhao Q, Liu Y, Wang C, Wang S, Müller-Steinhagen H (2005) Chem Eng Sci 60:4858CrossRefGoogle Scholar
  92. 92.
    Zhao Q, Liu Y (2006) J Food Eng 72:266CrossRefGoogle Scholar
  93. 93.
    Zhao Q, Wang C, Liu Y, Wang S (2007) Int J Adhes Adhes 27:85CrossRefGoogle Scholar
  94. 94.
    Gray JE, Norton PR, Alnouno R, Marolda CL, Valvano MA, Griffiths K (2003) Biomaterials 24:2759CrossRefGoogle Scholar
  95. 95.
    Zhao Q, Liu Y, Wang C (2005) Appl Surf Sci 252:1620CrossRefGoogle Scholar
  96. 96.
    Park HK, Yoon JK, Kim K (2006) Langmuir 22:1626CrossRefGoogle Scholar
  97. 97.
    Kim K, Kim HS, Park HK (2006) Langmuir 22:8083CrossRefGoogle Scholar
  98. 98.
    Lee HY, Park HK, Lee YM, Kim K, Park SB (2007) Chem Commun 29:2959CrossRefGoogle Scholar
  99. 99.
    Oh SD, Lee S, Choi SH, Lee IS, Lee YM, Chun JH, Park HJ (2006) Colloids Surf A Physicochem Eng Asp 275:228CrossRefGoogle Scholar
  100. 100.
    Fu J, Ji J, Fan D, Shen J (2006) J Biomed Mater Res A 79A:665CrossRefGoogle Scholar
  101. 101.
    Twu YK, Chen YW, Shih CM (2008) Powder Technol 185:251CrossRefGoogle Scholar
  102. 102.
    Dastjerdi R, Montazer M (2010) Colloids Surf B Biointerfaces 79:5CrossRefGoogle Scholar
  103. 103.
    Yang Y, Constance BH, Deymier PA, Hoying J, Raghavan S, Zelinski BJJ (2004) J Mater Sci 39:1927CrossRefGoogle Scholar
  104. 104.
    Lu LT, Tung LD, Robinson I, Ung D, Tan B, Long J, Cooper AI, Fernigd DG, Thanh NTK (2008) J Mater Chem 18:2453CrossRefGoogle Scholar
  105. 105.
    Kristian N, Yu Y, Lee J-M, Liu X, Wang X (2010) Electrochim Acta 56:1000Google Scholar
  106. 106.
    Valenzuela K, Raghavan S, Deymier PA, Hoying J (2008) J Nanosci Nanotechnol 8:3416CrossRefGoogle Scholar
  107. 107.
    Kudo H, Fujihira M (2006) IEEE Trans Nanotechnol 5:90CrossRefGoogle Scholar
  108. 108.
    Mahmoud SS (2009) J Alloys Compd 472:595CrossRefGoogle Scholar
  109. 109.
    Skrabalak SE, Chen J, Sun Y, Lu X, Au L, Cobley CM, Xia Y (2008) Acc Chem Res 41:1587CrossRefGoogle Scholar
  110. 110.
    Lu X, Chen J, Skrabalak SE, Xia Y (2008) Proc Inst Mech Eng N 221:1Google Scholar
  111. 111.
    Xia Y, Xiong Y, Lim B, Skrabalak SE (2009) Angew Chem Int Ed 48:60CrossRefGoogle Scholar
  112. 112.
    Kim MH, Lu X, Wiley BJ, Lee EP, Xia Y (2008) J Phys Chem C 112:7872CrossRefGoogle Scholar
  113. 113.
    Chen J, McLellan J, Siekkinen A, Xiong Y, Li Z-Y, Xia Y (2006) J Am Chem Soc 128:14776CrossRefGoogle Scholar
  114. 114.
    Wilson GS, Gifford R (2005) Biosens Bioelectron 20:2388CrossRefGoogle Scholar
  115. 115.
    Hubalek J, Hradecky J, Adam V, Krystofova O, Huska D, Masarik M, Trnkova L, Horna A, Klosova K, Adamek M, Zehnalek J, Kizek R (2007) Sensors 7:1238CrossRefGoogle Scholar
  116. 116.
    Magagnin L, Cojocaru P, Raygani A, Brivio D, Secundo F, Turolla A, Ottolina G (2011) ECS Trans 33:59CrossRefGoogle Scholar
  117. 117.
    Fraaije MW, Wu J, Heuts D, van Hellemond EW, Spelberg J, Janssen DB (2005) Appl Microbiol Biotechnol 66:393CrossRefGoogle Scholar
  118. 118.
    Lansdown ABG (2002) J Wound Care 11:125Google Scholar
  119. 119.
    Wang S, Hou W, Wei L, Jia H, Liu X, Xu B (2007) Surf CoatTechnol 202:460CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Luca Magagnin
    • 1
  • Paula Cojocaru
    • 1
  • Francesco Secundo
    • 2
  1. 1.Dip. ChimicaMateriali e Ing. Chimica G. Natta Politecnico di MilanoMilanoItaly
  2. 2.Istituto di Chimica del Riconoscimento Molecolare, CNRMilanoItaly

Personalised recommendations