Skip to main content

Prevention of Cognitive Decline

  • Chapter
  • First Online:
Handbook on the Neuropsychology of Aging and Dementia

Part of the book series: Clinical Handbooks in Neuropsychology ((CHNEURO))

  • 6060 Accesses

Abstract

Effective strategies to prevent cognitive decline in the context of normal aging, mild cognitive impairment, and dementia are imperative. Existing studies have provided some clues into the puzzle of prevention, yet it is rare that the evidence is unquestionable. Specific dietary changes rich in vegetables, fruits, and fish and low in carbohydrates and saturated fat are advisable, with particular emphasis in patients at risk of developing Alzheimer’s disease (AD) or vascular dementia. Patients should remain active physically and mentally. Physical exercise is among the best of all potential interventions against AD. There is no evidence that hormonal supplementation can decrease the incidence of dementia. Some agents that are touted as having cognitive protective effects should only be used under physician supervision. AD patients should be considered for medical therapy unless contraindicated. Promising novel therapies include active and passive immunization against Aβ peptides and gamma secretase inhibitors to reduce Aβ production. In this chapter, we review strategies used to prevent age related cognitive decline.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 349.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brown LA, Riby LM, Reay JL. Supplementing cognitive aging: a selective review of the effects of ginkgo biloba and a number of everyday nutritional substances. Exp Aging Res. 2010;36:105–22.

    PubMed  Google Scholar 

  2. Plassman BL, Williams Jr JW, Burke JR, Holsinger T, Benjamin S. Systematic review: factors associated with risk for and possible prevention of cognitive decline in later life. Ann Intern Med. 2010;153: 182–93.

    PubMed  Google Scholar 

  3. Daviglus ML, et al. National Institutes of Health State-of-the-Science Conference statement: preventing alzheimer disease and cognitive decline. Ann Intern Med. 2010;153:176–81.

    PubMed  Google Scholar 

  4. Shumaker SA, et al. Estrogen plus progestin and the incidence of dementia and mild cognitive impairment in postmenopausal women: the Women’s Health Initiative Memory Study: a randomized controlled trial. JAMA. 2003;289:2651–62.

    PubMed  Google Scholar 

  5. Middleton LE, Yaffe K. Promising strategies for the prevention of dementia. Arch Neurol. 2009;66:1210–5.

    PubMed  Google Scholar 

  6. Brookmeyer R, Damiano A. Statistical methods for short-term projections of AIDS incidence. Stat Med. 1989;8:23–34.

    PubMed  Google Scholar 

  7. Frautschy SA, Cole GM. Why pleiotropic interventions are needed for Alzheimer’s disease. Mol Neurobiol. 2010;41:392–409.

    PubMed  Google Scholar 

  8. Nehlig A. Is caffeine a cognitive enhancer? J Alzheimers Dis. 2010;20 Suppl 1:S85–94.

    PubMed  Google Scholar 

  9. Prasain JK, Carlson SH, Wyss JM. Flavonoids and age-related disease: risk, benefits and critical windows. Maturitas. 2010;66:163–71.

    PubMed  Google Scholar 

  10. Miller DB, O’Callaghan JP. Aging, stress and the hippocampus. Ageing Res Rev. 2005;4:123–40.

    PubMed  Google Scholar 

  11. Glade MJ. Oxidative stress and cognitive longevity. Nutrition. 2010;26:595–603.

    PubMed  Google Scholar 

  12. Akiyama H, et al. Inflammation and Alzheimer’s disease. Neurobiol Aging. 2000;21:383–421.

    PubMed  Google Scholar 

  13. Tapsell LC, et al. Health benefits of herbs and spices: the past, the present, the future. Med J Aust. 2006;185:S4–24.

    PubMed  Google Scholar 

  14. Balk E, et al. B vitamins and berries and age-related neurodegenerative disorders. Evid Rep Technol Assess (Full Rep). 2006;164:1–161.

    Google Scholar 

  15. Riggs KM, Spiro 3rd A, Tucker K, Rush D. Relations of vitamin B-12, vitamin B-6, folate, and homocysteine to cognitive performance in the Normative Aging Study. Am J Clin Nutr. 1996;63:306–14.

    PubMed  Google Scholar 

  16. Wang HX, et al. Vitamin B(12) and folate in relation to the development of Alzheimer’s disease. Neurology. 2001;56:1188–94.

    PubMed  Google Scholar 

  17. Seshadri S, et al. Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N Engl J Med. 2002;346:476–83.

    PubMed  Google Scholar 

  18. Garcia A, Zanibbi K. Homocysteine and cognitive function in elderly people. CMAJ. 2004;171:897–904.

    PubMed  Google Scholar 

  19. Ravaglia G, et al. Homocysteine and folate as risk ­factors for dementia and Alzheimer disease. Am J Clin Nutr. 2005;82:636–43.

    PubMed  Google Scholar 

  20. Kado DM, et al. Homocysteine versus the vitamins folate, B6, and B12 as predictors of cognitive function and decline in older high-functioning adults: MacArthur Studies of Successful Aging. Am J Med. 2005;118:161–7.

    PubMed  Google Scholar 

  21. Tucker KL, Qiao N, Scott T, Rosenberg I, Spiro 3rd A. High homocysteine and low B vitamins predict cognitive decline in aging men: the Veterans Affairs Normative Aging Study. Am J Clin Nutr. 2005;82:627–35.

    PubMed  Google Scholar 

  22. Terasawa M, Nakahara T, Tsukada N, Sugawara A, Itokawa Y. The relationship between thiamine deficiency and performance of a learning task in rats. Metab Brain Dis. 1999;14:137–48.

    PubMed  Google Scholar 

  23. Jolicoeur FB, Rondeau DB, Barbeau A, Wayner MJ. Comparison of neurobehavioral effects induced by various experimental models of ataxia in the rat. Neurobehav Toxicol. 1979;1 Suppl 1:175–8.

    PubMed  Google Scholar 

  24. Ciccia RM, Langlais PJ. An examination of the synergistic interaction of ethanol and thiamine deficiency in the development of neurological signs and long-term cognitive and memory impairments. Alcohol Clin Exp Res. 2000;24:622–34.

    PubMed  Google Scholar 

  25. Meador K, et al. Preliminary findings of high-dose thiamine in dementia of Alzheimer’s type. J Geriatr Psychiatry Neurol. 1993;6:222–9.

    PubMed  Google Scholar 

  26. Mimori Y, Katsuoka H, Nakamura S. Thiamine therapy in Alzheimer’s disease. Metab Brain Dis. 1996;11:89–94.

    PubMed  Google Scholar 

  27. Jia X, McNeill G, Avenell A. Does taking vitamin, mineral and fatty acid supplements prevent cognitive decline? A systematic review of randomized controlled trials J Hum Nutr Diet. 2008;21:317–36.

    Google Scholar 

  28. Goodwin JS, Goodwin JM, Garry PJ. Association between nutritional status and cognitive functioning in a healthy elderly population. JAMA. 1983;249:2917–21.

    PubMed  Google Scholar 

  29. Lee H, Kim HJ, Kim JM, Chang N. Effects of dietary folic acid supplementation on cerebrovascular endothelial dysfunction in rats with induced hyperhomocysteinemia. Brain Res. 2004;996:139–47.

    PubMed  Google Scholar 

  30. Scileppi KP, Blass JP, Baker HG. Circulating vitamins in Alzheimer’s dementia as compared with other dementias. J Am Geriatr Soc. 1984;32:709–11.

    PubMed  Google Scholar 

  31. Mizrahi EH, et al. Plasma total homocysteine levels, dietary vitamin B6 and folate intake in AD and healthy aging. J Nutr Health Aging. 2003;7:160–5.

    PubMed  Google Scholar 

  32. Dangour AD, et al. B-vitamins and fatty acids in the prevention and treatment of Alzheimer’s disease and dementia: a systematic review. J Alzheimers Dis. 2010;22:205–24.

    PubMed  Google Scholar 

  33. Masuda Y, Kokubu T, Yamashita M, Ikeda H, Inoue S. EGG phosphatidylcholine combined with vitamin B12 improved memory impairment following lesioning of nucleus basalis in rats. Life Sci. 1998;62:813–22.

    PubMed  Google Scholar 

  34. Tangney CC, Tang Y, Evans DA, Morris MC. Biochemical indicators of vitamin B12 and folate insufficiency and cognitive decline. Neurology. 2009;72:361–7.

    PubMed  Google Scholar 

  35. Kwok T, et al. Randomized trial of the effect of supplementation on the cognitive function of older ­people with subnormal cobalamin levels. Int J Geriatr Psychiatry. 1998;13:611–6.

    PubMed  Google Scholar 

  36. Hvas AM, Juul S, Lauritzen L, Nexo E, Ellegaard J. No effect of vitamin B-12 treatment on cognitive function and depression: a randomized placebo controlled study. J Affect Disord. 2004;81:269–73.

    PubMed  Google Scholar 

  37. Kruman II, et al. Folic acid deficiency and homocysteine impair DNA repair in hippocampal neurons and sensitize them to amyloid toxicity in experimental models of Alzheimer’s disease. J Neurosci. 2002;22:1752–62.

    PubMed  Google Scholar 

  38. Mattson MP, Chan SL, Duan W. Modification of brain aging and neurodegenerative disorders by genes, diet, and behavior. Physiol Rev. 2002;82: 637–72.

    PubMed  Google Scholar 

  39. Morris MC, et al. Dietary folate and vitamin B12 intake and cognitive decline among community-dwelling older persons. Arch Neurol. 2005;62:641–5.

    PubMed  Google Scholar 

  40. Fioravanti M, et al. Low folate levels in the cognitive decline of elderly patients and the efficacy of folate as a treatment for improving memory deficits. Arch Gerontol Geriatr. 1998;26:1–13.

    PubMed  Google Scholar 

  41. Bryan J, Calvaresi E, Hughes D. Short-term folate, vitamin B-12 or vitamin B-6 supplementation slightly affects memory performance but not mood in women of various ages. J Nutr. 2002;132: 1345–56.

    PubMed  Google Scholar 

  42. Sommer BR, Hoff AL, Costa M. Folic acid supplementation in dementia: a preliminary report. J Geriatr Psychiatry Neurol. 2003;16:156–9.

    PubMed  Google Scholar 

  43. Wald DS, Kasturiratne A, Simmonds M. Effect of folic acid, with or without other B vitamins, on cognitive decline: meta-analysis of randomized trials. Am J Med. 2010;123:522–7. e522.

    PubMed  Google Scholar 

  44. Perrig WJ, Perrig P, Stahelin HB. The relation between antioxidants and memory performance in the old and very old. J Am Geriatr Soc. 1997;45:718–24.

    PubMed  Google Scholar 

  45. Morris MC, Evans DA, Bienias JL, Tangney CC, Wilson RS. Vitamin E and cognitive decline in older persons. Arch Neurol. 2002;59:1125–32.

    PubMed  Google Scholar 

  46. Wengreen HJ, et al. Antioxidant intake and cognitive function of elderly men and women: the Cache County Study. J Nutr Health Aging. 2007;11: 230–7.

    PubMed  Google Scholar 

  47. Dangour AD, Sibson VL, Fletcher AE. Micronutrient supplementation in later life: limited evidence for benefit. J Gerontol A Biol Sci Med Sci. 2004;59:659–73.

    PubMed  Google Scholar 

  48. Wallum BJ, et al. Cerebrospinal fluid insulin levels increase during intravenous insulin infusions in man. J Clin Endocrinol Metab. 1987;64:190–4.

    PubMed  Google Scholar 

  49. Krikorian R, Eliassen JC, Boespflug EL, Nash TA, Shidler MD. Improved cognitive-cerebral function in older adults with chromium supplementation. Nutr Neurosci. 2010;13:116–22.

    PubMed  Google Scholar 

  50. Cefalu WT, Wang ZQ, Zhang XH, Baldor LC, Russell JC. Oral chromium picolinate improves carbohydrate and lipid metabolism and enhances skeletal muscle Glut-4 translocation in obese, hyperinsulinemic (JCR-LA corpulent) rats. J Nutr. 2002;132:1107–14.

    PubMed  Google Scholar 

  51. Anderson RA, et al. Elevated intakes of supplemental chromium improve glucose and insulin variables in individuals with type 2 diabetes. Diabetes. 1997;46:1786–91.

    PubMed  Google Scholar 

  52. Hamaguchi T, Ono K, Murase A, Yamada M. Phenolic compounds prevent Alzheimer’s pathology through different effects on the amyloid-beta aggregation pathway. Am J Pathol. 2009;175:2557–65.

    PubMed  Google Scholar 

  53. Crozier A, Del Rio D, Clifford MN. Bioavailability of dietary flavonoids and phenolic compounds. Mol Aspects Med. 2010;31(6):446–67.

    PubMed  Google Scholar 

  54. Moyer RA, Hummer KE, Finn CE, Frei B, Wrolstad RE. Anthocyanins, phenolics, and antioxidant capacity in diverse small fruits: vaccinium, rubus, and ribes. J Agric Food Chem. 2002;50:519–25.

    PubMed  Google Scholar 

  55. Halvorsen BL, et al. A systematic screening of total antioxidants in dietary plants. J Nutr. 2002;132: 461–71.

    PubMed  Google Scholar 

  56. Saija A, Princi P, D’Amico N, De Pasquale R, Costa G. Effect of Vaccinium myrtillus anthocyanins on triiodothyronine transport into brain in the rat. Pharmacol Res. 1990;22 Suppl 3:59–60.

    PubMed  Google Scholar 

  57. Casadesus G, et al. Modulation of hippocampal plasticity and cognitive behavior by short-term blueberry supplementation in aged rats. Nutr Neurosci. 2004;7:309–16.

    PubMed  Google Scholar 

  58. Joseph JA, Fisher DR, Carey AN. Fruit extracts antagonize Abeta- or DA-induced deficits in Ca2+ flux in M1-transfected COS-7 cells. J Alzheimers Dis. 2004;6:403–11. discussion 443–409.

    PubMed  Google Scholar 

  59. Yang F, et al. Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem. 2005;280:5892–901.

    PubMed  Google Scholar 

  60. Rinwa P, Kaur B, Jaggi AS, Singh N. Involvement of PPAR-gamma in curcumin-mediated beneficial effects in experimental dementia. Naunyn Schmiedebergs Arch Pharmacol. 2010;381:529–39.

    PubMed  Google Scholar 

  61. Lao CD, et al. Dose escalation of a curcuminoid formulation. BMC Complement Altern Med. 2006;6:10.

    PubMed  Google Scholar 

  62. Baum L, et al. Six-month randomized, placebo-controlled, double-blind, pilot clinical trial of curcumin in patients with Alzheimer disease. J Clin Psycho­pharmacol. 2008;28:110–3.

    PubMed  Google Scholar 

  63. Hamaguchi T, Ono K, Yamada M. REVIEW: Curcumin and Alzheimer’s disease. CNS Neurosci Ther. 2010;16:285–97.

    PubMed  Google Scholar 

  64. Oster T, Pillot T. Docosahexaenoic acid and synaptic protection in Alzheimer’s disease mice. Biochim Biophys Acta. 2010;1801:791–8.

    PubMed  Google Scholar 

  65. Greiner RS, Moriguchi T, Hutton A, Slotnick BM, Salem Jr N. Rats with low levels of brain docosahexaenoic acid show impaired performance in olfactory-based and spatial learning tasks. Lipids. 1999;34(Suppl):S239–243.

    PubMed  Google Scholar 

  66. Chiu CC, et al. The effects of omega-3 fatty acids monotherapy in Alzheimer’s disease and mild ­cognitive impairment: a preliminary randomized double-blind placebo-controlled study. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32:1538–44.

    PubMed  Google Scholar 

  67. Freund-Levi Y, et al. Omega-3 fatty acid treatment in 174 patients with mild to moderate Alzheimer ­disease: OmegAD study: a randomized double-blind trial. Arch Neurol. 2006;63:1402–8.

    PubMed  Google Scholar 

  68. Scheltens P, et al. Efficacy of a medical food in mild Alzheimer’s disease: A randomized, controlled trial. Alzheimers Dement. 2010;6:1–10. e11.

    PubMed  Google Scholar 

  69. Quinn JF, et al. Docosahexaenoic acid supplementation and cognitive decline in Alzheimer disease: a randomized trial. JAMA. 2010;304:1903–11.

    PubMed  Google Scholar 

  70. Whalley LJ, et al. n-3 Fatty acid erythrocyte membrane content, APOE varepsilon4, and cognitive variation: an observational follow-up study in late adulthood. Am J Clin Nutr. 2008;87:449–54.

    PubMed  Google Scholar 

  71. Feart C, Samieri C, Barberger-Gateau P. Mediterranean diet and cognitive function in older adults. Curr Opin Clin Nutr Metab Care. 2010;13:14–8.

    PubMed  Google Scholar 

  72. Willett WC, et al. Mediterranean diet pyramid: a cultural model for healthy eating. Am J Clin Nutr. 1995;61:1402S–6S.

    PubMed  Google Scholar 

  73. Kourlaba G, Polychronopoulos E, Zampelas A, Lionis C, Panagiotakos DB. Development of a diet index for older adults and its relation to cardiovascular disease risk factors: the Elderly Dietary Index. J Am Diet Assoc. 2009;109:1022–30.

    PubMed  Google Scholar 

  74. Scarmeas N, Stern Y, Tang MX, Mayeux R, Luchsinger JA. Mediterranean diet and risk for Alzheimer’s disease. Ann Neurol. 2006;59:912–21.

    PubMed  Google Scholar 

  75. Scarmeas N, et al. Mediterranean diet and mild cognitive impairment. Arch Neurol. 2009;66:216–25.

    PubMed  Google Scholar 

  76. Feart C, et al. Adherence to a Mediterranean diet, cognitive decline, and risk of dementia. JAMA. 2009;302:638–48.

    PubMed  Google Scholar 

  77. Gu Y, Nieves JW, Stern Y, Luchsinger JA, Scarmeas N. Food combination and Alzheimer disease risk: a protective diet. Arch Neurol. 2010;67:699–706.

    PubMed  Google Scholar 

  78. Borek C. Garlic reduces dementia and heart-disease risk. J Nutr. 2006;136:810S–2S.

    PubMed  Google Scholar 

  79. Peng Q, Buz’Zard AR, Lau BH. Neuroprotective effect of garlic compounds in amyloid-beta peptide-induced apoptosis in vitro. Med Sci Monit. 2002;8:BR328–337.

    PubMed  Google Scholar 

  80. Budoff MJ, et al. Inhibiting progression of coronary calcification using Aged Garlic Extract in patients receiving statin therapy: a preliminary study. Prev Med. 2004;39:985–91.

    PubMed  Google Scholar 

  81. Gold PE, Cahill L, Wenk GL. The lowdown on Ginkgo biloba. Sci Am. 2003;288:86–91.

    PubMed  Google Scholar 

  82. Oken BS, Storzbach DM, Kaye JA. The efficacy of Ginkgo biloba on cognitive function in Alzheimer disease. Arch Neurol. 1998;55:1409–15.

    PubMed  Google Scholar 

  83. Dodge HH, Zitzelberger T, Oken BS, Howieson D, Kaye J. A randomized placebo-controlled trial of Ginkgo biloba for the prevention of cognitive decline. Neurology. 2008;70:1809–17.

    PubMed  Google Scholar 

  84. Weinmann S, Roll S, Schwarzbach C, Vauth C, Willich SN. Effects of Ginkgo biloba in dementia: systematic review and meta-analysis. BMC Geriatr. 2010;10:14.

    PubMed  Google Scholar 

  85. Peters R, Peters J, Warner J, Beckett N, Bulpitt C. Alcohol, dementia and cognitive decline in the elderly: a systematic review. Age Ageing. 2008;37:505–12.

    PubMed  Google Scholar 

  86. Orgogozo JM, et al. Wine consumption and dementia in the elderly: a prospective community study in the Bordeaux area. Rev Neurol (Paris). 1997;153:185–92.

    Google Scholar 

  87. Koppelstaetter F, et al. Caffeine and cognition in functional magnetic resonance imaging. J Alzheimers Dis. 2010;20 Suppl 1:S71–84.

    PubMed  Google Scholar 

  88. Fredholm BB, Battig K, Holmen J, Nehlig A, Zvartau EE. Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev. 1999;51:83–133.

    PubMed  Google Scholar 

  89. Dall’Igna OP, Porciuncula LO, Souza DO, Cunha RA, Lara DR. Neuroprotection by caffeine and adenosine A2A receptor blockade of beta-amyloid neurotoxicity. Br J Pharmacol. 2003;138:1207–9.

    PubMed  Google Scholar 

  90. Arendash GW, et al. Caffeine protects Alzheimer’s mice against cognitive impairment and reduces brain beta-amyloid production. Neuroscience. 2006;142:941–52.

    PubMed  Google Scholar 

  91. Cunha RA, Agostinho PM. Chronic caffeine consumption prevents memory disturbance in different animal models of memory decline. J Alzheimers Dis. 2010;20 Suppl 1:S95–116.

    PubMed  Google Scholar 

  92. Huang CC, Liang YC, Hsu KS. A role for extracellular adenosine in time-dependent reversal of long-term potentiation by low-frequency stimulation at hippocampal CA1 synapses. J Neurosci. 1999;19:9728–38.

    PubMed  Google Scholar 

  93. d’Alcantara P, Ledent C, Swillens S, Schiffmann SN. Inactivation of adenosine A2A receptor impairs long term potentiation in the accumbens nucleus without altering basal synaptic transmission. Neuroscience. 2001;107:455–64.

    PubMed  Google Scholar 

  94. Lieberman HR, Tharion WJ, Shukitt-Hale B, Speckman KL, Tulley R. Effects of caffeine, sleep loss, and stress on cognitive performance and mood during U.S. Navy SEAL training. Sea-Air-Land. Psychopharmacology (Berl). 2002;164:250–61.

    Google Scholar 

  95. Smith AP. Caffeine, cognitive failures and health in a non-working community sample. Hum Psychopharmacol. 2009;24:29–34.

    PubMed  Google Scholar 

  96. Rees K, Allen D, Lader M. The influences of age and caffeine on psychomotor and cognitive function. Psychopharmacology (Berl). 1999;145:181–8.

    Google Scholar 

  97. Jarvis MJ. Does caffeine intake enhance absolute levels of cognitive performance? Psychopharmacology (Berl). 1993;110:45–52.

    Google Scholar 

  98. Lorist MM, Snel J, Mulder G, Kok A. Aging, caffeine, and information processing: an event-related potential analysis. Electroencephalogr Clin Neurophysiol. 1995;96:453–67.

    PubMed  Google Scholar 

  99. Eskelinen MH, Ngandu T, Tuomilehto J, Soininen H, Kivipelto M. Midlife coffee and tea drinking and the risk of late-life dementia: a population-based CAIDE study. J Alzheimers Dis. 2009;16:85–91.

    PubMed  Google Scholar 

  100. Ritchie K, et al. The neuroprotective effects of caffeine: a prospective population study (the Three City Study). Neurology. 2007;69:536–45.

    PubMed  Google Scholar 

  101. van Gelder BM, et al. Coffee consumption is inversely associated with cognitive decline in elderly European men: the FINE Study. Eur J Clin Nutr. 2007;61:226–32.

    PubMed  Google Scholar 

  102. Corley J, et al. Caffeine consumption and cognitive function at age 70: the Lothian Birth Cohort 1936 study. Psychosom Med. 2010;72:206–14.

    PubMed  Google Scholar 

  103. van Boxtel MP, Schmitt JA, Bosma H, Jolles J. The effects of habitual caffeine use on cognitive change: a longitudinal perspective. Pharmacol Biochem Behav. 2003;75:921–7.

    PubMed  Google Scholar 

  104. de la Torre JC. Alzheimer disease as a vascular ­disorder: nosological evidence. Stroke. 2002;33:1152–62.

    PubMed  Google Scholar 

  105. Snowdon DA, et al. Brain infarction and the clinical expression of Alzheimer disease. The Nun Study. JAMA. 1997;277:813–7.

    PubMed  Google Scholar 

  106. Stephan BC, Brayne C. Vascular factors and prevention of dementia. Int Rev Psychiatry. 2008;20:344–56.

    PubMed  Google Scholar 

  107. Kalaria RN. Comparison between Alzheimer’s disease and vascular dementia: implications for treatment. Neurol Res. 2003;25:661–4.

    PubMed  Google Scholar 

  108. Fernando MS, Ince PG. Vascular pathologies and cognition in a population-based cohort of elderly people. J Neurol Sci. 2004;226:13–7.

    PubMed  Google Scholar 

  109. Luchsinger JA, et al. Aggregation of vascular risk factors and risk of incident Alzheimer disease. Neurology. 2005;65:545–51.

    PubMed  Google Scholar 

  110. Dartigues JF, Fabrigoule C, Barberger-Gateau P, Orgogozo JM. Memory, aging and risk factors. Lessons from clinical trials and epidemiologic studies. Therapie. 2000;55:503–5.

    PubMed  Google Scholar 

  111. Launer LJ. Regional differences in rates of dementia: MRC-CFAS. Lancet Neurol. 2005;4:694–5.

    PubMed  Google Scholar 

  112. Skoog I, et al. 15-year longitudinal study of blood pressure and dementia. Lancet. 1996;347:1141–5.

    PubMed  Google Scholar 

  113. Mielke MM, Zandi PP. Hematologic risk factors of vascular disease and their relation to dementia. Dement Geriatr Cogn Disord. 2006;21:335–52.

    PubMed  Google Scholar 

  114. Forette F, et al. Prevention of dementia in randomised double-blind placebo-controlled Systolic Hyper­tension in Europe (Syst-Eur) trial. Lancet. 1998;352: 1347–51.

    PubMed  Google Scholar 

  115. Lithell H, et al. The Study on Cognition and Prognosis in the Elderly (SCOPE): principal results of a randomized double-blind intervention trial. J Hypertens. 2003;21:875–86.

    PubMed  Google Scholar 

  116. Curb JD, et al. Effect of diuretic-based antihypertensive treatment on cardiovascular disease risk in older diabetic patients with isolated systolic hypertension. Systolic Hypertension in the Elderly Program Cooperative Research Group. JAMA. 1996;276:1886–92.

    PubMed  Google Scholar 

  117. McGuinness B, Todd S, Passmore P, Bullock R. The effects of blood pressure lowering on development of cognitive impairment and dementia in patients without apparent prior cerebrovascular disease. Cochrane Database Syst Rev. 2006;19:CD004034.

    Google Scholar 

  118. McGuinness B, Todd S, Passmore P, Bullock R. Blood pressure lowering in patients without prior cerebrovascular disease for prevention of cognitive impairment and dementia. Cochrane Database Syst Rev. 2009;2:CD004034.

    Google Scholar 

  119. McGuinness B, Craig D, Bullock R,. Passmore P. Statins for the prevention of dementia. Cochrane Database Syst Rev.2009;4:CD003160.

    Google Scholar 

  120. Zhou B, Teramukai S, Fukushima M. Prevention and treatment of dementia or Alzheimer’s disease by statins: a meta-analysis. Dement Geriatr Cogn Disord. 2007;23:194–201.

    PubMed  Google Scholar 

  121. Agostini JV, et al. Effects of statin use on muscle strength, cognition, and depressive symptoms in older adults. J Am Geriatr Soc. 2007;55:420–5.

    PubMed  Google Scholar 

  122. Cook DG, et al. Reduced hippocampal insulin-degrading enzyme in late-onset Alzheimer’s disease is associated with the apolipoprotein E-epsilon4 allele. Am J Pathol. 2003;162:313–9.

    PubMed  Google Scholar 

  123. Bruehl H, et al. Modifiers of cognitive function and brain structure in middle-aged and elderly individuals with type 2 diabetes mellitus. Brain Res. 2009;1280:186–94.

    PubMed  Google Scholar 

  124. Censori B, et al. Dementia after first stroke. Stroke. 1996;27:1205–10.

    PubMed  Google Scholar 

  125. Bourdel-Marchasson I, et al. Characteristics of undiagnosed diabetes in community-dwelling French elderly: the 3 C study. Diabetes Res Clin Pract. 2007;76:257–64.

    PubMed  Google Scholar 

  126. Arvanitakis Z, Wilson RS, Bienias JL, Evans DA, Bennett DA. Diabetes mellitus and risk of Alzheimer disease and decline in cognitive function. Arch Neurol. 2004;61:661–6.

    PubMed  Google Scholar 

  127. Allen KV, Frier BM, Strachan MW. The relationship between type 2 diabetes and cognitive dysfunction: longitudinal studies and their methodological limitations. Eur J Pharmacol. 2004;490:169–75.

    PubMed  Google Scholar 

  128. Yaffe K, et al. Diabetes, impaired fasting glucose, and development of cognitive impairment in older women. Neurology. 2004;63:658–63.

    PubMed  Google Scholar 

  129. Areosa SA, Grimley EV. Effect of the treatment of Type II diabetes mellitus on the development of cognitive impairment and dementia. Cochrane Database Syst Rev. 2002;4:D003804.

    Google Scholar 

  130. Aggarwal NT, et al. The relation of cigarette smoking to incident Alzheimer’s disease in a biracial urban community population. Neuroepidemiology. 2006;26:140–6.

    PubMed  Google Scholar 

  131. Ott A, et al. Smoking and risk of dementia and Alzheimer’s disease in a population-based cohort study: the Rotterdam Study. Lancet. 1998;351:1840–3.

    PubMed  Google Scholar 

  132. Merchant C, et al. The influence of smoking on the risk of Alzheimer’s disease. Neurology. 1999;52:1408–12.

    PubMed  Google Scholar 

  133. Juan D, et al. A 2-year follow-up study of cigarette smoking and risk of dementia. Eur J Neurol. 2004;11:277–82.

    PubMed  Google Scholar 

  134. Meyer J, Xu G, Thornby J, Chowdhury M, Quach M. Longitudinal analysis of abnormal domains comprising mild cognitive impairment (MCI) during aging. J Neurol Sci. 2002;201:19–25.

    PubMed  Google Scholar 

  135. Fratiglioni L, Wang HX. Smoking and Parkinson’s and Alzheimer’s disease: review of the epidemiological studies. Behav Brain Res. 2000;113:117–20.

    PubMed  Google Scholar 

  136. Anstey KJ, von Sanden C, Salim A, O’Kearney R. Smoking as a risk factor for dementia and cognitive decline: a meta-analysis of prospective studies. Am J Epidemiol. 2007;166:367–78.

    PubMed  Google Scholar 

  137. Dishman RK, et al. Neurobiology of exercise. Obesity (Silver Spring). 2006;14:345–56.

    Google Scholar 

  138. Rockwood K, Middleton L. Physical activity and the maintenance of cognitive function. Alzheimers Dement. 2007;3:S38–44.

    PubMed  Google Scholar 

  139. Ravaglia G, et al. Physical activity and dementia risk in the elderly: findings from a prospective Italian study. Neurology. 2008;70:1786–94.

    PubMed  Google Scholar 

  140. Lautenschlager NT, et al. Effect of physical activity on cognitive function in older adults at risk for Alzheimer disease: a randomized trial. JAMA. 2008;300:1027–37.

    PubMed  Google Scholar 

  141. Angevaren M, Aufdemkampe G, Verhaar HJ, Aleman A, Vanhees L. Physical activity and enhanced fitness to improve cognitive function in older people without known cognitive impairment. Cochrane Database Syst Rev. 2008;3:CD005381.

    Google Scholar 

  142. Matthews FE, Stephan BC, McKeith IG, Bond J, Brayne C. Two-year progression from mild cognitive impairment to dementia: to what extent do ­different definitions agree? J Am Geriatr Soc. 2008;56:1424–33.

    PubMed  Google Scholar 

  143. Kirshner HS. Vascular dementia: a review of recent evidence for prevention and treatment. Curr Neurol Neurosci Rep. 2009;9:437–42.

    PubMed  Google Scholar 

  144. Pohjasvaara T, et al. How complex interactions of ischemic brain infarcts, white matter lesions, and atrophy relate to poststroke dementia. Arch Neurol. 2000;57:1295–300.

    PubMed  Google Scholar 

  145. Tatemichi TK, et al. Risk of dementia after stroke in a hospitalized cohort: results of a longitudinal study. Neurology. 1994;44:1885–91.

    PubMed  Google Scholar 

  146. Moroney JT, et al. Risk factors for incident dementia after stroke. Role of hypoxic and ischemic disorders. Stroke. 1996;27:1283–9.

    PubMed  Google Scholar 

  147. Valenzuela MJ. Brain reserve and the prevention of dementia. Curr Opin Psychiatry. 2008;21:296–302.

    PubMed  Google Scholar 

  148. Stern Y. What is cognitive reserve? Theory and research application of the reserve concept. J Int Neuropsychol Soc. 2002;8:448–60.

    PubMed  Google Scholar 

  149. Verghese J, et al. Leisure activities and the risk of dementia in the elderly. N Engl J Med. 2003;348:2508–16.

    PubMed  Google Scholar 

  150. Fratiglioni L, Wang HX, Ericsson K, Maytan M, Winblad B. Influence of social network on occurrence of dementia: a community-based longitudinal study. Lancet. 2000;355:1315–9.

    PubMed  Google Scholar 

  151. Valenzuela MJ, Sachdev P. Brain reserve and dementia: a systematic review. Psychol Med. 2006;36: 441–54.

    PubMed  Google Scholar 

  152. Oswald WD, Rupprecht R, Gunzelmann T, Tritt K. The SIMA-project: effects of 1 year cognitive and psychomotor training on cognitive abilities of the elderly. Behav Brain Res. 1996;78:67–72.

    PubMed  Google Scholar 

  153. Ball K, et al. Effects of cognitive training interventions with older adults: a randomized controlled trial. JAMA. 2002;288:2271–81.

    PubMed  Google Scholar 

  154. Willis SL, et al. Long-term effects of cognitive ­training on everyday functional outcomes in older adults. JAMA. 2006;296:2805–14.

    PubMed  Google Scholar 

  155. Mahncke HW, et al. Memory enhancement in healthy older adults using a brain plasticity-based training program: a randomized, controlled study. Proc Natl Acad Sci USA. 2006;103:12523–8.

    PubMed  Google Scholar 

  156. Gates N, Valenzuela M. Cognitive exercise and its role in cognitive function in older adults. Curr Psychiatry Rep. 2010;12:20–7.

    PubMed  Google Scholar 

  157. Troyer AK, Murphy KJ, Anderson ND, Moscovitch M, Craik FI. Changing everyday memory behaviour in amnestic mild cognitive impairment: a randomised controlled trial. Neuropsychol Rehabil. 2008;18:65–88.

    PubMed  Google Scholar 

  158. Rozzini L, et al. Efficacy of cognitive rehabilitation in patients with mild cognitive impairment treated with cholinesterase inhibitors. Int J Geriatr Psychiatry. 2007;22:356–60.

    PubMed  Google Scholar 

  159. Saczynski JS, et al. The effect of social engagement on incident dementia: the Honolulu-Asia Aging Study. Am J Epidemiol. 2006;163:433–40.

    PubMed  Google Scholar 

  160. Ownby RL, Crocco E, Acevedo A, John V, Loewenstein D. Depression and risk for Alzheimer disease: systematic review, meta-analysis, and metaregression analysis. Arch Gen Psychiatry. 2006;63:530–8.

    PubMed  Google Scholar 

  161. Tisserand DJ, Visser PJ, van Boxtel MP, Jolles J. The relation between global and limbic brain volumes on MRI and cognitive performance in healthy individuals across the age range. Neurobiol Aging. 2000;21:569–76.

    PubMed  Google Scholar 

  162. Wolf H, et al. Structural correlates of mild cognitive impairment. Neurobiol Aging. 2004;25:913–24.

    PubMed  Google Scholar 

  163. Markou A, Duka T, Prelevic GM. Estrogens and brain function. Hormones (Athens). 2005;4:9–17.

    Google Scholar 

  164. Sherwin BB. Estrogenic effects on memory in women. Ann N Y Acad Sci. 1994;743:213–30. discussion 230–211.

    PubMed  Google Scholar 

  165. Murphy DG, et al. Sex differences in human brain morphometry and metabolism: an in vivo quantitative magnetic resonance imaging and positron emission tomography study on the effect of aging. Arch Gen Psychiatry. 1996;53:585–94.

    PubMed  Google Scholar 

  166. Caldwell BM, Watson RI. An evaluation of psychologic effects of sex hormone administration in aged women. I. Results of therapy after six months. J Gerontol. 1952;7:228–44.

    PubMed  Google Scholar 

  167. Portin R, et al. Serum estrogen level, attention, memory and other cognitive functions in middle-aged women. Climacteric. 1999;2:115–23.

    PubMed  Google Scholar 

  168. Yaffe K, Sawaya G, Lieberburg I, Grady D. Estrogen therapy in postmenopausal women: effects on ­cognitive function and dementia. JAMA. 1998;279:688–95.

    PubMed  Google Scholar 

  169. Barrett-Connor E, Laughlin GA. Endogenous and exogenous estrogen, cognitive function, and dementia in postmenopausal women: evidence from epidemiologic studies and clinical trials. Semin Reprod Med. 2009;27:275–82.

    PubMed  Google Scholar 

  170. Maki PM, Zonderman AB, Resnick SM. Enhanced verbal memory in nondemented elderly women receiving hormone-replacement therapy. Am J Psychiatry. 2001;158:227–33.

    PubMed  Google Scholar 

  171. Lokkegaard E, et al. The influence of hormone replacement therapy on the aging-related change in cognitive performance. Analysis based on a Danish cohort study. Maturitas. 2002;42:209–18.

    PubMed  Google Scholar 

  172. LeBlanc ES, Janowsky J, Chan BK, Nelson HD. Hormone replacement therapy and cognition: systematic review and meta-analysis. JAMA. 2001;285:1489–99.

    PubMed  Google Scholar 

  173. Matthews K, Cauley J, Yaffe K, Zmuda JM. Estrogen replacement therapy and cognitive decline in older community women. J Am Geriatr Soc. 1999;47:518–23.

    PubMed  Google Scholar 

  174. Zandi PP, et al. Hormone replacement therapy and incidence of Alzheimer disease in older women: the Cache County Study. JAMA. 2002;288:2123–9.

    PubMed  Google Scholar 

  175. Sorwell KG, Urbanski HF. Dehydroepiandrosterone and age-related cognitive decline. Age (Dordr). 2010;32:61–7.

    Google Scholar 

  176. Labrie F, et al. DHEA and the intracrine formation of androgens and estrogens in peripheral target ­tissues: its role during aging. Steroids. 1998;63:322–8.

    PubMed  Google Scholar 

  177. Karishma KK, Herbert J. Dehydroepiandrosterone (DHEA) stimulates neurogenesis in the hippocampus of the rat, promotes survival of newly formed neurons and prevents corticosterone-induced suppression. Eur J Neurosci. 2002;16:445–53.

    PubMed  Google Scholar 

  178. Wolf OT, Kudielka BM, Hellhammer DH, Hellhammer J, Kirschbaum C. Opposing effects of DHEA replacement in elderly subjects on declarative memory and attention after exposure to a laboratory stressor. Psychoneuroendocrinology. 1998;23:617–29.

    PubMed  Google Scholar 

  179. Giurgea C. The “nootropic” approach to the pharmacology of the integrative activity of the brain. Cond Reflex. 1973;8:108–15.

    PubMed  Google Scholar 

  180. Malykh AG, Sadaie MR. Piracetam and piracetam-like drugs: from basic science to novel clinical applications to CNS disorders. Drugs. 2010;70:287–312.

    PubMed  Google Scholar 

  181. Waegemans T, et al. Clinical efficacy of piracetam in cognitive impairment: a meta-analysis. Dement Geriatr Cogn Disord. 2002;13:217–24.

    PubMed  Google Scholar 

  182. Flicker L, Grimley Evans J. Piracetam for dementia or cognitive impairment. Cochrane Database Syst Rev. 2000;2:CD001011.

    Google Scholar 

  183. Palmer AM. Cholinergic therapies for Alzheimer’s disease: progress and prospects. Curr Opin Investig Drugs. 2003;4:820–5.

    PubMed  Google Scholar 

  184. Rees TM, Brimijoin S. The role of acetylcholinesterase in the pathogenesis of Alzheimer’s disease. Drugs Today (Barc). 2003;39:75–83.

    Google Scholar 

  185. Hansen RA, et al. Efficacy and safety of donepezil, galantamine, and rivastigmine for the treatment of Alzheimer’s disease: a systematic review and meta-analysis. Clin Interv Aging. 2008;3:211–25.

    PubMed  Google Scholar 

  186. Sugimoto H, Ogura H, Arai Y, Limura Y, Yamanishi Y. Research and development of donepezil ­hydrochloride, a new type of acetylcholinesterase inhibitor. Jpn J Pharmacol. 2002;89:7–20.

    PubMed  Google Scholar 

  187. Marco L, do Carmo Carreiras M. Galanthamine, a natural product for the treatment of Alzheimer’s disease. Recent Pat CNS Drug Discov. 2006;1:105–11.

    PubMed  Google Scholar 

  188. Kurz A, Farlow M, Lefevre G. Pharmacokinetics of a novel transdermal rivastigmine patch for the treatment of Alzheimer’s disease: a review. Int J Clin Pract. 2009;63:799–805.

    PubMed  Google Scholar 

  189. Raina P, et al. Effectiveness of cholinesterase inhibitors and memantine for treating dementia: evidence review for a clinical practice guideline. Ann Intern Med. 2008;148:379–97.

    PubMed  Google Scholar 

  190. Thomas SJ, Grossberg GT. Memantine: a review of studies into its safety and efficacy in treating Alzheimer’s disease and other dementias. Clin Interv Aging. 2009;4:367–77.

    PubMed  Google Scholar 

  191. Winblad B, Poritis N. Memantine in severe dementia: results of the 9 M-Best Study (Benefit and efficacy in severely demented patients during treatment with memantine). Int J Geriatr Psychiatry. 1999;14:135–46.

    PubMed  Google Scholar 

  192. Reisberg B, et al. Memantine in moderate-to-severe Alzheimer’s disease. N Engl J Med. 2003;348:1333–41.

    PubMed  Google Scholar 

  193. Tariot PN, et al. Memantine treatment in patients with moderate to severe Alzheimer disease already receiving donepezil: a randomized controlled trial. JAMA. 2004;291:317–24.

    PubMed  Google Scholar 

  194. Wilcock G, Mobius HJ, Stoffler A. A double-blind, placebo-controlled multicentre study of memantine in mild to moderate vascular dementia (MMM500). Int Clin Psychopharmacol. 2002;17:297–305.

    PubMed  Google Scholar 

  195. Lemere CA. Developing novel immunogens for a safe and effective Alzheimer’s disease vaccine. Prog Brain Res. 2009;175:83–93.

    PubMed  Google Scholar 

  196. Dodel R, et al. Intravenous immunoglobulins as a treatment for Alzheimer’s disease: rationale and current evidence. Drugs. 2010;70:513–28.

    PubMed  Google Scholar 

  197. Relkin NR, et al. 18-Month study of intravenous immunoglobulin for treatment of mild Alzheimer disease. Neurobiol Aging. 2009;30:1728–36.

    PubMed  Google Scholar 

  198. Schenk D. Amyloid-beta immunotherapy for Alzheimer’s disease: the end of the beginning. Nat Rev Neurosci. 2002;3:824–8.

    PubMed  Google Scholar 

  199. Fu HJ, Liu B, Frost JL, Lemere CA. Amyloid-beta immunotherapy for Alzheimer’s disease. CNS Neurol Disord Drug Targets. 2010;9:197–206.

    PubMed  Google Scholar 

  200. Salloway S, et al. A phase 2 multiple ascending dose trial of bapineuzumab in mild to moderate Alzheimer disease. Neurology. 2009;73:2061–70.

    PubMed  Google Scholar 

  201. Portelius E, et al. A novel Abeta isoform pattern in CSF reflects gamma-secretase inhibition in Alzheimer disease. Alzheimers Res Ther. 2010;2:7.

    PubMed  Google Scholar 

  202. Siemers ER, et al. Safety, tolerability, and effects on plasma and cerebrospinal fluid amyloid-beta after inhibition of gamma-secretase. Clin Neuropharmacol. 2007;30:317–25.

    PubMed  Google Scholar 

  203. Fleisher AS, et al. Phase 2 safety trial targeting amyloid beta production with a gamma-secretase inhibitor in Alzheimer disease. Arch Neurol. 2008;65:1031–8.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard S. Isaacson M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gutierrez, J., Isaacson, R.S. (2013). Prevention of Cognitive Decline. In: Ravdin, L., Katzen, H. (eds) Handbook on the Neuropsychology of Aging and Dementia. Clinical Handbooks in Neuropsychology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3106-0_12

Download citation

Publish with us

Policies and ethics