Skip to main content

Radiation Effects in Water Ice in the Outer Solar System

  • Chapter
  • First Online:
The Science of Solar System Ices

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 356))

Abstract

Water ice in the outer solar system can either have condensed from the gas phase or have been brought in by colliding bodies, such as interplanetary ice grains to comets. Since icy bodies lack a protective atmosphere, their surface is subject to irradiation by photons, ions and electrons. This chapter discusses how energetic radiation affects the physical and chemical properties of a pure water ice surface, and how the outcome of radiation processes depends on the properties of the surface and on the environment (atmosphere, particle flux and energies).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bahr DA, Famá M, Vidal RA, Baragiola RA (2001) Radiolysis of water ice in the outer solar system: sputtering and trapping of radiation products. J Geophys Res 106:33285

    ADS  Google Scholar 

  • Baragiola RA (2003a) Microporous amorphous water ice films and astronomical implications, In: Devlin JP, Buch B (eds) Water in confining geometries. Springer, Berlin (2003)

    Google Scholar 

  • Baragiola RA (2003b) Water ice on outer solar system surfaces: basic properties and radiation effects. Planet Sp Sci 51:953

    ADS  Google Scholar 

  • Baragiola RA, Bahr DA (1998) Laboratory studies of the optical properties and stability of oxygen on Ganymede. J Geophys Res 103:25865

    ADS  Google Scholar 

  • Baragiola RA, Vidal RA, Svendsen W, Schou J, Shi M, Bahr DA, Atteberrry CL (2003) Sputtering of water ice. Nucl Instrm Method Phys Res B 209:294

    ADS  Google Scholar 

  • Baragiola RA, Loeffler MJ, Raut U, Vidal RA, Wilson CD (2005) Laboratory studies of radiation effects in water ice in the outer solar system. Radiat Phys Chem 72:187

    ADS  Google Scholar 

  • Bednarek J, Plonka A, Hallbrucker A, Mayer E (1998) Radical generation upon γ-irradiation of two amorphous and two crystalline forms of water at 77 K. J Phys Chem A 102:9091

    Google Scholar 

  • Belton MJS et al (1996) Galileo’s first images of Jupiter and the Galilean satellites. Science 274:377

    ADS  Google Scholar 

  • Brown ME, Calvin WM (2000) Evidence for crystalline water and ammonia ices on Pluto’s satellite Charon. Science 287:107

    ADS  Google Scholar 

  • Calvin WM, Johnson RE, Spencer JR (1996) O2 on Ganymede spectral characteristics and plasma formation mechanisms. Geophys Res Lett 23:673

    ADS  Google Scholar 

  • Carlson RW et al (1999a) A tenuous carbon dioxide atmosphere on Jupiter’s moon Callisto. Science 283:2062

    ADS  Google Scholar 

  • Carlson RW, Johnson RE, Anderson MS (1999b) Sulfuric acid on Europa and the radiolytic sulfur cycle. Science 286:97

    ADS  Google Scholar 

  • Cassidy TA, Johnson RE (2005) Monte Carlo model of sputtering and other ejection processes within a regolith. Icarus 176:499

    ADS  Google Scholar 

  • Collings MP, Dever JW, Fraser HJ, McCoustra MRS, Williams DA (2003) Carbon monoxide entrapment in interstellar ice analogs. Astrophys J 583:1058

    ADS  Google Scholar 

  • Cook JC, Desch SJ, Roush TL, Trujillo CA, Geballe TR (2007) Near-infrared spectroscopy of Charon: possible evidence for cryovolcanism on Kuiper Belt objects. Astrophys J 663:1406

    ADS  Google Scholar 

  • Cooper JF, Johnson RE, Mauk BH, Garrett HB, Gehrels N (2001) Energetic ion and electron irradiation of the icy Galilean satellites. Icarus 149:133

    ADS  Google Scholar 

  • Devlin JP (1992) Molecular interactions with icy surfaces: infrared spectra of carbon monoxide adsorbed in microporous amorphous ice. J Phys Chem 96:6185

    Google Scholar 

  • Dohnálek Z, Kimmel GA, Ayotte P, Smith RS, Kay BD (2003) The deposition angle-dependent density of amorphous solid water films. J Chem Phys 118:364

    ADS  Google Scholar 

  • Dubochet J, Lepault J (1984) Cryo-electron microscopy of vitrified water. J Physique C 7:85

    Google Scholar 

  • Fama M, Teolis BD, Bahr D, Baragiola RA (2007) Role of electron capture in ion-induced electronic sputtering of insulators. Phys Rev B 75:100101

    ADS  Google Scholar 

  • Fama M, Shi J, Baragiola RA (2008) Sputtering of ice by low-energy ions. Surf Sci 602:156

    ADS  Google Scholar 

  • Fama M, Loeffler MJ, Raut U, Baragiola RA (2010) Radiation-induced amorphization of crystalline ice. Icarus 207:314

    ADS  Google Scholar 

  • Golecki I, Jaccard C (1978) Radiation damage in ice at low temperatures studied by Proton channelling. J Glaciol 21:247

    Google Scholar 

  • Gomis O, Strazzulla G (2005) CO2 production by ion irradiation of H2O ice on top of carbonaceous materials and its relevance to the Galilean satellites. Icarus 177:570

    ADS  Google Scholar 

  • Gomis O, Strazzulla G (2008) Ion irradiation of H2O ice on top of sulfurous solid residues and its relevance to the Galilean satellites. Icarus 194:146

    ADS  Google Scholar 

  • Gomis O, Satorre MA, Strazzulla G, Leto G (2004) Hydrogen peroxide formation by ion implantation in water ice and its relevance to the Galilean satellites. Planet Sp Sci 52:371

    ADS  Google Scholar 

  • Goulet T, Bernas A, Ferradini C, Jay-Gerin J-P (1990) On the electronic structure of liquid water: conduction-band tail revealed by photoionization data. Chem Phys Lett 170:492

    ADS  Google Scholar 

  • Grundy WM, Schmitt B (1998) The temperature-dependent near-infrared absorption spectrum of hexagonal H2O ice. J Geophys Res 103:25809

    ADS  Google Scholar 

  • Grundy WM, Buie MW, Stansberry JA, Spencer JR, Schmitt B (1999) Near-infrared spectra of icy outer solar system surfaces: remote determination of H2O ice temperatures. Icarus 142:536

    ADS  Google Scholar 

  • Hage W, Liedl KR, Hallbrucker A, Mayer E (1998) Carbonic acid in the gas phase and its astrophysical relevance. Science 279:1332

    ADS  Google Scholar 

  • Hansen GB, McCord TB (2004) Amorphous and crystalline ice on the Galilean satellites: a balance between thermal and radiolytic processes. J Geophys Res 109:E01012

    Google Scholar 

  • Heide HG (1982) On the irradiation of organic-samples in the vicinity of ice. Ultramicroscopy 7:299

    Google Scholar 

  • Heide HG (1984) Observations on ice layers. Ultramicroscopy 14:271

    Google Scholar 

  • Hibbitts CA, Klemaszewski JE, McCord TB, Hansen GB, Greeley R (2002) CO2-rich impact craters on Callisto. J Geophys Res 107(E10):5084

    Google Scholar 

  • Hibbitts CA, Pappalardo RT, Hansen GB, McCord TB (2003) Carbon dioxide on Ganymede. J Geophys Res 108(E5):5036

    Google Scholar 

  • Hixson HG, Wojcik MJ, Devlin MS, Devlin JP, Buch V (1992) Experimental and simulated vibrational spectra of H2 absorbed in amorphous ice: surface structures, energetics, and relaxations. J Chem Phys 97:753

    ADS  Google Scholar 

  • Jaumann R et al (2008) Distribution of icy particles across Enceladus’ surface as derived from Cassini-VIMS measurements. Icarus 193:407

    ADS  Google Scholar 

  • Jenniskens P, Blake DF (1996) Crystallization of amorphous water ice in the solar system. Astrophys J 473:1104

    ADS  Google Scholar 

  • Jewitt DC, Luu J (2004) Crystalline water ice on the Kuiper belt object(50000) Quaoar. Nature 432:731

    ADS  Google Scholar 

  • Johnson RE (1990) Energetic charged-particle interactions with atmospheres and surfaces. Springer, New York

    Google Scholar 

  • Johnson TV (2007) Ch. 1.34 In: Davis AM (ed) Meteorites, comets and planets: treatise of geochemistry, vol 1. Elsevier, Amsterdam, The Netherlands

    Google Scholar 

  • Johnson RE, Jesser WA (1997) O2/O3 microatmospheres in the surface of Ganymede. Astrophys J 480:L79

    ADS  Google Scholar 

  • Johnson RE, Schou J (1993) Sputtering of inorganic insulators. Mat Fys Medd K Dan Vidensk Selsk 43:403

    Google Scholar 

  • Johnson RE, Sundqvist B, Hakansson P, Hedin A, Salehpour M, Save G (1987) Incident angle dependence of electronic desorption and sputtering by energetic ions. Surf Sci 179:187

    ADS  Google Scholar 

  • Johnson RE (1998) Sputtering and Desorption from Icy Surfaces, In: Schmitt B (ed) Solar system ices. Kluwer, Dordrecht, p 303

    Google Scholar 

  • Johnson RE, Fama M, Liu M, Baragiola RA, Sittler EC, Smith HT (2008) Sputtering of ice grains and icy satellites in Saturn’s inner magnetosphere. Planet Sp Sci 56:1238

    ADS  Google Scholar 

  • Laffon C, Lacombe S, Bournel F, Parent P (2006) Radiation effects in water ice: a near-edge x-ray absorption fine structure study. J Chem Phys 125:204714

    ADS  Google Scholar 

  • Lane AL, Domingue DL (1997) IUE’s view of Callisto: detection of an SO2 absorption correlated to possible torus neutral wind alterations. Geophys Res Lett 24:1143

    ADS  Google Scholar 

  • Lane AL, Nelson RM, Matson DL (1981) Evidence for sulphur implantation in Europa’s UV absorption band. Nature 292:38

    ADS  Google Scholar 

  • LaVerne JA (2000) Track effects of heavy ions in liquid water. Radiat Res 153:487

    Google Scholar 

  • Lepault J, Freeman R, Dubochet J (1983) Electron beam induced “vitrified ice”. J Microsc 132:RP3

    Google Scholar 

  • Leto G, Baratta GA (2003) Ly- α photon induced amorphization of Ic water ice at 16 Kelvin. Astron Astrophys 397:7

    ADS  Google Scholar 

  • Leto G, Gomis O, Strazzulla G (2005) The reflectance spectrum of water ice: is the 1.65 μm peak a good temperature probe? Mem Soc Astron Italiana Suppl 6:57

    ADS  Google Scholar 

  • Loeffler MJ, Baragiola RA (2005) The state of hydrogen peroxide on Europa. Geophys Res Lett 32:L172023

    Google Scholar 

  • Loeffler MJ, Baragiola RA (2009) Is the 3.5-micron infrared feature on enceladus due to hydrogen peroxide? Astrophys J 694:L92

    ADS  Google Scholar 

  • Loeffler MJ, Teolis BD, Baragiola RA (2006a) Decomposition of solid amorphous hydrogen peroxide by ion irradiation. J Chem Phys 124:104702

    ADS  Google Scholar 

  • Loeffler MJ, Raut U, Baragiola RA (2006b) A model study of the thermal evolution of astrophysical ices. Astrophys J 639:L103

    ADS  Google Scholar 

  • Loeffler MJ, Raut U, Baragiola RA (2006c) Enceladus: a source of nitrogen and an explanation for the water vapor plume observed by Cassini. Astrophys J 649:L133

    ADS  Google Scholar 

  • Loeffler MJ, Raut U, Vidal RA, Baragiola RA, Carlson RW (2006d) Synthesis of hydrogen peroxide in water ice by ion irradiation. Icarus 189:265

    ADS  Google Scholar 

  • Mastrapa RME, Brown RH (2006) Ion irradiation of crystalline H2O-ice: effect on the 1.65-μm band. Icarus 183:207

    ADS  Google Scholar 

  • McCord TB et al (1997) Organics and other molecules in the surfaces of Callisto and Ganymede. Science 278:271

    ADS  Google Scholar 

  • McCord TB, Hansen GB, Hibbitts CA (2001) Hydrated salt minerals on Ganymede’s surface: evidence of an ocean below. Science 292:1523

    ADS  Google Scholar 

  • McGrath MA, Lellouch E, Strobel DF, Feldman PD, Johnson RE (2007) Ch. 19. In: Bagenal F, Dowling TE (eds) Jupiter: the planet, satellites and magnetosphere. Cambridge University Press

    Google Scholar 

  • Mennella V, Palumbo ME, Baratta GA (2004) Formation of CO and CO2 Molecules by ion irradiation of water ice-covered hydrogenated carbon grains. Astrophys J 615:1073

    ADS  Google Scholar 

  • Mennella V, Baratta GA, Palumbo ME, Bergin EA (2006) Synthesis of CO and CO2 molecules by UV irradiation of water ice-covered hydrogenated carbon grains. Astrophys J 643:923

    ADS  Google Scholar 

  • Merlin F, Guilbert A, Dumas C, Barucci MA, de Bergh C, Vernazza P (2007) Properties of the icy surface of the TNO 136108 (2003 EL61). Astron Astrophys 466:1185

    ADS  Google Scholar 

  • Mitchell CJ, Horanyi M, Havnes O, Porco CC (2006) Saturn’s spokes: lost and found. Science 311:1587

    ADS  Google Scholar 

  • Moore MH, Hudson RL (1992) Far-infrared spectral studies of phase changes in water ice induced by proton irradiation. Astrophys J 401:353

    ADS  Google Scholar 

  • Moore MH, Hudson RL (2000) IR detection of H2O2 at 80 K in ion-rradiated laboratory ices relevant to Europa. Icarus 145:282

    ADS  Google Scholar 

  • Noll KS, Weaver HA, Gonnella AM (1995) The albedo spectrum of Europa from 2200 Å to 3300 Å. J Geophys Res 100(E9):19057

    ADS  Google Scholar 

  • Noll KS, Johnson RE, Lane AL, Domingue DL, Weaver HA (1996) Detection of ozone on Ganymede. Science 273:341

    ADS  Google Scholar 

  • Noll KS, Johnson RE, McGrath MA, Caldwell JJ (1997a) Detection of SO2 on Callisto with the Hubble Space Telescope. Geophys Res Lett 24:1139

    ADS  Google Scholar 

  • Noll KS, Roush TL, Cruikshank DP, Johnson RE, Pendleton YJ (1997b) Detection of ozone on Saturn’ssatellites Rhea and Dione. Nature 388:45

    ADS  Google Scholar 

  • Palumbo ME (2005) The morphology of interstellar water ice. J Phys Conf Ser 6:211

    ADS  Google Scholar 

  • Palumbo ME (2006) Formation of compact solid water after ion irradiation at 15 K. Astron Astrophys 453:903

    ADS  Google Scholar 

  • Palumbo ME, Strazzulla G (2003) Nitrogen condensation on water ice. Can J Phys 81:217

    ADS  Google Scholar 

  • Pinilla-Alonso N, Brunetto R, Licandro J, Gil-Hutton R, Roush TL, Strazzulla G (2009) The surface of (136108) Haumea (2003 EL{61}), the largest carbon-depleted object in the trans-Neptunian belt. Astron Astrophys 496:547

    ADS  Google Scholar 

  • Porco CC et al (2006) Cassini observes the active South pole of enceladus. Science 311:1393

    ADS  Google Scholar 

  • Raut U, Loeffler MJ, Teolis BD, Vidal RA, Baragiola RA (2005) Radiation synthesis of carbon dioxide in ice-coated grains. Bull Am Astron Soc 37:755

    ADS  Google Scholar 

  • Raut U, Teolis BD, Loeffler MJ, Vidal RA, Fama M, Baragiola RA (2007a) Compaction of microporous amorphous solid water by ion irradiation. J Chem Phys 126:244511

    ADS  Google Scholar 

  • Raut U, Fama M, Baragiola RA, Teolis BD (2007b) Characterization of porosity in vapor-deposited amorphous solid water from methane adsorption. J Chem Phys 127:104713

    ADS  Google Scholar 

  • Raut U, Fama M, Loeffler MJ, Baragiola RA (2008) Cosmic Ray compaction of porous interstellar ices. Astrophys J 687:1070

    ADS  Google Scholar 

  • Reimann CT, Boring JW, Johnson RE, Garrett JW, Farmer KR, Brown WL (1984) Ion-induced molecular ejection from D2O ice. Surf Sci 147:227

    ADS  Google Scholar 

  • Rowland B, Fisher M, Devlin JP (1991) Probing icy surfaces with the dangling-OH-mode absorption: large ice clusters and microporous amorphous ice. J Chem Phys 95:1378

    ADS  Google Scholar 

  • Sack NJ, Baragiola RA (1993) Sublimation of vapor-deposited water ice below 170 K, and its dependence on growth conditions. Phys Rev B 48:9973

    ADS  Google Scholar 

  • Sack NJ, Johnson RE, Boring JW, Baragiola RA (1992) The effect of magnetospheric ion bombardment on the reflectance of Europa’s surface. Icarus 100:534–539

    ADS  Google Scholar 

  • Schmitt B, De Bergh C, Festou M (eds) (1998) Solar system ices. Kluwer, Dordrecht

    Google Scholar 

  • Shi M, Baragiola RA, Grosjean DE, Johnson RE, Jurac S, Schou J (1995) Sputtering of water ice surfaces and the production of extended neutral atmospheres. J Geophys Res 100:26387

    ADS  Google Scholar 

  • Shi J, Teolis BD, Baragiola RA (2009) Irradiation-enhanced adsorption and trapping of O2 on nanoporous water ice. Phys Rev B 79:235422

    ADS  Google Scholar 

  • Shi J, Fama MA, Teolis BD, Baragiola RA (2010) Ion-induced electrostatic charging of ice. Nucl Instrm Method Phys Res B 268:2888

    ADS  Google Scholar 

  • Sigmund P (1969) Theory of sputtering. I. Sputtering yield of amorphous and polycrystalline targets. Phys Rev 184:383

    ADS  Google Scholar 

  • Slanger TG, Black G (1982) Photodissociative channels at 1216 Å for H2O, NH3, and CH4. J Chem Phys 77:2432

    ADS  Google Scholar 

  • Spencer JR, Calvin WM (2002) Condensed O2 on Europa and Callisto. Astron J 124:3400

    ADS  Google Scholar 

  • Spinks JWT, Woods RJ (1990) An introduction to radiation chemistry. Wiley, New York

    Google Scholar 

  • Strazzulla G, Baratta GA, Leto G, Foti G (1992) Ion-beam-induced amorphization of crystalline water ice. Europhys Lett 18:517

    ADS  Google Scholar 

  • Strazzulla G, Leto G, Gomis O, Satorre MA (2003) Implantation of carbon and nitrogen ions in water ice. Icarus 164:163

    ADS  Google Scholar 

  • Strazzulla G, Baratta GA, Leto G, Gomis O (2007) Hydrate sulfuric acid after sulfur implantation in water ice. Icarus 192:623

    ADS  Google Scholar 

  • Teolis BD, Vidal RA, Shi J, Baragiola RA (2005) Mechanisms of O2 sputtering from water ice by keV ions. Phys Rev B 72:245422

    ADS  Google Scholar 

  • Teolis BD, Loeffler MJ, Raut U, Fama M, Baragiola RA (2006) Ozone synthesis on the icy satellites. Astrophys J Lett 644:L141

    ADS  Google Scholar 

  • Teolis BD, Shi J, Baragiola RA (2009) Formation, trapping, and ejection of radiolytic O2 from ion-irradiated water ice studied by sputter depth profiling. J Chem Phys 130:134704

    ADS  Google Scholar 

  • Vidal RA, Bahr D, Baragiola RA, Peters M (1997) Oxygen on Ganymede: Laboratory Studies. Science 276:1839

    ADS  Google Scholar 

  • Vidal RA, Teolis BD, Baragiola RA (2005) Angular dependence of the sputtering yield of water ice by 100 keV proton bombardment. Surf Sci 588:1

    ADS  Google Scholar 

  • Warren SG (1984) Optical-constants of ice from the ultraviolet to the microwave. Appl Opt 23:1206

    ADS  Google Scholar 

  • Wilson CD, Dukes CA, Baragiola RA (2001) Search for the plasmon in condensed water. Phys Rev B 63:121101

    ADS  Google Scholar 

Download references

Acknowledgments

This work was supported at Virginia by NASA Outer Solar System and Planetary Geology and Geophysics programs and by NSF Astronomy. MEP and GS acknowledge the support by Italian Space Agency contract n. I/015/07/0 (“Studi di Esplorazione Sistema Solare)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Baragiola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Baragiola, R.A. et al. (2013). Radiation Effects in Water Ice in the Outer Solar System. In: Gudipati, M., Castillo-Rogez, J. (eds) The Science of Solar System Ices. Astrophysics and Space Science Library, vol 356. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3076-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3076-6_16

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3075-9

  • Online ISBN: 978-1-4614-3076-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics