Skip to main content

Frictional Sliding of Cold Ice: A Fundamental Process Underlying Tectonic Activity Within Icy Satellites

  • Chapter
  • First Online:
The Science of Solar System Ices

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 356))

  • 1919 Accesses

Abstract

Frictional sliding is a fundamental process underlying tectonic activity within the crusts of Enceladus, Europa and other icy satellites. Provided that the coefficient of friction is not too high, sliding can account for the generation of active plumes within Enceladus "tiger stripes" and for the development of certain fracture features on Europa. This paper reviews current knowledge of frictional sliding in water ice Ih, and then raises a number of questions relevant to tectonic modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    When loaded to terminal failure under triaxial confinement, ice exhibits two kinds of shear fault (Schulson 2002b). Under low confinement, faults are comprised of bands of damage oriented at an angle θ to the maximum (i.e., most compressive) principal stress σ 1 , where \( \theta = \frac{1}{2}\arctan\, \frac{1}{\mu } \) and where μ is the internal friction coefficient whose value is similar to the dynamic coefficient of friction (Schulson et al. 2006a, b); typically, θ = 25–30°. Such faults are termed Coulombic faults. Under high confinement, frictional sliding is suppressed. Faulting still occurs, but the faults are now comprised of narrow bands of plastically deformed/recrystallized material oriented along planes of maximum applied shear stress; i.e., at ~ 45° to σ 1 . Such faults are termed plastic faults .

References

  • Barnes P, Tabor D, Walker JCS et al (1971) The friction and creep of polycrystalline ice. Proc R Soc Lond 1557:127–155

    ADS  Google Scholar 

  • Beeman M, Durham WB, Kirby SH (1988) Friction of ice. J Geophys Res 93:7625–7633

    Article  ADS  Google Scholar 

  • Billings SE, Kattenhorn SA (2005) The great thickness debate: ice shell models for Europa and comparisons with estimates based on flexure at ridgesm. Icarus 177:397–412

    Google Scholar 

  • Bowden FP, Hughes TP (1939) The mechanism of sliding on ice and snow. Proc R Soc Lond A 172:280–298

    Article  ADS  Google Scholar 

  • Byerlee J (1978) Friction of rocks. Pure Appl Geophys 116:615–626

    Article  ADS  Google Scholar 

  • Casassa G, Narita H, Maeno N (1991) Shear cell experiments of snow and ice friction. J Appl Phys 69:3745–3756

    Article  ADS  Google Scholar 

  • Dalton JB, Prieto-Ballesteros O, Kargel JS et al (2005) Spectral comparison of heavily hydrated salts with disrupted terrains on Europa. Icarus 177:472–490

    Article  ADS  Google Scholar 

  • Dombard AJ, McKinnon WB (2006) Elastoviscoplastic relaxation of impact crater topography with application to Ganymede and Callisto. J Geophys Res. doi:10.1029/2005JE002445

  • Durham WB, Stern LA (2001) Rheological properties of water ice – applications to satellites of the outer planets. Annu Rev Earth Plant Sci 29:295–330

    Article  ADS  Google Scholar 

  • Evans DCB, Nye JF, Cheeseman KJ (1976) Kinetic friction of ice. Proc R Soc Lond A 347:493

    Article  ADS  Google Scholar 

  • Fortt AL, Schulson EM (2007) The resistance to sliding along coulombic shear faults in ice. Acta Mater 55:2253–2264

    Article  Google Scholar 

  • Greenberg R, Geissler P, Hoppa G et al (1998) Tectonic processes on europa: tidal stresses, mechanical response, and visible features. Icarus 135:64–78

    Article  ADS  Google Scholar 

  • Hansen CJ, Esposito L, Stewart AIF, Colwell J, Hendrix A, Pryor W, Shemansky D, West R (2006) Enceladus' water vapour plume. Science 311:1422–1425

    Article  ADS  Google Scholar 

  • Hibler WD, Schulson EM (2000) On modeling the anisotropic failure and flow of flawed sea ice. J Geophys Res 105:17105–17120

    Article  ADS  Google Scholar 

  • Hopkins MA, Thorndike AS (2006) Floe formation in Arctic sea ice. J Geophys Res 111:1–9, Art. No. C11S23 Sep 13 2006

