Skip to main content

The Ices on Transneptunian Objects and Centaurs

  • Chapter
  • First Online:
Book cover The Science of Solar System Ices

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 356))

Abstract

Transneptunian objects (TNOs) and Centaurs are small bodies orbiting the Sun in the cold outer regions of the Solar System. TNOs include Pluto and its satellite Charon, and Neptune’s large satellite Triton is thought to have been captured from the TNO population. Visible and near-infrared spectroscopy of a number of the brightest of these bodies shows surface ices of H2O, CH4, N2, CH3OH, C2H6, CO, CO2, NH3•nH2O, and possibly HCN, in various combinations; water ice is by far the most common. Silicate minerals and solid complex carbonaceous materials are thought to occur on these bodies, but their spectral signatures have not yet been positively identified. The pronounced red color of several TNOs and Centaurs is presumed to result from the presence of carbonaceous materials. In all, the TNOs and Centaurs are thought to be primitive bodies in the sense that they have undergone relatively little modification by heating and by the space environment since their condensation in the volatile-rich outer regions of the solar nebula. As such, they hold the potential to yield important information on the chemical and physical conditions of the solar nebula. Continued and expanded studies of TNOs and Centaurs require additional basic laboratory data on the physical and the optical properties of the ices already identified and those candidate materials that have not yet been confirmed. New sky surveys and large telescopes projected for operation in the near future will reveal many more objects in the outer Solar System for detailed study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Some TNOs may have originated in cold regions of the solar nebula and incorporated pre-solar materials, others may have incorporated grains which were reprocessed close to the sun (such as crystalline silicates detected in comets), due to a huge radial mixing during the early stages of the solar nebula and before the accretion of the planetesimals.

  2. 2.

    So far, it has been difficult to detect silicate features in the VNIR spectra of TNOs and Centaurs, although their presence is deduced mainly thanks to our knowledge of the composition of cometary dust and “cometary” (anhydrous “chondritic porous”) interplanetary dust particles. Such difficulty may be either due to the opacity of associated carbonaceous species and sulfides in this spectral region, or to the lack of Fe2+ (which may be partly responsible for the visible absorption) in the silicates.

  3. 3.

    Note that a layer of at least 200 μm of non-absorbing very fine grained ice is required to mask the presence of refractory materials in the visible range (e.g. Gil-Hutton et al. 2009).

  4. 4.

    The position of the termination shock may have changed during Solar System history, in response to changes in the local interstellar environment of the Sun and solar activity. Occasionally, it may have moved further inward producing higher irradiation doses for the classical TNOs.

  5. 5.

    For Haumea, using the Stefan-Boltzmann law, Merlin et al. (2007) estimated a mean surface temperature of about 30 K, and using the peak position of the 1.65-μm band they estimated an upper limit of 40 K.

  6. 6.

    This value can be obtained using the estimates of the dose by Strazzulla et al. (2003). According to several authors (Strazzulla et al. 1992; Moore and Hudson 1992; Leto and Baratta 2003; Mastrapa and Brown 2006), 10 eV/molecule is the dose at which the saturation level of amorphous ice is reached after irradiation. The error bar on this estimate can reasonably be of 20%, so that the amorphization timescale should be considered to be in the range 0.8–1.2 Gyr.

References

  • Abernathy MR, Tegler SC, Grundy WM et al (2009) Digging into the surface of the icy dwarf planet Eris. Icarus 199:520

    ADS  Google Scholar 

  • Agnor CB, Hamilton DP (2006) Neptune’s capture of its moon Triton in a binary-planet gravitational encounter. Nature 441:192

    ADS  Google Scholar 

  • Baragiola RA, Fama MA, Loeffler MJ et al (2012) Radiation effects in water ice in the outer solar system. (this volume)

    Google Scholar 

  • Baratta GA, Palumbo ME (1998) Infrared optical constants of CO and CO2 thin icy films. J Opt Soc Am A 15:3076

    ADS  Google Scholar 

  • Barucci MA, Peixinho N (2006) Trans-neptunian objects’ surface properties. In: Lazzaro D et al (eds) Asteroids, Comets, and Meteors: Proceedings of the 229th symposium International Astronomical Union, August 2005, Cambridge University Press, Buzios, p 171

    Google Scholar 

  • Barucci MA, Cruikshank DP, Dotto E et al (2005a) Is Sedna another Triton? Astron Astrophys 439:L1

    ADS  Google Scholar 

  • Barucci MA, Belskaya IN, Fulchignoni M et al (2005b) Taxonomy of Centaurs and trans-neptunian objects. Astron J 130:1291

    ADS  Google Scholar 

  • Barucci MA, Merlin F, Dotto E et al (2006) TNO surface ices. Observations of the TNO 55638, (2002 VE95) and analysis of the population’s spectral properties. Astron Astrophys 455:725

    ADS  Google Scholar 

  • Barucci MA, Brown ME, Emery JP et al (2008a) Composition and surface properties of transneptunian objects and Centaurs. In: Barucci MA et al (eds) The solar system beyond Neptune. The University of Arizona Press, Tucson, p 143

    Google Scholar 

  • Barucci MA, Merlin F, Guilbert A et al (2008b) Surface composition and temperature of the TNO Orcus. Astron Astrophys 479:L13

    ADS  Google Scholar 

  • Barkume KM, Brown ME, Schaller EL (2006) Water ice on the satellite of Kuiper belt object 2003 EL61. Astrophys J Lett 640:L87

    ADS  Google Scholar 

  • Barkume KM, Brown ME, Schaller EL (2008) Near-infrared spectra of Centaurs and Kuiper belt objects. Astron J 135:55

    ADS  Google Scholar 

  • Benecchi SD, Noll KS, Grundy WM et al (2009) The correlated colors of transneptunian binaries. Icarus 200:292

    ADS  Google Scholar 

  • Bernstein MP, Sandford SA (1999) Variations in the strength of the infrared forbidden 2328.2 cm−1 fundamental of solid N2 in binary mixtures. Spectrochim Acta A 55(12):2455

    ADS  Google Scholar 

  • Bernstein MP, Cruikshank DP, Sandford SA (2005) Near-infrared laboratory spectra of solid H2O/CO2 and CH3OH/CO2 ice mixtures. Icarus 179:527

    ADS  Google Scholar 

  • Brown ME (2008) The largest Kuiper belt objects. In: Barucci MA et al (eds) The solar system beyond Neptune. The University of Arizona Press, Tucson, p 335

    Google Scholar 

  • Brown ME, Calvin WM (2000) Evidence for crystalline water and ammonia ices on Pluto’s satellite Charon. Science 287:107

    ADS  Google Scholar 

  • Brown RH, Cruikshank DP, Tokunaga AT et al (1988) Search for volatiles on icy satellites. I – Europa. Icarus 74:262

    ADS  Google Scholar 

  • Brown ME, Barkume KM, Blake GA et al (2007) Methane and ethane on the bright Kuiper belt object 2005 FY9. Astron J 133:284

    ADS  Google Scholar 

  • Brown ME, Trujillo CA, Rabinowitz DL (2005) Discovery of a planetary-sized object in the scattered Kuiper belt. Astrophys J Lett 635:L97

    ADS  Google Scholar 

  • Brown ME, Schaller EL, Roe HG et al (2006) Direct measurement of the size of 2003 UB313 from the Hubble Space Telescope. Astrophys J Lett 643:L61

    ADS  Google Scholar 

  • Brown RH, Cruikshank DP, Pendleton Y (1999) Water ice on Kuiper belt object 1996 TO66. Astron J Lett 519:L101

    ADS  Google Scholar 

  • Brucker MJ, Grundy WM, Stansberry JA et al (2009) High albedos of low inclination classical Kuiper belt objects. Icarus 201:284

    ADS  Google Scholar 

  • Brunetto R, Roush TL (2008) Impact of irradiated methane ice crusts on compositional interpretations of TNOs. Astron Astrophys 481:879

    ADS  Google Scholar 

  • Brunetto R, Strazzulla G (2005) Elastic collisions in ion irradiation experiments: a mechanism for space weathering of silicates. Icarus 179:265

    ADS  Google Scholar 

  • Brunetto R, Baratta GA, Domingo M et al (2005) Reflectance and transmittance spectra (2.2 2.4 μm) of ion irradiated frozen methanol. Icarus 175:226

    ADS  Google Scholar 

  • Brunetto R, Barucci MA, Dotto E et al (2006) Ion irradiation of frozen methanol, methane, and benzene: linking to the colors of Centaurs and trans-neptunian objects. Astrophys J 644:646

    ADS  Google Scholar 

  • Brunetto R, Roush TL, Marra AC et al (2007) Optical characterization of laser ablated silicates. Icarus 191:381

    ADS  Google Scholar 

  • Brunetto R, Caniglia G, Baratta GA et al (2008) Integrated near-infrared band strengths of solid CH4 and its mixtures with N2. Astrophys J 686:1480

    ADS  Google Scholar 

  • Burgdorf MJ, Cruikshank DP, Dalle Ore CM et al (2010) A tentative identification of HCN ice on Triton. Astrophys J Lett 718:L53

    ADS  Google Scholar 

  • Clark RN (1981) The spectral reflectance of water-mineral mixtures at low temperatures. J Geophys Res 86:3074

    ADS  Google Scholar 

  • Clark RN, Curchin JM, Hoefen TM et al (2009) Reflectance spectroscopy of organic compounds: 1. Alkanes. J Geophys Res 114(E3):E03001

    Google Scholar 

  • Clark RN, Carlson R, Grundy W et al (2012) Observed ices in the solar system. (this volume)

    Google Scholar 

  • Cook JC, Desch SJ, Roush TL et al (2007) Near-infrared spectroscopy of Charon: possible evidence for cryovolcanism on Kuiper belt objects. Astrophys J 663:1406

    ADS  Google Scholar 

  • Cruikshank DP, Silvaggio PM (1979) Triton: a satellite with an atmosphere. Astrophys J 233:1016

    ADS  Google Scholar 

  • Cruikshank DP, Meyer AW, Brown RH et al (2010) Carbon dioxide on the satellites of Saturn: results from the Cassini VIMS investigation and revisions to the VIMS wavelength scale. Icarus 206:561

    ADS  Google Scholar 

  • Cruikshank DP, Pilcher CB, Morrison D (1976) Pluto – evidence for methane frost. Science 194:835

    ADS  Google Scholar 

  • Cruikshank DP, Roush TL, Bartholomew MJ et al (1998) The composition of Centaur 5145 Pholus. Icarus 135:389

    ADS  Google Scholar 

  • Cruikshank DP, Roush TL, Owen TC et al (1993) Ices on the surface of Triton. Science 261:742

    ADS  Google Scholar 

  • Cruikshank DP, Roush TL, Poulet F (2003) Quantitative modelling of the spectral reflectance of Kuiper belt objects and Centaurs. C R Phys Acad Sci Paris 4:783

    Google Scholar 

  • Cruikshank DP, Wegryn E, Dalle Ore CM et al (2008) Hydrocarbons on Saturn’s satellites Iapetus and Phoebe. Icarus 193:334

    ADS  Google Scholar 

  • Dalle Ore C, Barucci MA, Emery JP et al (2009) Composition of KBO (50000) Quaoar. Astron Astrophys 501:349

    ADS  Google Scholar 

  • de Bergh C, Delsanti A, Tozzi GP et al (2005) The surface of the transneptunian object 90482 Orcus. Astron Astrophys 437:1115

    ADS  Google Scholar 

  • de Bergh C, Schmitt B, Moroz LV et al (2008) Laboratory data on ices, refractory carbonaceous materials, and minerals relevant to transneptunian objects and Centaurs. In: Barucci MA et al (eds) The solar system beyond Neptune. The University of Arizona Press, Tucson, p 483

    Google Scholar 

  • Dello Russo N, Khanna RK (1996) Laboratory infrared spectroscopic studies of crystalline nitriles with relevance to outer planetary systems. Icarus 123:366

    ADS  Google Scholar 

  • Delsanti A, Hainaut O, Jourdeuil E et al (2004) Simultaneous visible-near IR photometric study of Kuiper belt object surfaces with the ESO/Very Large Telescopes. Astron Astrophys 417:1145

    ADS  Google Scholar 

  • DeMeo F, Fornasier S, Barucci MA et al (2009) Visible and near-infrared colors of transneptunian objects and Centaurs from the second ESO large program. Astron Astrophys 493:283

    ADS  Google Scholar 

  • DeMeo F, Dumas C, de Bergh C et al (2010) A search for ethane on Pluto and Triton. Icarus 208:412

    ADS  Google Scholar 

  • Doressoundiram A, Peixinho N, de Bergh C et al (2002) The color distribution in the Edgeworth-Kuiper belt. Astron J 124:2279

    ADS  Google Scholar 

  • Doressoundiram A, Boehnhardt H, Tegler SC et al (2008) Color properties and trends of the transneptunian objects. In: Barucci MA et al (eds) The solar system beyond Neptune. The University of Arizona Press, Tucson, p 91

    Google Scholar 

  • Douté S, Schmitt B, Quirico E et al (1999) Evidence for methane segregation at the surface of Pluto. Icarus 142:421

    ADS  Google Scholar 

  • Douté S, Schmitt B (1998) A multilayer bidirectional reflectance model for the analysis of planetary surface hyperspectral images at visible and near-infrared wavelengths. J Geophys Res 103:31367

    ADS  Google Scholar 

  • Dumas C, Merlin F, Barucci MA et al (2007) Surface composition of the largest dwarf planet 136199 Eris (2003 UB313). Astron Astrophys 471:331

    ADS  Google Scholar 

  • Emery JP, Dalle Ore CM, Cruikshank DP et al (2007) Ices on (90377) Sedna: confirmation and compositional constraints. Astron Astrophys 466:395

    ADS  Google Scholar 

  • Ferini G, Baratta GA, Palumbo ME (2004) A Raman study of ion irradiated icy mixtures. Astron Astrophys 414:757

    ADS  Google Scholar 

  • Fornasier S, Barucci MA, de Bergh C et al (2009) Visible spectroscopy of the new ESO large programme on trans-neptunian objects and Centaurs: final results. Astron Astrophys 508:457

    ADS  Google Scholar 

  • Fraser WC, Brown ME (2009) NICMOS Photometry of the unusual dwarf planet Haumea and its satellites. Astrophys J Lett 695:L1

    ADS  Google Scholar 

  • Fraser WC, Brown ME (2010) Quaoar: a rock in the Kuiper belt. Astrophys J 714:1547

    ADS  Google Scholar 

  • Fuchignoni M, Belskaya I, Barucci MA et al (2008) Transneptunian object taxonomy. In: Barucci MA et al (eds) The solar system beyond Neptune. The University of Arizona Press, Tucson, p 181

    Google Scholar 

  • Fulvio D, Guglielmino S, Favone T et al (2010) Near-infrared laboratory spectra of H2O trapped in N2, CH4, and CO: hints for trans-Neptunian objects’ observations. Astron Astrophys 511:A62

    ADS  Google Scholar 

  • Gil-Hutton R, Licandro J, Pinilla-Alonso N et al (2009) The trans-neptunian object size distribution at small sizes. Astron Astrophys 500:909

    ADS  Google Scholar 

  • Gladman B, Marsden BG, VanLaerhoven C (2008) Nomenclature in the outer solar system. In: Barucci MA et al (eds) The solar system beyond Neptune. The University of Arizona Press, Tucson, p 43

    Google Scholar 

  • Goguen J (1981) A theoretical and experimental investigation of the photometric functions of particulate surfaces. Ph.D. thesis, Cornell University, Ithaca

    Google Scholar 

  • Grundy WM, Fink U (1996) Synoptic CCD spectrophotometry of Pluto over the past 15 years. Icarus 124:329

    ADS  Google Scholar 

  • Grundy WM, Schmitt B (1998) The temperature-dependent near-infrared absorption spectrum of hexagonal H2O ice. J Geophys Res (E) 103:25809

    ADS  Google Scholar 

  • Grundy WM, Schmitt B, Quirico E (1993) The temperature-dependent spectra of α and β nitrogen ice with application to Triton. Icarus 105:254

    ADS  Google Scholar 

  • Grundy WM, Schmitt B, Quirico E (2002) The temperature-dependent spectrum of methane ice I between 0.7 and 5 μm and opportunities for near-infrared remote thermometry. Icarus 155:486

    ADS  Google Scholar 

  • Grundy WM, Young LA, Stansberry JA et al (2010) Near-infrared spectral monitoring of Triton with IRTF/SpeX II: spatial distribution and evolution of ices. Icarus 205:594

    ADS  Google Scholar 

  • Guilbert A, Alvarez-Candal A, Merlin F et al (2009a) ESO-large program on TNOs: near-infrared spectroscopy with SINFONI. Icarus 201:272

    ADS  Google Scholar 

  • Guilbert A, Barucci MA, Brunetto R et al (2009b) A portrait of Centaur 10199 Chariklo. Astron Astrophys 501:777

    ADS  Google Scholar 

  • Hansen GB (1997) The infrared absorption spectrum of carbon dioxide ice from 1.8 to 333 μm. J Geophys Res (E) 102:21569

    ADS  Google Scholar 

  • Hansen CJ, Paige DA (1996) Seasonal nitrogen cycles on Pluto. Icarus 120:247

    ADS  Google Scholar 

  • Hansen GB (2005) Ultraviolet to near-infrared absorption spectrum of carbon dioxide ice from 0.174 to 1.8 μm. J Geophys Res (E) 110:E11003

    ADS  Google Scholar 

  • Hapke B (1981) Bidirectional reflectance spectroscopy. I – theory. J Geophys Res 86:3039

    ADS  Google Scholar 

  • Hapke B (1984) Bidirectional reflectance spectroscopy. III – correction for macroscopic roughness. Icarus 59:41

    ADS  Google Scholar 

  • Hapke B (1993) Theory of reflectance and emittance spectroscopy. Cambridge University Press, New York

    Google Scholar 

  • Hapke B (2001) Space weathering from Mercury to the asteroid belt. J Geophys Res 106:10039

    ADS  Google Scholar 

  • Hiroi T, Pieters C (1994) Estimation of grain sizes and mixing ratios of fine powder mixtures of common geologic minerals. J Geophys Res 99:10867

    ADS  Google Scholar 

  • Horner J, Evans NW, Bailey ME (2004) Simulations of the population of Centaurs – I. The bulk statistics. Mon Not R Astron Soc 354:798

    ADS  Google Scholar 

  • Hudgins DM, Sandford SA, Allamandola LJ et al (1993) Mid- and far-infrared spectroscopy of ices – optical constants and integrated absorbances. Astrophys J Suppl S 86:713

    ADS  Google Scholar 

  • Hudson RL, Palumbo ME, Strazzulla G et al (2008) Laboratory studies of the chemistry of transneptunian object surface materials. In: Barucci MA et al (eds) The solar system beyond Neptune. The University of Arizona Press, Tucson, p 507

    Google Scholar 

  • Jewitt DC, Luu JX (1993) Discovery of the candidate Kuiper belt object 1992 QB1. Nature 362:730

    ADS  Google Scholar 

  • Jewitt DC, Luu J (2004) Crystalline water ice on the Kuiper belt object (50000) Quaoar. Nature 432:731

    ADS  Google Scholar 

  • Kargel JS (1992) Ammonia-water volcanism on icy satellites – phase relations at 1 atmosphere. Icarus 100:556

    ADS  Google Scholar 

  • Krasnopolsky VA, Cruikshank DP (1995) Photochemistry of Triton’s atmosphere and ionosphere. J Geophys Res Planet 100:21271

    ADS  Google Scholar 

  • Krasnopolsky VA, Cruikshank DP (1999) Photochemistry of Pluto’s atmosphere and ionosphere near perihelion. J Geophys Res 104:21979

    ADS  Google Scholar 

  • Lellouch E, Kiss C, Santos-Sanz P et al (2010) “TNOs are cool”: a survey of the trans-neptunian region. II. The thermal lightcurve of (136108) Haumea. Astron Astrophys 518:L147

    ADS  Google Scholar 

  • Leto G, Baratta GA (2003) Ly-alpha photon induced amorphization of Ic water ice at 16 Kelvin. Effects and quantitative comparison with ion irradiation. Astron Astrophys 397:7

    ADS  Google Scholar 

  • Levi A, Podolak M (2009) Corona-like atmospheric escape from KBOs. I. Gas dynamics. Icarus 202:681

    ADS  Google Scholar 

  • Levison HF, Duncan MJ (1997) From the Kuiper belt to Jupiter-family comets: the spatial distribution of ecliptic comets. Icarus 127:13

    ADS  Google Scholar 

  • Levison HF, Morbidelli A, Vokrouhlický D et al (2008) On a scattered-disk origin for the 2003 EL61 collisional family – an example of the importance of collisions on the dynamics of small bodies. Astron J 136:1079

    ADS  Google Scholar 

  • Licandro J, Pinilla-Alonso N (2005) The inhomogeneous surface of Centaur 32522 Thereus (2001 PT13). Astrophys J 630:L93

    ADS  Google Scholar 

  • Licandro J, Grundy WM, Pinilla-Alonso N et al (2006a) Visible spectroscopy of 2003 UB313: evidence for N2 ice on the surface of the largest TNO? Astron Astrophys 458:L5

    ADS  Google Scholar 

  • Licandro J, Pinilla-Alonso N, Pedani M et al (2006b) The methane ice rich surface of large TNO 2005 FY9: a Pluto-twin in the trans-neptunian belt? Astron Astrophys 445:L35

    ADS  Google Scholar 

  • Lim TL, Stansberry J, Müller M et al (2010) “TNOs are cool”: a survey of the trans-neptunian region. III. Thermophysical properties of 90482 Orcus and 136472 Makemake. Astron Astrophys 518:L148

    ADS  Google Scholar 

  • Loeffler MJ, Raut U, Baragiola RA (2006) Enceladus: a source of nitrogen and an explanation for the water vapor plume observed by Cassini. Astrophys J Lett 649:L133

    ADS  Google Scholar 

  • Lumme K, Bowell E (1981) Radiative transfer in the surfaces of atmosphereless bodies. I – theory. Astron J 86:1694

    ADS  Google Scholar 

  • Luu J, Jewitt D (1996) Color diversity among the Centaurs and Kuiper belt objects. Astron J 112:2310

    ADS  Google Scholar 

  • Luu J, Jewitt DC, Trujillo C (2000) Water ice in 2060 Chiron and its implications for Centaurs and Kuiper belt objects. Astrophys J Lett 531:L151

    ADS  Google Scholar 

  • Martonchik JV, Orton GS, Appleby JF (1984) Optical properties of NH3 ice from the far infrared to the near ultraviolet. Appl Opt 23:541

    ADS  Google Scholar 

  • Masterson CM, Khanna RK (1990) Absorption intensities and complex refractive indices of crystalline HCN, HC3N, and C4N2 in the infrared region. Icarus 83:83

    ADS  Google Scholar 

  • Mastrapa RME, Brown RH (2006) Ion irradiation of crystalline H2O ice: effect on the 1.65-μm band. Icarus 183:207

    ADS  Google Scholar 

  • Mastrapa RM, Bernstein MP, Sandford SA et al (2008) Optical constants of amorphous and crystalline H2O-ice in the near infrared from 1.1 to 2.6 μm. Icarus 197:307

    ADS  Google Scholar 

  • Mastrapa RM, Sandford SA, Roush TL et al (2009) Optical constants of amorphous and crystalline H2O-ice: 2.5–22 μm (4000–455 cm−1) optical constants of H2O-ice. Astrophys J 701:1347

    ADS  Google Scholar 

  • Mastrapa RME, Grundy WM, Gudipati MS (2012) Amorphous and crystalline H2O ice. (this volume)

    Google Scholar 

  • McCord TB (1966) Dynamical evolution of the neptunian system. Astron J 71:585

    ADS  Google Scholar 

  • McKinnon WB (1984) On the origin of Triton and Pluto. Nature 311:355

    ADS  Google Scholar 

  • McKinnon WB, Prialnik D, Stern SA et al (2008) Structure and evolution of Kuiper belt objects and dwarf planets. In: Barucci MA et al (eds) The solar system beyond Neptune. The University of Arizona Press, Tucson, p 213

    Google Scholar 

  • Merlin F, Barucci MA, Dotto E et al (2005) Search for surface variations on TNO 47171 and Centaur 32532. Astron Astrophys 444:977

    ADS  Google Scholar 

  • Merlin F, Guilbert A, Dumas C et al (2007) Properties of the icy surface of the TNO 136108 (2003 EL61). Astron Astrophys 466:1185

    ADS  Google Scholar 

  • Merlin F, Alvarez-Candal A, Delsanti A et al (2009) Stratification of methane ice on Eris’ surface. Astron J 137:315

    ADS  Google Scholar 

  • Merlin F, Barucci MA, de Bergh C et al (2010a) Surface composition and physical properties of several trans-neptunian objects from the Hapke scattering theory and Shkuratov model. Icarus 208:945

    ADS  Google Scholar 

  • Merlin F, Barucci MA, de Bergh C et al (2010b) Chemical and physical properties of the variegated Pluto and Charon surfaces. Icarus 210:930

    ADS  Google Scholar 

  • Mishchenko MI (1994) Asymmetry parameters of the phase function for densely packed scattering grains. J Quant Spectrosc Radiat Transf 52:95

    ADS  Google Scholar 

  • Moore MH, Hudson RL (1992) Far-infrared spectral studies of phase changes in water ice induced by proton irradiation. Astrophys J 401:353

    ADS  Google Scholar 

  • Moore MH, Ferrante RF, Hudson RL et al (2007) Ammonia water ice laboratory studies relevant to outer solar system surfaces. Icarus 190:260

    ADS  Google Scholar 

  • Morbidelli A, Levison HF, Gomes R (2008) The dynamical structure of the Kuiper belt and its primordial origin. In: Barucci MA et al (eds) The solar system beyond Neptune. The University of Arizona Press, Tucson, p 275

    Google Scholar 

  • Moroz L, Baratta G, Strazzulla G et al (2004) Optical alteration of complex organics induced by ion irradiation: 1. Laboratory experiments suggest unusual space weathering trend. Icarus 170:214

    ADS  Google Scholar 

  • Müller TG, Lellouch E, Stansberry J et al (2010) “TNOs are cool”: a survey of the trans-neptunian region. I. Results from the Herschel science demonstration phase (SDP). Astron Astrophys 518:L146

    ADS  Google Scholar 

  • Mustard JF, Pieters CM (1987) Quantitative abundance estimates from bidirectional reflectance measurements. J Geophys Res 92:617

    ADS  Google Scholar 

  • Mustard JF, Pieters CM (1989) Photometric phase functions of common geologic minerals and applications to quantitative analysis of mineral mixture reflectance spectra. J Geophys Res 94:13619

    ADS  Google Scholar 

  • Noll KS, Grundy WM, Chiang EI et al (2008) Binaries in the Kuiper belt. In: Barucci MA et al (eds) The solar system beyond Neptune. The University of Arizona Press, Tucson, p 345

    Google Scholar 

  • Öberg KI, Fraser HJ, Boogert ACA et al (2007) Effects of CO2 on H2O band profiles and band strengths in mixed H2O:CO2 ices. Astron Astrophys 462:1187

    ADS  Google Scholar 

  • Owen TC, Cruikshank DP, Roush T et al (1993) Surface ices and the atmospheric composition of Pluto. Science 261:745

    ADS  Google Scholar 

  • Palumbo ME, Ferini G, Baratta GA (2004) Infrared and Raman spectroscopies of refractory residues left over after ion irradiation of nitrogen-bearing icy mixtures. Adv Space Res 33:49

    ADS  Google Scholar 

  • Palumbo ME, Baratta GA, Collings MP et al (2006) The profile of the 2140 cm-1 solid CO band on different substrates. Phys Chem Chem Phys Inc Faraday Trans 8:279

    ADS  Google Scholar 

  • Pearl J, Ngoh M, Ospina M et al (1991) Optical constants of solid methane and ethane from 10,000 to 450 cm−1. J Geophys Res 96:17477

    ADS  Google Scholar 

  • Pinilla-Alonso N, Licandro J, Lorenzi V (2008) Visible spectroscopy in the neighborhood of 2003EL61. Astron Astrophys 489:455

    ADS  Google Scholar 

  • Pinilla-Alonso N, Brunetto R, Licandro J et al (2009) The surface of (136108) Haumea (2003 EL61), the largest carbon-depleted object in the trans-neptunian belt. Astron Astrophys 496:547

    ADS  Google Scholar 

  • Poulet F, Cuzzi JN, Cruikshank DP et al (2002) Comparison between the Shkuratov and Hapke scattering theories for solid planetary surfaces: application to the surface composition of two Centaurs. Icarus 160:313

    ADS  Google Scholar 

  • Poulet F, Erard S (2004) Nonlinear spectral mixing: quantitative analysis of laboratory mineral mixtures. J Geophys Res 109(E2):E02009

    Google Scholar 

  • Protopapa S, Boehnhardt H, Herbst TM et al (2009) Surface characterization of Pluto, Charon, and Triton using NACO observations. EPSC Abstracts, 4, EPSC2009-103

    Google Scholar 

  • Quirico E, Schmitt B, Bini R et al (1996) Spectroscopy of some ices of astrophysical interest: SO2, N2 and N2:CH4 mixtures. Planet Sp Sci 44:973

    ADS  Google Scholar 

  • Quirico E, Schmitt B (1997a) Near-infrared spectroscopy of simple hydrocarbons and carbon oxides diluted in solid N2 and as pure ices: implications for Triton and Pluto. Icarus 127:354

    ADS  Google Scholar 

  • Quirico E, Schmitt B (1997b) A spectroscopic study of CO diluted in N2 ice: applications for Triton and Pluto. Icarus 128:181

    ADS  Google Scholar 

  • Quirico E, Douté S, Schmitt B et al (1999) Composition, physical state, and distribution of ices at the surface of Triton. Icarus 139:159

    ADS  Google Scholar 

  • Rabinowitz DL, Barkume K, Brown ME (2006) Photometric observations constraining the size, shape, and albedo of 2003 EL61, a rapidly rotating, Pluto-sized object in the Kuiper belt. Astrophys J 639:1238

    ADS  Google Scholar 

  • Ragozzine D, Brown ME (2007) Candidate members and age estimate of the family of Kuiper belt object 2003 EL61. Astrophys J 134:2160

    ADS  Google Scholar 

  • Rudy RJ, Venturini CC, Lynch DK et al (2003) 0.8–2.5 micron reflectance spectroscopy of Pluto. Publ Astron Soc Pac 115:484

    ADS  Google Scholar 

  • Satorre MA, Palumbo ME, Strazzulla G (2001) Infrared spectra of N2-rich ice mixtures. J Geophys Res 106:33363

    ADS  Google Scholar 

  • Schaller EL, Brown ME (2007a) Volatile loss and retention on Kuiper belt objects. Astrophys J 659:L61

    ADS  Google Scholar 

  • Schaller EL, Brown ME (2007b) Detection of methane on Kuiper belt object (50000) Quaoar. Astrophys J Lett 670:L49

    ADS  Google Scholar 

  • Schaller EL, Brown ME (2008) Detection of additional members of the 2003 EL61 collisional family via near-infrared spectroscopy. Astrophys J 684:L107

    ADS  Google Scholar 

  • Schmitt B, Quirico E, Trotta F et al (1998) Optical properties of ices from UV to infrared. In: Schmitt B et al (eds) Solar system ices. Kluwer, Boston, p 199

    Google Scholar 

  • Sheppard SS, Lacerda P, Ortiz JL (2008) Photometric lightcurves of transneptunian objects and Centaurs: rotations, shapes, and densities. In: Barucci MA et al (eds) The solar system beyond Neptune. The University of Arizona Press, Tucson, p 129

    Google Scholar 

  • Shkuratov Y, Starukhina L, Hoffmann HI et al (1999) A model of spectral albedo of particulate surfaces: implications for optical properties of the Moon. Icarus 137:235

    ADS  Google Scholar 

  • Shkuratov YG, Grynko YS (2005) Light scattering by media composed of semitransparent particles of different shapes in ray optics approximation: consequences for spectroscopy, photometry, and polarimetry of planetary regoliths. Icarus 173:16

    ADS  Google Scholar 

  • Stansberry JA, Grundy W, Brown M et al (2008) Physical properties of Kuiper belt and Centaur objects: constraints from the Spitzer Space Telescope. In: Barucci MA et al (eds) The solar system beyond Neptune. The University of Arizona Press, Tucson, p 161

    Google Scholar 

  • Stern SA (2002) Evidence for a collisional mechanism affecting Kuiper belt object colors. Astron J 124:2297

    ADS  Google Scholar 

  • Stern SA, Spencer J (2004) New Horizons: the first reconnaissance mission to bodies in the Kuiper belt. Earth Moon Planet 92:477

    ADS  Google Scholar 

  • Strazzulla G, Baratta GA, Johnson RE et al (1991) Primordial comet mantle – irradiation production of a stable, organic crust. Icarus 91:101

    ADS  Google Scholar 

  • Strazzulla G, Baratta GA, Leto G et al (1992) Ion-beam-induced amorphization of crystalline water ice. Europhys Lett 18:517

    ADS  Google Scholar 

  • Strazzulla G, Palumbo ME (1998) Evolution of icy surfaces: an experimental approach. Planet Sp Sci 46:1339

    ADS  Google Scholar 

  • Strazzulla G, Baratta GA, Palumbo ME (2001) Vibrational spectroscopy of ion-irradiated ices. Spectrochim Acta A 57(4):825

    ADS  Google Scholar 

  • Strazzulla G, Cooper JF, Christian ER et al (2003) Ion irradiation of TNOs: from the fluxes measured in space to the laboratory experiments. C R Phys Acad Sci Paris 4:791

    Google Scholar 

  • Taylor FW (1973) Preliminary data on the optical properties of solid ammonia and scattering parameters for ammonia cloud particles. J Atmos Sci 30:677

    ADS  Google Scholar 

  • Tegler SC, Grundy WM, Romanishin W et al (2007) Optical spectroscopy of the large Kuiper belt objects 136472 (2005 FY9) and 136108 (2003 EL61). Astron J 133:526

    ADS  Google Scholar 

  • Tegler SC, Grundy WM, Vilas F et al (2008) Evidence of N2-ice on the surface of the icy dwarf planet 136472 (2005 FY9). Icarus 195:844

    ADS  Google Scholar 

  • Tegler SC, Cornelison DM, Grundy WM et al (2010) Methane and nitrogen abundances on Pluto and Eris. Astrophys J 725:1296

    ADS  Google Scholar 

  • Trafton LM, Stern SA (1996) Rotationally resolved spectral studies of Pluto from 2500 to 4800 angstroms obtained with HST. Astron J 112:1212

    ADS  Google Scholar 

  • Trotta F (1996) Détermination des constantes optiques de glaces dans l’infrarouge moyen et lointain. Application aux grains du milieu interstellaire et des enveloppes circumstellaires. Thesis, LGGE-University Joseph Fourier, Grenoble

    Google Scholar 

  • Trujillo CA, Brown ME, Barkume KM et al (2007) The surface of 2003 EL61 in the near-infrared. Astrophys J 655:1172

    ADS  Google Scholar 

  • Tryka KA, Brown RH, Anicich V (1995) Near-infrared absorption coefficients of solid nitrogen as a function of temperature. Icarus 116:409

    ADS  Google Scholar 

  • Verbiscer A, Helfenstein P (1998) Reflectance spectroscopy of icy surfaces. In: Schmitt B et al (eds) Solar system ices. Kluwer, Boston, p 157

    Google Scholar 

  • Warren SG (1984) Optical constants of ice from the ultraviolet to the microwave. Appl Opt 23:1206

    ADS  Google Scholar 

  • Warren SG (1986) Optical constants of carbon dioxide ice. Appl Opt 25:2650

    ADS  Google Scholar 

  • Young LA, Stern SA, Weaver HA et al (2008) New Horizons: anticipated scientific investigations at the Pluto system. Space Sci Rev 140:93

    ADS  Google Scholar 

  • Zheng W, Jewitt D, Kaiser RI (2009) On the state of water ice on Saturn’s moon Titan and implications to icy bodies in the outer solar system. J Phys Chem A 113:11174

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. de Bergh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

de Bergh, C., Schaller, E.L., Brown, M.E., Brunetto, R., Cruikshank, D.P., Schmitt, B. (2013). The Ices on Transneptunian Objects and Centaurs. In: Gudipati, M., Castillo-Rogez, J. (eds) The Science of Solar System Ices. Astrophysics and Space Science Library, vol 356. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3076-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3076-6_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3075-9

  • Online ISBN: 978-1-4614-3076-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics