Frictional Sliding of Cold Ice: A Fundamental Process Underlying Tectonic Activity Within Icy Satellites

Chapter
Part of the Astrophysics and Space Science Library book series (ASSL, volume 356)

Abstract

Frictional sliding is a fundamental process underlying tectonic activity within the crusts of Enceladus, Europa and other icy satellites. Provided that the coefficient of friction is not too high, sliding can account for the generation of active plumes within Enceladus "tiger stripes" and for the development of certain fracture features on Europa. This paper reviews current knowledge of frictional sliding in water ice Ih, and then raises a number of questions relevant to tectonic modeling.

Keywords

Hydrated Brittle Hexagonal MgSO4 Clathrate 

References

  1. Barnes P, Tabor D, Walker JCS et al (1971) The friction and creep of polycrystalline ice. Proc R Soc Lond 1557:127–155ADSGoogle Scholar
  2. Beeman M, Durham WB, Kirby SH (1988) Friction of ice. J Geophys Res 93:7625–7633ADSCrossRefGoogle Scholar
  3. Billings SE, Kattenhorn SA (2005) The great thickness debate: ice shell models for Europa and comparisons with estimates based on flexure at ridgesm. Icarus 177:397–412Google Scholar
  4. Bowden FP, Hughes TP (1939) The mechanism of sliding on ice and snow. Proc R Soc Lond A 172:280–298ADSCrossRefGoogle Scholar
  5. Byerlee J (1978) Friction of rocks. Pure Appl Geophys 116:615–626ADSCrossRefGoogle Scholar
  6. Casassa G, Narita H, Maeno N (1991) Shear cell experiments of snow and ice friction. J Appl Phys 69:3745–3756ADSCrossRefGoogle Scholar
  7. Dalton JB, Prieto-Ballesteros O, Kargel JS et al (2005) Spectral comparison of heavily hydrated salts with disrupted terrains on Europa. Icarus 177:472–490ADSCrossRefGoogle Scholar
  8. Dombard AJ, McKinnon WB (2006) Elastoviscoplastic relaxation of impact crater topography with application to Ganymede and Callisto. J Geophys Res. doi: 10.1029/2005JE002445
  9. Durham WB, Stern LA (2001) Rheological properties of water ice – applications to satellites of the outer planets. Annu Rev Earth Plant Sci 29:295–330ADSCrossRefGoogle Scholar
  10. Evans DCB, Nye JF, Cheeseman KJ (1976) Kinetic friction of ice. Proc R Soc Lond A 347:493ADSCrossRefGoogle Scholar
  11. Fortt AL, Schulson EM (2007) The resistance to sliding along coulombic shear faults in ice. Acta Mater 55:2253–2264CrossRefGoogle Scholar
  12. Greenberg R, Geissler P, Hoppa G et al (1998) Tectonic processes on europa: tidal stresses, mechanical response, and visible features. Icarus 135:64–78ADSCrossRefGoogle Scholar
  13. Hansen CJ, Esposito L, Stewart AIF, Colwell J, Hendrix A, Pryor W, Shemansky D, West R (2006) Enceladus' water vapour plume. Science 311:1422–1425ADSCrossRefGoogle Scholar
  14. Hibler WD, Schulson EM (2000) On modeling the anisotropic failure and flow of flawed sea ice. J Geophys Res 105:17105–17120ADSCrossRefGoogle Scholar
  15. Hopkins MA, Thorndike AS (2006) Floe formation in Arctic sea ice. J Geophys Res 111:1–9, Art. No. C11S23 Sep 13 2006CrossRefGoogle Scholar
  16. Hoppa G, Tufts BR, Greenberg R et al (1999) Strike-slip faults on europa: global shear patterns driven by tidal stress. Icarus 141:287–298ADSCrossRefGoogle Scholar
  17. Hoppa G, Greenberg R, Tufts BR, Geissler P, Phillips C, Milazzo M (2000) Distribution of strike-slip faults on Europa. J Geophys Res 105:22617–22627ADSCrossRefGoogle Scholar
  18. Hurford TA, Helfenstein P, Hoppa GV et al (2007) Eruptions arising from tidally controlled periodic openings of rifts on Enceladus. Nature 447:292–294ADSCrossRefGoogle Scholar
  19. Jaeger JC, Cook NGW (1979) Fundamentals of rock mechanics. Chapman and Hall, LondonCrossRefGoogle Scholar
  20. Jones DE (1989) Ice friction: effects of temperature, sliding velocity and ice type. M.Eng. thesis, Thayer School of Engineering, Dartmouth CollegeGoogle Scholar
  21. Kanazawa S, Arakawa M, Maeno N (2003) Measurements of ice-ice friction coefficients at low sliding velocities. Seppyo 65:389–397Google Scholar
  22. Kargel JS (1991) Brine volcanism and the interior structures of asteroids and icy satellites. Icarus 94:368–390ADSCrossRefGoogle Scholar
  23. Kattenhorn SA (2004) Strike-slip fault evolution on Europa: evidence from tailcrack geometries. Icarus 172:582–602ADSCrossRefGoogle Scholar
  24. Kennedy FE (1991) Encyclopedia of physics. VCH, New YorkGoogle Scholar
  25. Kennedy FE, Schulson EM, Jones D (2000) Friction of ice on ice at low sliding velocities. Philos Mag A 80:1093–1110ADSCrossRefGoogle Scholar
  26. Kieffer SW, Lu X, Bethke CM et al (2006) A clathrate reservoir hypothesis for Enceladus’ south polar plume. Science 314:1764–1766ADSCrossRefGoogle Scholar
  27. Maeno N, Arakawa M, Yasutome A et al (2003) Ice-ice friction measurements, and water lubrication and adhesion-shear mechanisms. Can J Phys 81:241–249ADSCrossRefGoogle Scholar
  28. Montagnat M, Schulson EM (2003) On friction and surface cracking during sliding. J Glaciol 49:391–396CrossRefGoogle Scholar
  29. Nimmo F, Gaidos E (2002) Strike-slip motion and double ridge formation on Europa. J Geophys Res. doi: 10.1029/2000JE001476
  30. Nimmo F, Spencer JR, Pappalardo RT et al (2007) Shear heating as the origin of the plumes and heat flux on Enceladus. Nature 447:289–291ADSCrossRefGoogle Scholar
  31. Oksanen P, Keinonen J (1982) The mechanism of friction of ice. Wear 78:315–324CrossRefGoogle Scholar
  32. Persson BNJ (1998) Sliding friction: physical principles and applications. Springer, New YorkGoogle Scholar
  33. Petrenko VF, Whitworth RW (1999) Physics of ice. Oxford University Press, New YorkGoogle Scholar
  34. Porco CC, Helfenstein P, Thomas PC (2006) Cassini observes the active south pole of Enceladus. Science 311:1393–1401ADSCrossRefGoogle Scholar
  35. Prockter LM, Antman AM, Pappalardo RT et al (1999) Europa: stratigraphy and geological history of the anti-Jovian region from Galileo E14 solid-state imaging data. J Geophys Res Planet 104:16531–16540ADSCrossRefGoogle Scholar
  36. Prockter LM, Nimmo F, Pappalardo RT (2005) A shear heating origin for ridges on triton. Geophys Res Lett. doi: 10.1029/2005GL022832
  37. Rist MA (1997) High stress ice fracture and friction. J Phys Chem B 101:6263–6266CrossRefGoogle Scholar
  38. Rist MA, Jones SJ, Slade TD (1994) Microcracking and shear fracture in ice. Ann Glaciol 19:131–137ADSGoogle Scholar
  39. Sammonds P, Hatton D, Feltham D et al (2005) Experimental study of sliding friction and stick–slip on faults in floating ice sheets. In: Dempsey JP (ed) Proceedings of the 18th international conference on POAC’05, PotsdamGoogle Scholar
  40. Schenk PM, McKinnon WB (1989) Fault offsets and lateral crustal movement on Europa for a mobile ice shell. Icarus 79:75–100ADSCrossRefGoogle Scholar
  41. Schreyer HL, Sulsky DL, Munday LB et al (2006) Elastic-decohesive constitutive model for sea ice. J Geophys Res 111:C11S26CrossRefGoogle Scholar
  42. Schulson EM (1990) The brittle compressive fracture of ice. Acta Metall Mater 38:1963–1976CrossRefGoogle Scholar
  43. Schulson EM (2001) Brittle failure of ice. Eng Fract Mech 68:1839–1887CrossRefGoogle Scholar
  44. Schulson EM (2002a) On the origin of a wedge-crack within the icy crust of Europa. J Geophys Res. doi: 10.1029/2001JE001586
  45. Schulson EM (2002b) Compressive shear faulting in ice: Plastic vs. Coulombic faults. Acta Mater 50:3415–3424CrossRefGoogle Scholar
  46. Schulson EM (2004) Compressive shear faults within the arctic sea ice cover on scales large and small. J Geophys Res 109:1–23CrossRefGoogle Scholar
  47. Schulson EM, Hibler WD (1991) The fracture of ice on scales large and small: arctic leads and wing cracks. J Glaciol 37:319–323Google Scholar
  48. Schulson EM, Duval P (2009) Creep and fracture of ice. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  49. Schulson EM, Fortt A, Iliescu D et al (2006a) On the role of frictional sliding in the compressive fracture of ice and granite: terminal vs. post-terminal failure. Acta Mater 54:3923–3932CrossRefGoogle Scholar
  50. Schulson EM, Fortt A, Iliescu D et al (2006b) Failure envelope of first-year arctic sea ice: the role of friction in compressive fracture. J Geophys Res. doi: 10.1029/2005JC003234186
  51. Smith BA (1989) Voyager-2 at neptune – imaging science results. Science 246:1422–1449ADSCrossRefGoogle Scholar
  52. Smith-Konter B, Pappalardo RT (2008) Tidally driven stress accumulation and shear failure of Enceladus’s tiger stripes. Icarus 198:435–451ADSCrossRefGoogle Scholar
  53. Spaun NA, Pappalardo RT, Head JW et al (2001) Characteristics of the trailing equatorial quadrant of europa from Galileo imaging data: evidence for shear failure in forming lineae. In: Lunar and planet science conference, CD-ROM:1228, HoustonGoogle Scholar
  54. Spencer J, Pearl J, Segura M et al (2006) Cassini encounters Enceladus: background and the discovery of a south polar hot spot. Science 311:1401–1405ADSCrossRefGoogle Scholar
  55. Tufts BR, Greenberg R, Hoppa G et al (1999) Astypalaea linea: a large-scale strike-slip fault on Europa. Icarus 141:53–64ADSCrossRefGoogle Scholar
  56. Wahr J, Selvans ZA, Mullen ME et al (2008) Modeling stresses on satellites due to nonsynchronous rotation and orbital eccentricity using gravitational potential theory. Icarus. doi: 10.1016/j.icarus.2008.1011.1002
  57. Weiss J, Schulson EM, Stern HL (2007) Sea ice rheology in-situ, satellite and laboratory observations: fracture and friction. Earth Planet Sci Lett 255:1–8ADSCrossRefGoogle Scholar
  58. Wilchinsky AV, Feltham DL (2004) A continuum anisotropic model of sea-ice dynamics. Proc R Soc Lond A 460:2105–1240MathSciNetADSMATHCrossRefGoogle Scholar
  59. Williams JA (1994) Engineering tribology. Oxford University Press, OxfordGoogle Scholar
  60. Yasutome A, Arakawa M, Maeno N (1999) Measurements of ice-ice friction coefficients. Seppyo 61:437–443Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Thayer School of EngineeringDartmouth CollegeHanoverUSA

Personalised recommendations