    Article  Google Scholar 

  • Hoppa G, Tufts BR, Greenberg R et al (1999) Strike-slip faults on europa: global shear patterns driven by tidal stress. Icarus 141:287–298

    Article  ADS  Google Scholar 

  • Hoppa G, Greenberg R, Tufts BR, Geissler P, Phillips C, Milazzo M (2000) Distribution of strike-slip faults on Europa. J Geophys Res 105:22617–22627

    Article  ADS  Google Scholar 

  • Hurford TA, Helfenstein P, Hoppa GV et al (2007) Eruptions arising from tidally controlled periodic openings of rifts on Enceladus. Nature 447:292–294

    Article  ADS  Google Scholar 

  • Jaeger JC, Cook NGW (1979) Fundamentals of rock mechanics. Chapman and Hall, London

    Book  Google Scholar 

  • Jones DE (1989) Ice friction: effects of temperature, sliding velocity and ice type. M.Eng. thesis, Thayer School of Engineering, Dartmouth College

    Google Scholar 

  • Kanazawa S, Arakawa M, Maeno N (2003) Measurements of ice-ice friction coefficients at low sliding velocities. Seppyo 65:389–397

    Google Scholar 

  • Kargel JS (1991) Brine volcanism and the interior structures of asteroids and icy satellites. Icarus 94:368–390

    Article  ADS  Google Scholar 

  • Kattenhorn SA (2004) Strike-slip fault evolution on Europa: evidence from tailcrack geometries. Icarus 172:582–602

    Article  ADS  Google Scholar 

  • Kennedy FE (1991) Encyclopedia of physics. VCH, New York

    Google Scholar 

  • Kennedy FE, Schulson EM, Jones D (2000) Friction of ice on ice at low sliding velocities. Philos Mag A 80:1093–1110

    Article  ADS  Google Scholar 

  • Kieffer SW, Lu X, Bethke CM et al (2006) A clathrate reservoir hypothesis for Enceladus’ south polar plume. Science 314:1764–1766

    Article  ADS  Google Scholar 

  • Maeno N, Arakawa M, Yasutome A et al (2003) Ice-ice friction measurements, and water lubrication and adhesion-shear mechanisms. Can J Phys 81:241–249

    Article  ADS  Google Scholar 

  • Montagnat M, Schulson EM (2003) On friction and surface cracking during sliding. J Glaciol 49:391–396

    Article  Google Scholar 

  • Nimmo F, Gaidos E (2002) Strike-slip motion and double ridge formation on Europa. J Geophys Res. doi:10.1029/2000JE001476

  • Nimmo F, Spencer JR, Pappalardo RT et al (2007) Shear heating as the origin of the plumes and heat flux on Enceladus. Nature 447:289–291

    Article  ADS  Google Scholar 

  • Oksanen P, Keinonen J (1982) The mechanism of friction of ice. Wear 78:315–324

    Article  Google Scholar 

  • Persson BNJ (1998) Sliding friction: physical principles and applications. Springer, New York

    Google Scholar 

  • Petrenko VF, Whitworth RW (1999) Physics of ice. Oxford University Press, New York

    Google Scholar 

  • Porco CC, Helfenstein P, Thomas PC (2006) Cassini observes the active south pole of Enceladus. Science 311:1393–1401

    Article  ADS  Google Scholar 

  • Prockter LM, Antman AM, Pappalardo RT et al (1999) Europa: stratigraphy and geological history of the anti-Jovian region from Galileo E14 solid-state imaging data. J Geophys Res Planet 104:16531–16540

    Article  ADS  Google Scholar 

  • Prockter LM, Nimmo F, Pappalardo RT (2005) A shear heating origin for ridges on triton. Geophys Res Lett. doi:10.1029/2005GL022832

    Google Scholar 

  • Rist MA (1997) High stress ice fracture and friction. J Phys Chem B 101:6263–6266

    Article  Google Scholar 

  • Rist MA, Jones SJ, Slade TD (1994) Microcracking and shear fracture in ice. Ann Glaciol 19:131–137

    ADS  Google Scholar 

  • Sammonds P, Hatton D, Feltham D et al (2005) Experimental study of sliding friction and stick–slip on faults in floating ice sheets. In: Dempsey JP (ed) Proceedings of the 18th international conference on POAC’05, Potsdam

    Google Scholar 

  • Schenk PM, McKinnon WB (1989) Fault offsets and lateral crustal movement on Europa for a mobile ice shell. Icarus 79:75–100

    Article  ADS  Google Scholar 

  • Schreyer HL, Sulsky DL, Munday LB et al (2006) Elastic-decohesive constitutive model for sea ice. J Geophys Res 111:C11S26

    Article  Google Scholar 

  • Schulson EM (1990) The brittle compressive fracture of ice. Acta Metall Mater 38:1963–1976

    Article  Google Scholar 

  • Schulson EM (2001) Brittle failure of ice. Eng Fract Mech 68:1839–1887

    Article  Google Scholar 

  • Schulson EM (2002a) On the origin of a wedge-crack within the icy crust of Europa. J Geophys Res. doi:10.1029/2001JE001586

    Google Scholar 

  • Schulson EM (2002b) Compressive shear faulting in ice: Plastic vs. Coulombic faults. Acta Mater 50:3415–3424

    Article  Google Scholar 

  • Schulson EM (2004) Compressive shear faults within the arctic sea ice cover on scales large and small. J Geophys Res 109:1–23

    Article  Google Scholar 

  • Schulson EM, Hibler WD (1991) The fracture of ice on scales large and small: arctic leads and wing cracks. J Glaciol 37:319–323

    Google Scholar 

  • Schulson EM, Duval P (2009) Creep and fracture of ice. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Schulson EM, Fortt A, Iliescu D et al (2006a) On the role of frictional sliding in the compressive fracture of ice and granite: terminal vs. post-terminal failure. Acta Mater 54:3923–3932

    Article  Google Scholar 

  • Schulson EM, Fortt A, Iliescu D et al (2006b) Failure envelope of first-year arctic sea ice: the role of friction in compressive fracture. J Geophys Res. doi:10.1029/2005JC003234186

  • Smith BA (1989) Voyager-2 at neptune – imaging science results. Science 246:1422–1449

    Article  ADS  Google Scholar 

  • Smith-Konter B, Pappalardo RT (2008) Tidally driven stress accumulation and shear failure of Enceladus’s tiger stripes. Icarus 198:435–451

    Article  ADS  Google Scholar 

  • Spaun NA, Pappalardo RT, Head JW et al (2001) Characteristics of the trailing equatorial quadrant of europa from Galileo imaging data: evidence for shear failure in forming lineae. In: Lunar and planet science conference, CD-ROM:1228, Houston

    Google Scholar 

  • Spencer J, Pearl J, Segura M et al (2006) Cassini encounters Enceladus: background and the discovery of a south polar hot spot. Science 311:1401–1405

    Article  ADS  Google Scholar 

  • Tufts BR, Greenberg R, Hoppa G et al (1999) Astypalaea linea: a large-scale strike-slip fault on Europa. Icarus 141:53–64

    Article  ADS  Google Scholar 

  • Wahr J, Selvans ZA, Mullen ME et al (2008) Modeling stresses on satellites due to nonsynchronous rotation and orbital eccentricity using gravitational potential theory. Icarus. doi:10.1016/j.icarus.2008.1011.1002

  • Weiss J, Schulson EM, Stern HL (2007) Sea ice rheology in-situ, satellite and laboratory observations: fracture and friction. Earth Planet Sci Lett 255:1–8

    Article  ADS  Google Scholar 

  • Wilchinsky AV, Feltham DL (2004) A continuum anisotropic model of sea-ice dynamics. Proc R Soc Lond A 460:2105–1240

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Williams JA (1994) Engineering tribology. Oxford University Press, Oxford

    Google Scholar 

  • Yasutome A, Arakawa M, Maeno N (1999) Measurements of ice-ice friction coefficients. Seppyo 61:437–443

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erland M. Schulson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schulson, E.M. (2013). Frictional Sliding of Cold Ice: A Fundamental Process Underlying Tectonic Activity Within Icy Satellites. In: Gudipati, M., Castillo-Rogez, J. (eds) The Science of Solar System Ices. Astrophysics and Space Science Library, vol 356. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3076-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3076-6_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3075-9

  • Online ISBN: 978-1-4614-3076-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics