Skip to main content

Planetary Ices Attenuation Properties

  • Chapter
  • First Online:
The Science of Solar System Ices

Abstract

In this chapter, we review the topic of energy dissipation in the context of icy satellites experiencing tidal forcing. We describe the physics of mechanical dissipation, also known as attenuation, in polycrystalline ice and discuss the history of laboratory methods used to measure and understand it. Because many factors – such as microstructure, composition and defect state – can influence rheological behavior, we review what is known about the mechanisms responsible for attenuation in ice and what can be inferred from the properties of rocks, metals and ceramics. Since attenuation measured in the laboratory must be carefully scaled to geologic time and to planetary conditions in order to provide realistic extrapolation, we discuss various mechanical models that have been used, with varying degrees of success, to describe attenuation as a function of forcing frequency and temperature. We review the literature in which these models have been used to describe dissipation in the moons of Jupiter and Saturn. Finally, we address gaps in our present knowledge of planetary ice attenuation and provide suggestions for future inquiry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that the term “anelasticity” is also found as a synonym of “inelasticity”, i.e., without distinction of the mechanism driving the attenuation. In the following, we refer to anelasticity only as the delayed elasticity.

References

  • Ahmad S, Whitworth RW (1988) Dislocation motion in ice: a study by synchrotron X-ray topography. Philos Mag A 57(5):749–766

    ADS  Google Scholar 

  • Aksnes K, Franklin FA (2001) Secular acceleration of Io derived from mutual satellite events. Astron J 122:2734–2739. doi:10.1086/323708

    ADS  Google Scholar 

  • Andrade END (1910) On the viscous flow in metals and allied phenomena. Proc R Soc Lond Ser-A 84:1–12

    ADS  Google Scholar 

  • Ashby MF, Verrall RA (1973) Diffusion-accommodated flow and superplasticity. Acta Metall Mater 21:149–163. doi:10.1016/0001-6160(73)90057-6

    Google Scholar 

  • Bagdassarov NS (1999) Viscoelastic behavior of mica-based glass-ceramic aggregate. Phys Chem Miner 26:513–520

    ADS  Google Scholar 

  • Baker I (1997) Observation of dislocations in ice. J Phys Chem B 101:6158–6162

    Google Scholar 

  • Barnhoorn A, Jackson I, Fitz Gerald JD, Aizawa Y (2007) Suppression of elastically accommodated grain-boundary sliding in high-purity MgO. J Eur Ceram Soc 27:4697–4703

    Google Scholar 

  • Barr AC, Milkovich SM (2008) Ice grain size and the rheology of the Martian polar deposits. Icarus 194:513–518. doi:10.1016/j.icarus.2007.11.018

    ADS  Google Scholar 

  • Barr AC, Pappalardo RT (2005) Onset of convection in the icy Galilean satellites: influence of rheology. J Geophys Res 110:E12005. doi:10.1029/2004JE002371

    ADS  Google Scholar 

  • Beeman ML, Kohlstedt DL (1993) Deformation of fine-grained aggregates of olivine plus melt at high temperatures and pressures. J Geophys Res 98(4):6443–6452

    ADS  Google Scholar 

  • Bjerrum N (1952) Structure and properties of ice I. Science 115(2989):385–390

    ADS  Google Scholar 

  • Brill R, Camp PR (1961) Properties of ice. Research report no 68 of the SIPRE snow, ice, and permafrost research establishment. US Army Terrestrial Science Center, Hanover

    Google Scholar 

  • Buechner PM, Stone D, Lakes RS (1999) Viscoelastic behavior of superplastic 37 wt% Pb 63 wt% Sn over a wide range of frequency and time. Scr Mater 41(5):561–567

    Google Scholar 

  • Burdett CF, Queen TJ (1970) The role of dislocations in damping. Metall Rev 143(1):65–78

    Google Scholar 

  • Caputo M (1966) Linear models of dissipation whose Q is almost frequency independent. Ann Geophys 19:383–393

    Google Scholar 

  • Caputo M (1967) Linear models of dissipation whose Q is almost frequency independent – II. Geophys J R Astron Soc 13:529–539

    Google Scholar 

  • Caputo M, Mainardi F (1979) A new dissipation model based on memory mechanism. Pure Appl Geophys 91(1):134–147

    ADS  Google Scholar 

  • Castelnau O, Duval P, Montagnat M, Brenner R (2008) Elastoviscoplastic micromechanical modeling of the transient creep of ice. J Geophys Res 113:B11203. doi:10.1029/2008JB005751

    ADS  Google Scholar 

  • Castillo JC, Mocquet A, Sotin C (2000) Détecter la présence d’un océan dans Europe à partir de mesures altimétriques et gravimétriques. CR Acad Sci IIA-Earth Planet Sci 330:659–666

    Google Scholar 

  • Castillo-Rogez J, Matson DL, Sotin C, Johnson TV, Lunine JI, Thomas PC (2007) Iapetus’ geophysics: rotation rate, shape, and equatorial ridge. Icarus. doi:10.1016/j.icarus.2007.02.018

  • Castillo-Rogez JC, Durham WB et al (2009) Laboratory studies in support of planetary geophysics. White paper to the decadal survey solar system 2012

    Google Scholar 

  • Castillo-Rogez JC, Efroimsky M, Lainey V (2011) The tidal history of Iapetus. Dissipative spin dynamics in the light of a refined geophysical model. J Geophys Res 116:E09008. doi:10.1029/2010JE003664

    Google Scholar 

  • Cochran ES, Vidale JE, Tanaka S (2004) Earth tides can trigger shallow thrust fault earthquakes. Science 306:1164–1166. doi:10.1126/science.1103961

    ADS  Google Scholar 

  • Cole DM (1995) A model for the anelastic straining of saline ice subjected to cyclic loading. Philos Mag A 72(1):231–248

    ADS  Google Scholar 

  • Cole DM (2001) The microstructure of ice and its influence on mechanical properties. Eng Fract Mech 68:1797–1822

    Google Scholar 

  • Cole DM, Durell GD (1995) The cyclic loading of saline ice. Philos Mag A 72(1):209–229

    ADS  Google Scholar 

  • Cole DM, Durell GD (2001) A dislocation-based analysis of strain-history effects in ice. Philos Mag A 81(7):1849–1872

    ADS  Google Scholar 

  • Cole DM, Johnson RA, Durell GD (1998) Cyclic loading and creep response of aligned first-year sea ice. J Geophys Res 103(C10):21, 751-21,758

    Google Scholar 

  • Cooper RF (2002) Seismic wave attenuation: energy dissipation in viscoelastic crystalline solids. In: Karato S, Wenk HR (eds) Plastic deformation of minerals and rocks, vol 51, Reviews in mineralogy and geochemistry. Mineralogical Society of America, Washington, DC, pp 253–290

    Google Scholar 

  • Cooper RF, Kohlstedt DL (1984) Rheology and structure of olivine-basalt partial melts. J Geophys Res 91(B9):9315–9324

    ADS  Google Scholar 

  • Coyner KB, Randolph RJ (1988) Frequency-dependent attenuation in rocks. Technical report A672502

    Google Scholar 

  • Dash JG, Rempel AW, Wettlaufer JS (2006) The physics of premelted ice and its geophysical consequences. Rev Mod Phys 78:695

    ADS  Google Scholar 

  • Durham WB, Stern LA (2001) Rheological properties of water ice – applications to satellites of the outer planets. Annu Rev Earth Planet Sci 29:295–330

    ADS  Google Scholar 

  • Durham WB, Pathare AV, Stern LA, Lendferink HJ (2009) Mobility of icy sand packs, with application to Martian permafrost. Geophys Res Lett 36:L23203

    ADS  Google Scholar 

  • Duval P (1976) Temporary or permanent creep laws of polycrystalline ice for different stress conditions. Ann Geophys 32:335–350

    Google Scholar 

  • Duval P (1978) Anelastic behaviour of polycrystalline ice. J Glaciol 21(85):621–628

    ADS  Google Scholar 

  • Duval P, Ashby MF, Anderman I (1983) Rate-controlling processes in the creep of polycrystalline ice. J Phys Chem 87:4066–4074

    Google Scholar 

  • Efroimsky M, Lainey V (2007) On the theory of bodily tides. In: Belbruno E (ed) New trends in astrodynamics and applications III. American Institute of Physics, Melville, pp 131–138

    Google Scholar 

  • Efroimsky M, Williams JG (2009) Tidal torques. A critical review of some techniques. Celest Mech Dynam Astr 104:257–289, arXiv:0803.3299 1230

    MathSciNet  ADS  MATH  Google Scholar 

  • Ellsworth K, Schubert G (1983) Saturn’s icy satellites: thermal and structural models. Icarus 54:490–510

    ADS  Google Scholar 

  • Faul UH, Jackson I (2005) The seismological signature of temperature and grain size variations in the upper mantle. Earth Planet Sci Lett 234:119–134

    ADS  Google Scholar 

  • Faul UH, FitzGerald JD, Jackson I (2004) Shear wave attenuation and dispersion in melt-bearing olivine polycrystals: 1. Microstructural interpretation and seismological implications. J Geophys Res 109:B06202

    Google Scholar 

  • Findley WN, Lai JS, Onaran K (1976) Creep and relaxation of nonlinear viscoelastic materials. Dover, New York

    MATH  Google Scholar 

  • Fountaine FR, Ildefonse B, Bagdassarov NS (2005) Temperature dependence of shear wave attenuation in partially molten gabbronorite at seismic frequencies. Geophys J Int 163:1025–1038

    ADS  Google Scholar 

  • Friedson AJ, Stevenson DJ (1983) Viscosity of rock-ice mixtures and applications to the evolution of icy satellites. Icarus 56(1):1–14

    ADS  Google Scholar 

  • Fukuda A, Hondoh T, Higashi A (1987) Dislocation mechanisms of plastic deformation in ice. J Phys C 48(3):163–173

    Google Scholar 

  • Goldreich P, Peale S (1966) Spin-orbit coupling in the Solar system. Astron J 71:425–438

    ADS  Google Scholar 

  • Goldreich P, Sari R (2009) Tidal evolution of rubble piles. Astrophys J 691:54

    ADS  Google Scholar 

  • Goldreich P, Soter S (1966) Q in the Solar system. Icarus 5:375–389

    ADS  Google Scholar 

  • Goldsby DL (2007) Diffusion creep of ice: constraints from laboratory creep experiments. LPS 38:2186

    ADS  Google Scholar 

  • Goldsby DL, Kohlstedt DL (2001) Superplastic deformation of ice: experimental observations. J Geophys Res-Solid Earth 106:B11017–B11030. doi:10.1029/2000JB900336

    ADS  Google Scholar 

  • Goodman DJ, Frost HJ, Ashby MF (1977) The effect of impurities on the creep of ice Ih and its illustration by the construction of deformation maps, isotopes and impurities in snow and ice. Int Assoc Sci Hydrol, Int Union Geod Geophys 118:29–33, IASH Publication

    Google Scholar 

  • Goodman DJ, Frost HJ, Ashby MF (1981) The plasticity of polycrystalline ice. Philos Mag A 43:665–695

    ADS  Google Scholar 

  • Granato AV, Lücke K (1956) Theory of mechanical damping due to dislocations. J Appl Phys 27:582

    ADS  Google Scholar 

  • Greenberg R, Geissler P, Hoppa G, Tufts BR, Durda DD, Pappalardo R, Head JW, Greeley R, Sullivan R, Carr MH (1998) Tectonic processes on Europa: tidal stresses, mechanical response, and visible features. Icarus 135:64–78

    ADS  Google Scholar 

  • Gribb TT, Cooper RF (1998) Low-frequency shear attenuation in polycrystalline olivine: grain boundary diffusion and the physical significance of the Andrade model for viscoelastic rheology. J Geophys Res 103:B11, 27, 267–27, 279

    Google Scholar 

  • Gribb TT, Cooper RF (2000) The effect of an equilibrated melt phase on the shear creep and attenuation behavior of polycrystalline olivine. Geophys Res Lett 27(15):2341–2344

    ADS  Google Scholar 

  • Han DH, Liu J, Batzle M (2007) Shear velocity as the function of frequency in heavy oils, Soc. Exploration Geophys. Expanded Abstracts 26(1) doi:http://dx.doi.org/10.1190/1.2792824

    Google Scholar 

  • Hessinger J, White BE Jr, Pohl RO (1996) Elastic properties of amorphous and crystalline ice films. Planet Space Sci 44:937–944. doi:10.1016/0032-0633(95)00112-3

    ADS  Google Scholar 

  • Hiki Y, Tamura J (1983) Internal friction in ice crystals. J Phys Chem 87:4054–4059. doi:10.1021/j100244a011

    Google Scholar 

  • Hurford TA, Helfenstein P, Hoppa GV, Greenberg R, Bills BG (2007) Eruptions arising from tidally controlled periodic openings of rifts on Enceladus. Nature 447:292–294. doi:10.1038/nature05821

    ADS  Google Scholar 

  • Hussmann H, Spohn T (2004) Thermal-orbital evolution of Io and Europa. Icarus 171:391–410. doi:10.1016/j.icarus.2004.05.020

    ADS  Google Scholar 

  • Jackson I (1993) Progress in the experimental study of seismic wave attenuation. Annu Rev Earth Planet Sci 21:375–406

    Google Scholar 

  • Jackson I (2007) Physical origins of anelasticity and attenuation in rock. In: Schubert G (ed) Treatise of geophysics, vol 2, Mineral physics: properties of rocks and minerals. Elsevier, Amsterdam, pp 496–522, Chapter 2.17

    Google Scholar 

  • Jackson I, Fitz Gerald JD, Faul UH, Tan BH (2002) Grain-size-sensitive wave attenuation in polycrystalline olivine. J Geophys Res 107(B12):2360. doi:1029/2001JB001225

    Google Scholar 

  • Jackson I, Faul UH, Fitz Gerald JD, Tan BH (2004) Shear wave attenuation and dispersion in melt-bearing olivine polycrystals: specimen fabrication and mechanical testing. J Geophys Res 109:B06201

    Google Scholar 

  • Jackson I, Faul UH, Fitz Gerald JD, Morris SJS (2006) Contrasting viscoelastic behavior of melt-free and melt-bearing olivine: implications for the nature of grain-boundary sliding. Mat Sci Eng A 442:170–174

    Google Scholar 

  • James MR, Bagdassarov N, Müller K, Pinkerton H (2004) Viscoelastic behaviour of basalt lavas. J Volcanol Geotherm Res 132:99–113

    ADS  Google Scholar 

  • Jellinek HHG, Brill R (1956) Viscoelastic properties of ice. J Appl Phys 27:1198–1209

    ADS  Google Scholar 

  • Johari GP, Pascheto W, Jones SJ (1995) Anelasticity and grain boundary relaxation of ice at high temperatures. J Phys D-Appl Phys 28:112–119

    ADS  Google Scholar 

  • Karato S (1998) A dislocation model of seismic wave attenuation and micro-creep in the Earth: Harold Jeffreys and the rheology of the solid earth. Pure Appl Geophys 153:239–256

    ADS  Google Scholar 

  • Karato S (2008) Deformation of earth materials. Cambridge University Press, Cambridge, UK

    MATH  Google Scholar 

  • Karato S, Spetzler HA (1990) Defect microdynamics in minerals and solid-state mechanisms of seismic wave attenuation and velocity dispersion in the mantle. Rev Geophys 28(4):399–421

    ADS  Google Scholar 

  • Kê TS (1946) Experimental evidence of the viscous behavior of grain boundaries in metals. Phys Rev 71(8):533–546

    ADS  Google Scholar 

  • Kê TS (1947) Experimental evidence of the viscous behavior of grain boundaries in metals. Phys Rev 71(8):533–546

    ADS  Google Scholar 

  • Kê TS (1999) Fifty-year study of grain boundary relaxation. Metall Mater Trans A 30A:2267–2295

    Google Scholar 

  • Knopoff L (1964) Q. Rev Geophys 4:625–660

    ADS  Google Scholar 

  • Kuroiwa, D (1964) Internal friction of ice. I; The internal friction of H2O and D20 ice, and the influence of chemical impurities on mechanical damping. Contributions from the Institute of Low Temperature Science A18:1–37

    Google Scholar 

  • Kuster GT, Toksöz MN (1974) Velocity and attenuation of seismic waves in two-phase media Part 1. Theoretical formulations. Geophysics 39:587

    ADS  Google Scholar 

  • Ladanyi B, Saint-Pierre R (1978) Evaluation of creep properties of sea ice by means of a borehole dilatometer. In: Proceedings of the international association of hydraulic research symposium on ice problems, Part I, Lulea, pp 97–115

    Google Scholar 

  • Lakes RS (1999) Viscoelastic solids. CRC Press, Boca Raton

    Google Scholar 

  • Lakes RS (2004) Viscoelastic measurement techniques. Rev Sci Instrum 75(4):797–809

    ADS  Google Scholar 

  • Langleben MP, Pounder ER (1963) Elastic parameters of sea ice, in ice and snow: properties, processes and applications. MIT Press, Cambridge, pp 69–78

    Google Scholar 

  • Lee LC, Morris SJS (2010) Anelasticity and grain boundary sliding. Proc R Soc A. doi:rspa.2009.0624v1

  • Louchet F (2004) Dislocations and plasticity in ice. CR Phys 5:687–698

    ADS  Google Scholar 

  • Mader HM (1992) Observations of the water-vein system in polycrystalline ice. J Glaciol 38(130):333–347

    Google Scholar 

  • Margot JL, Nolan MC, Benner LAM, Ostro SJ, Jurgens RF, Giorgini JD, Slade MA, Campbell DB (2002) Binary asteroids in the near-earth object population. Sci Exp. doi:10.1126/science.1072094

  • Matson DL, Castillo-Rogez JC, McKinnon WB, Sotin C, Schubert G (2009) The thermal evolution and internal structure of Saturn’s midsize icy satellites. In: Brown R, Dougherty M, Esposito L, Krimigis T, Waite H (eds) Saturn after Cassini-Huygens, Springer, Chapter 19, doi:10.1007/978-1-4020-9217-6_18

  • Mavko GM (1980) Velocity and attenuation in partially melted rocks. J Geophys Res 85:5173–5189

    ADS  Google Scholar 

  • Mavko G, Mukerji T, Dvorkin J (1998) The rock physics handbook: tools for seismic analysis of porous media. Cambridge University Press, Cambridge

    Google Scholar 

  • Maxwell JC (1867) On the dynamical theory of gases. Philos Trans 157:49–83

    Google Scholar 

  • McCarthy C, Goldsby DL, Cooper RF, Durham WB, Kirby SH (2007) Steady-state creep response of ice-I/magnesium sulfate hydrate. Workshop on ices, oceans, and fire: satellites of the outer Solar system, Boulder, 13–15 Aug 2007, pp 88–89

    Google Scholar 

  • McCarthy C, Berglund SR, Cooper RF, Goldsby DL (2008) Influence of strain history and strain amplitude on the internal friction of ice-I and two-phase ice/salt hydrate aggregates, AGU fall meeting, American Geophysical Union

    Google Scholar 

  • McCarthy C, Cooper RF, Goldsby DL, Durham WB, Kirby S (2011a) Transient and steady-state creep responses of ice-I and magnesium sulfate hydrate eutectic aggregates. J Geophys Res. doi:10.1029/2010JE003689

  • McCarthy C, Takei Y, Hiraga T (2011b) Experimental study of attenuation and dispersion over a broad frequency range: 2. The universal scaling of polycrystalline materials. J Geophys Res 116:1–18

    Google Scholar 

  • McMillan KM, Lakes RS, Cooper RF, Lee T (2003) The viscoelastic behavior of β-ln3Sn and the nature of the high-temperature background. J Mater Sci 38:2747–2754

    Google Scholar 

  • Meyer J, Wisdom J (2007) Tidal heating in Enceladus. Icarus 188:535–539

    ADS  Google Scholar 

  • Meyer J, Wisdom J (2008) Episodic volcanism on Enceladus: Application of the Ojakangas-Stevenson model. Icarus 198:178–180

    ADS  Google Scholar 

  • Mindlin RD (1954) Mechanics of granular media, Office of naval research project NR-064-388, Technical report no. 14, CU.-IA-i-i-ONR-266(09) –CE

    Google Scholar 

  • Minster JB, Anderson DL (1981) A model of dislocation-controlled rheology for the mantle. Philos Trans Roy Soc Lond 299(1449):319–356

    ADS  Google Scholar 

  • Montagnat M, Duval P (2004) Dislocations in ice and deformation mechanisms: from single crystals to polar ice. Defects Diffus Forum 229:43–54

    Google Scholar 

  • Murray CD, Dermott SF (2000) Solar system dynamics. Cambridge University Press, Cambridge, UK, p 592

    Google Scholar 

  • Nakamura T, Abe O (1980) A grain-boundary relaxation peak of antarctic mizuho ice observed in internal friction measurements at low frequency. J Fac Sci, Hokkaido University. Series 7, Geophysics 6(1):165–171

    Google Scholar 

  • Niblett DH, Zein M (1980) The Bordoni peak in copper single crystals at megahertz frequencies. J Phys F Met Phys 10:773–780

    ADS  Google Scholar 

  • Nimmo F (2008) Tidal dissipation and faulting, or a tale of Q and f. The science of Solar system ices workshop, Oxnard, 5–8 May 2008

    Google Scholar 

  • Nimmo F, Spencer JR, Pappalardo RT, Mullen ME (2007) Shear heating as the origin of the plumes and heat flux on Enceladus. Nature 447:289–291

    ADS  Google Scholar 

  • Nowick AS, Berry BS (1972) Anelastic relaxation in crystalline solids. Academic, New York

    Google Scholar 

  • Nye JF, Frank FC (1973) Hydrology of the intergranular veins in a temperate glacier In: Symposium on the hydrology of glaciers, vol 95. Cambridge (1969), International Association of Scientific Hydrology Publication, pp 157–161

    Google Scholar 

  • O’Connell RJ, Budiansky B (1977) Viscoelastic properties of fluid-saturated craced solids. J Geophys Res 82:5719–5735

    ADS  Google Scholar 

  • O’Connell RJ, Budiansky B (1978) Measures of dissipation in viscoelastic media. Geophys Res Lett 5(1):5–8

    ADS  Google Scholar 

  • Oguro M (2001) Anelastic behavior of H2O ice single crystals doped with KOH. J Phys Chem Solids 62:897–902. doi:10.1016/S0022-3697(00)00247-X

    ADS  Google Scholar 

  • Parameswaran VR (1987) Orientation dependence of elastic constants for ice. Def Sci J 37:367–375

    Google Scholar 

  • Pauling L (1935) The structure and entropy of ice and other crystals with some randomness of atomic structure. J Am Chem Soc 57:2680–2684

    Google Scholar 

  • Peale SJ (1986) Orbital resonances, unusual configurations and exotic rotation states among planetary satellites. In: Burns JA, Matthews MS (eds) Satellites. University of Arizona Press, Tucson

    Google Scholar 

  • Peale SJ, Cassen P, Reynolds RT (1979) Melting of Io by tidal dissipation. Science 203:892–894

    ADS  Google Scholar 

  • Peale SJ, Cassen P, Reynolds RT (1980) Tidal dissipation, orbital evolution, and the nature of Saturn’s inner satellites. Icarus 43:65–72

    ADS  Google Scholar 

  • Perez J, Maï C, Tatibouët J, Vassoille R (1986) Dynamic behaviour of dislocations in HF-doped ice Ih. J Glaciol 25(91):133–149

    ADS  Google Scholar 

  • Petrenko VF, Whitworth RW (1999) Physics of ice. Oxford University Press, Oxford, UK

    Google Scholar 

  • Pilbeam CC, Vaisnys JR (1973) Acoustic velocities and energy losses in gransular aggregates. J Geophys Res 78(5):810–824

    ADS  Google Scholar 

  • Raj R (1975) Transient behavior of diffusion-induced creep and creep rupture. Metall Trans 6A:1499–1509

    Google Scholar 

  • Raj R, Ashby MF (1971) On grain boundary sliding and diffusion creep. Metall Trans 2:1113–1127

    Google Scholar 

  • Rambaux N, Castillo-Rogez JC, Williams JG, Karatekin O (2010) The librational response of Enceladus. Geophys Res Lett 37:L04202. doi:10.1029/2009GL041465

    Google Scholar 

  • Rappaport NJ, Iess L, Wahr J, Lunine JI, Armstrong JW, Asmar SW, Tortora P, di Benedetto M, Racioppa P (2008) Can Cassini detect a subsurface ocean in Titan from gravity measurements? Icarus 194:711–720. doi:10.1016/j.icarus.2007.11.024

    ADS  Google Scholar 

  • Roberts JH, Nimmo F (2008) Tidal heating and the long-term stability of a subsurface ocean on Enceladus. Icarus 193:675–689

    ADS  Google Scholar 

  • Robuchon G, Choblet G, Tobie G, Cadek O, Sotin C, Grasset O (2010) Coupling of thermal evolution and despinning of early Iapetus. Icarus 207:959–971. doi:10.1016/j.icarus.2009.12.002

    ADS  Google Scholar 

  • Romanowicz B (1994) Anelastic tomography: a new perspective on upper-mantle thermal structure. Earth Planet Sci Lett 128:113–121

    ADS  Google Scholar 

  • Rothrock DA (1975) Mechanical behavior of pack ice (invited review paper). Annu Rev Earth Planet Sci 3:317–342

    ADS  Google Scholar 

  • Schulson EM, Duval P (2009) Creep and fracture of ice. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Snoek J (1939) Letter to the editor. Physica 6(7–12):591–592. doi:10.1016/S0031-8914(39)90061-3

    ADS  Google Scholar 

  • Song M (2008) An evaluation of the rate-controlling flow process in Newtonian creep of polycrystalline ice. Mater Sci Eng A Struct Mater Propert Microstr Process 486:27–31

    Google Scholar 

  • Song M, Cole DM, Baker I (2006) Investigation of Newtonian creep in polycrystalline ice. Philos Mag Lett 86:763–771

    ADS  Google Scholar 

  • Sotin C, Head JW, Tobie G (2002) Europa: tidal heating of upwelling thermal plumes and the origin of lenticulae and chaos melting. Geophys Res Lett 29:74-1. doi:10.1029/2001GL013844, CiteID 1233

    Google Scholar 

  • Spencer JR, Pearl JC, Segura M, Flasar FM, Mamoutkine A, Romani P, Buratti BJ, Hendrix AR, Spilker LJ, Lopes RMC (2006) Cassini encounters enceladus: background and the discovery of a South Polar hot spot. Science 311:1401–1405

    ADS  Google Scholar 

  • Spetzler H, Anderson DL (1968) The effect of temperature and partial melting on velocity and attenuation in a simple binary system. J Geophys Res 73:6051–6060

    ADS  Google Scholar 

  • Staroszczyk R, Morland L (1999) Orthotropic viscous model for ice, Lecture notes in physics, technological, environmental, and climatological impact. In: Proceedings of the 6th international symposium, Darmstadt, 22–25 Aug 1999, pp 249–258, doi:10.1007/BFb0104166

  • Sundberg M, Cooper RF (2010) A composite viscoelastic model for incorporating grain boundary sliding and transient diffusion creep; correlating creep and attenuation responses for materials with a fine grain size. Philos Mag 90(20):2817–2840

    ADS  Google Scholar 

  • Tamura J, Kogure Y, Hiki Y (1986) Ultrasonic attenuation and dislocation damping in crystals of ice. J Phys Soc Jpn 55(10):3445–3461

    ADS  Google Scholar 

  • Tan BH, Jackson I, Fitz Gerald JD (2001) High-temperature viscoelasticity of fine-grained polycrystalline olivine. Phys Chem Miner 28:641–664

    ADS  Google Scholar 

  • Tatibouet J, Perez J, Vassoille R (1981) Very low frequencies internal friction measurements of ice Ih. J Phys Colloq C5(42):541–546

    Google Scholar 

  • Tatibouet J, Perez J, Vassoille R (1983) Study of lattice defects in ice Ih by very-low-frequency internal friction measurements. J Phys Chem 87:4050–4054

    Google Scholar 

  • Tatibouet J, Perez J, Vassoille R (1986) High-temperature internal friction and dislocations in ice Ih. J Phys 47:51–60

    Google Scholar 

  • Tatibouet J, Perez J, Vassoille R (1987) Study of grain boundaries in ice by internal friction measurement. J Phys 48(suppl 3):C1-197–C1-203

    Google Scholar 

  • Taupin V, Richeton T, Chevy J, Fressengeas C, Weiss J, Louchet F, Carmen-Miguel M (2008) Rearrangement of dislocation structures in the aging of ice single crystals. Acta Mater 56:1555–1563

    Google Scholar 

  • Tobie G, Choblet G, Sotin C (2003) Tidally heated convection: constraints on Europa’s ice shell thickness. J Geophys Res 108:5124. doi:10.1029/2003JE002099

    Google Scholar 

  • Tobie G, Mocquet A, Sotin C (2005) Tidal dissipation within large icy satellites: applications to Europa and Titan. Icarus 177:534–549

    ADS  Google Scholar 

  • Tobie G, Cadek O, Sotin C (2008) Solid tidal friction above a liquid water reservoir as the origin of the south pole hotspot on Enceladus. Icarus 196:642–652

    ADS  Google Scholar 

  • Vassoille R, Mai C, Perez J (1978) Inelastic behavior of ice Ih single crystals in the low-frequency range due to dislocations. J Glaciol 21(85):375–384

    Google Scholar 

  • Waff HS, Bulau JR (1979) Equilibrium fluid distribution in an ultramafic partial melt under hydrostatic stress conditions. J Geophys Res 84:6109–6114

    ADS  Google Scholar 

  • Webb WW, Hayes CE (1967) Dislocations and plastic deformation of ice. Philos Mag 16:909–925

    ADS  Google Scholar 

  • Webb S, Jackson I (2003) Anelasticity and microcreep in polycrystalline MgO at high temperature: an exploratory study. Phys Chem Miner 30:157–166. doi:10.1007/s00269-003-0299-1

    ADS  Google Scholar 

  • Weertman J (1955) Internal friction of metal single crystals. J Appl Phys 26(2):202–210

    ADS  Google Scholar 

  • Weertman J (1983) Creep deformation of ice. Annu Rev Earth Planet Sci 11:215–240

    ADS  Google Scholar 

  • Weertman J, Weertman JR (1975) High temperature creep of rock and mantle viscosity. Annu Rev Earth Planet Sci 3:293–315

    ADS  Google Scholar 

  • Whitworth RW (1980) The influence of the choice of glide plane on the theory of the velocity of dislocations in ice. Philos Mag A 41(4):521–528

    ADS  Google Scholar 

  • Wieczerkowski K, Wolf D (1998) Modelling of stresses in the Fennoscandian lithosphere induced by Pleistocene glaciations. Tectonophysics 294(3–4):291–303

    Google Scholar 

  • Williams JG, Boggs DH, Yoder CF, Ratcliff JT, Dickey JO (2001) Lunar rotational dissipation in solid body and molten core. J Geophys Res-Planet 106:27933–27968

    ADS  Google Scholar 

  • Winkler KW, Murphy WF III (1995) Acoustic velocity and attenuation in porous rocks. In: Ahrens TJ (ed) Rock physics and phase relations: A handbook of physical constants. American Geophysical Union, Washington, DC

    Google Scholar 

  • Woirgard J, Sarrazin Y, Chaumet H (1977) Apparatus for the measurement of internal friction as a function of frequency between 10−5 and 10 Hz. Rev Sci Instrum 48(10):1322–1325

    ADS  Google Scholar 

  • Wu TT (1966) The effect of inclusion shape on the elastic moduli of a two-phase material. Int J Solids Struct 2:1–8

    Google Scholar 

  • Yoder CF (1982) Tidal rigidity of Phobos. Icarus 49:327–346

    ADS  Google Scholar 

  • Zener C (1947) Theory of the elasticity of polycrystals with viscous grain boundaries. Phys Rev 60:906–908

    ADS  Google Scholar 

  • Zener C (1948) Elasticity and anelasticity of metals. University of Chicago Press, Chicago

    Google Scholar 

  • Zhang K, Nimmo F (2009) Recent orbital evolution and the internal structures of Enceladus and Dione. Icarus 204:597–609. doi:10.1016/j.icarus.2009.07.007

    ADS  Google Scholar 

  • Zschau J (1978) Tidal friction in the solid earth: loading tides versus body tides. In: Brosche P, Sundermann J (eds) Tidal friction and the Earth’s rotation. Springer, New-York, pp 62–94

    Google Scholar 

Download references

Acknowledgements

We would like to thank several people for discussions that contributed to this chapter, including Reid Cooper and Yasuko Takei. The authors would also like to thank Shun Karato and Michael Efroimsky for their thorough reviews. Part of this review chapter was prepared at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. All rights reserved. Government sponsorship acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine McCarthy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

McCarthy, C., Castillo-Rogez, J.C. (2013). Planetary Ices Attenuation Properties. In: Gudipati, M., Castillo-Rogez, J. (eds) The Science of Solar System Ices. Astrophysics and Space Science Library, vol 356. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3076-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3076-6_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3075-9

  • Online ISBN: 978-1-4614-3076-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics