Skip to main content

Chemistry in Water Ices: From Fundamentals to Planetary Applications

  • Chapter
  • First Online:
The Science of Solar System Ices

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 356))

Abstract

Laboratory studies pertinent to the chemistry of ices with and without additional ingredients such as organics is critical to our understanding of how solar system icy bodies from comets and Kuiper Belt Objects far away in the outer solar system to the ices on Earth, much closer to the sun. This chapter reviews our present day understanding of the fundamental processes that occur in water-rich ices, containing organic impurities. In particular, the role of radiation – photons, electrons, and ions on the chemical evolution of solar system ices, including the newly discovered photoionization in ices, are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aloisio S, Francisco JS (2000) Radical-water complexes in Earth’s atmosphere. Acc Chem Res 33(12):825–830

    Google Scholar 

  • Apkarian VA, Schwentner N (1999) Molecular photodynamics in rare gas solids. Chem Rev 99(6):1481–1514

    Google Scholar 

  • Atkins PW, de Paula J (2009) Atkins’ physical chemistry. Oxford University Press, Oxford

    Google Scholar 

  • Bahr DA, Fama M et al (2001) Radiolysis of water ice in the outer solar system: sputtering and trapping of radiation products. J Geophys Res Planet 106(E12):33285–33290

    ADS  Google Scholar 

  • Baragiola RA, Bahr DA (1998) Laboratory studies of the optical properties and stability of oxygen on Ganymede. J Geophys Res Planet 103(E11):25865–25872

    ADS  Google Scholar 

  • Baragiola RA, Atteberry CL et al (1999) “Comment on” laboratory studies of the optical properties and stability of oxygen on Ganymede “by Raul A. Baragiola and David A. Bahr – Reply”. J Geophys Res Planet 104(E6):14183–14187

    ADS  Google Scholar 

  • Bar-Nun A, Herman G et al (1985) Trapping and release of gases by water ice and implications for icy bodies. Icarus 63:317–332

    ADS  Google Scholar 

  • Bar-Nun A, Prialnik D et al (1987) Trapping of gases by water ice and implications for icy bodies. Adv Space Res 7(5):45–47

    ADS  Google Scholar 

  • Basile BP, Middleditch BS et al (1984) Polycyclic aromatic hydrocarbons in the Murchison meteorite. Org Geochem 5(4):211–216

    Google Scholar 

  • Bernstein MP, Sandford SA et al (1999) UV irradiation of polycyclic aromatic hydrocarbons in ices: production of alcohols, quinones, and ethers. Science 283:1135–1138

    ADS  Google Scholar 

  • Bernstein MP, Dworkin JP et al (2002) Racemic amino acids from the ultraviolet photolysis of interstellar ice analogues. Nature 416:401–403

    ADS  Google Scholar 

  • Bernstein MP, Moore MH et al (2003) Side group addition to the polycyclic aromatic hydrocarbon coronene by proton irradiation in cosmic ice analogs. Astrophys J 582(1):L25–L29

    ADS  Google Scholar 

  • Boersma C, Hony S et al (2006) UIR bands in the ISOSWS spectrum of the carbon star TU Tauri. Astron Astrophys 447(1):213–U166

    ADS  Google Scholar 

  • Bouwman J, Paardekooper DM et al (2009) Real-time optical spectroscopy of vacuum ultraviolet irradiated pyrene: H2O interstellar ice. Astrophys J 700(1):56–62

    ADS  Google Scholar 

  • Bouwman J, Cuppen HM et al (2010) Photochemistry of the PAH pyrene in water ice: the case for ion-mediated solid-state astrochemistry. Astron Astrophys 511:10

    Google Scholar 

  • Bouwman J, Cuppen HM et al (2011a) Photochemistry of polycyclic aromatic hydrocarbons in cosmic water ice II. Near UV/VIS spectroscopy and ionization rates. Astron Astrophys 529:A46

    ADS  Google Scholar 

  • Bouwman J, Mattioda AL et al (2011b) Photochemistry of polycyclic aromatic hydrocarbons in cosmic water ice I. Mid-IR spectroscopy and photoproducts. Astron Astrophys 525:13

    Google Scholar 

  • Box HC (1970) Endor study of X-irradiated single crystals of ice. J Chem Phys 53(1059)

    Google Scholar 

  • Brown WL, Augustyniak WM et al (1984) Electronic sputtering of low-temperature molecular-solids. Nucl Instrum Methods Phys Res Sect B 229(2–3):307–314

    ADS  Google Scholar 

  • Calvin WM, Johnson RE et al (1996) O2 on Ganymede: spectral characteristics and plasma formation mechanisms. Geophys Res Lett 23:673–676

    ADS  Google Scholar 

  • Carlson RW, Anderson MS et al (1999) Hydrogen peroxide on the surface of Europa. Science 283(5410):2062–2064

    ADS  Google Scholar 

  • Cassidy TA, Johnson RE et al (2007) The spatial morphology of Europa’s near-surface O-2 atmosphere. Icarus 191(2):755–764

    ADS  Google Scholar 

  • Cooper PD, Johnson RE et al (2003a) Hydrogen peroxide dimers and the production of O-2 in icy satellite surfaces. Icarus 166(2):444–446

    ADS  Google Scholar 

  • Cooper PD, Johnson RE et al (2003b) A review of possible optical absorption features of oxygen molecules in the icy surfaces of outer solar system bodies. Planet Space Sci 51:183–192

    ADS  Google Scholar 

  • Cooper PD, Kjaergaard HG et al (2003c) Infrared measurements and calculations on H2O center dot HO. J Am Chem Soc 125(20):6048–6049

    Google Scholar 

  • Cooper PD, Moore MH et al (2008) Radiation chemistry of H2O + O2 Ices. Icarus 194:379–388

    ADS  Google Scholar 

  • Cooper PD, Moore MH, Hudson RL (2010) O-atom production in water ice: implications for O2 formation on icy satellites. J Geophys Res,accepted for publication

    Google Scholar 

  • Danilychev AV, Apkarian VA (1994) Atomic oxygen in crystalline Kr and Xe. 2. Adiabatic potential-energy surfaces. J Chem Phys 100(8):5556–5566

    ADS  Google Scholar 

  • Fillion JH, van Harrevelt R et al (2001) Photodissociation of H2O and D2O in (B)over-tilde, (C)over-tilde, and (D)over-tilde states (134–119 nm). Comparison between experiment and ab initio calculations. J Phys Chem A 105(51):11414–11424

    Google Scholar 

  • Gerakines PA, Schutte WA et al (1996) Ultraviolet processing of interstellar ice analogs. I. Pure ices. Astron Astrophys 312:289–305

    ADS  Google Scholar 

  • Ghormley JA, Hochanadel CJ (1971) Production of hydrogen, hydroxide, and hydrogen peroxide in the flash photolysis of ice. J Phys Chem 75(1):40–44

    Google Scholar 

  • Gomis O, Leto G et al (2004a) Hydrogen peroxide production by ion irradiation of thin water ice films. Astron Astrophys 420(2):405–410

    ADS  Google Scholar 

  • Gomis O, Leto G, Strazzulla G (2004b) Hydrogen peroxide production by ion irradiation of thin water ice films. Astron Astrophys 420:405–410

    ADS  Google Scholar 

  • Gomis O, Satorre MA et al (2004c) Hydrogen peroxide formation by ion implantation in water ice and its relevance to the Galilean satellites. Planet Space Sci 52(5–6):371–378

    ADS  Google Scholar 

  • Gudipati MS (2004) Matrix-isolation in cryogenic water-ices: facile generation, storage, and optical spectroscopy of aromatic radical cations. J Phys Chem A 108(20):4412–4419

    Google Scholar 

  • Gudipati MS, Allamandola LJ (2003) Facile generation and storage of polycyclic aromatic hydrocarbon ions in astrophysical ices. Astrophys J Lett 596(2):L195–L198

    ADS  Google Scholar 

  • Gudipati MS, Allamandola L (2006a) Unusual stability of PAH radical cations in amorphous water-ice up to 120 K: astronomical implications. Astrophys J Lett 638:286–292

    ADS  Google Scholar 

  • Gudipati MS, Allamandola LJ (2006b) Double ionization of quaterrylene (C40H20) in water-ice at 20 K with Ly(alpha) (121.6 nm) radiation. J Phys Chem A 110(28):9020–9024

    Google Scholar 

  • Gudipati MS, Kalb M (1999) Rydberg and charge-transfer states of atomic oxygen in Ar and Kr matrices: identification of two distinct sites. Chem PhysLett 307(1–2):27–34

    ADS  Google Scholar 

  • Gudipati MS, Schouren F et al (2000) Concentration dependence of the spectroscopic and photochemical properties of atomic and molecular oxygen in argon matrices. Spectrochim Acta A 56:2581

    ADS  Google Scholar 

  • Hall DT, Strobel DF et al (1995) Detection of an oxygen tmosphere on Jupiter’s Moom Europa. Nature 373:677–679

    ADS  Google Scholar 

  • Hall DT, Feldman PD et al (1998) The far-ultraviolet oxygen airglow of Europa and Ganymede. Astrophys J 499(1):475–481

    ADS  Google Scholar 

  • Hand KP, Carlson RW (2012) Laboratory spectroscopic analyses of electron irradiated alkanes and alkenes in solar system ices. J Geophys Res Planet 117, E03008, doi:10.1029/2011JE003888

    Google Scholar 

  • Harich SA, Hwang DWH et al (2000) Photodissociation of H2O at 121.6 nm: a state-to-state dynamical picture. J Chem Phys 113(22):10073–10090

    ADS  Google Scholar 

  • Harich SA, Yang XF et al (2001) Photodissociation of D2O at 121.6 nm: a state-to-state dynamical picture. J Chem Phys 114(18):7830–7837

    ADS  Google Scholar 

  • Herring-Captain J, Grieves GA et al (2005) Low-energy (5–250 eV) electron-stimulated desorption of H+, H-2(+), and H + (H2O)(n) from low-temperature water ice surfaces. Phys Rev B 72(3):10

    Google Scholar 

  • Hodyss R, Johnson PV et al (2009a) Photochemistry of methane-water ices. Icarus 200(1):338–342

    ADS  Google Scholar 

  • Hodyss R, Parkinson CD et al (2009b) Methanol on Enceladus. Geophys Res Lett 36:L17103

    ADS  Google Scholar 

  • Hollas JM (2005) Modern spectroscopy. Wiley, Chichester

    Google Scholar 

  • Hudson RL, Moore MH (2001) Radiation chemical alterations in solar system ices: an overview. J Geophys ResPlanet 106(E12):33275–33284

    ADS  Google Scholar 

  • Joens JA (2001) The dissociation energy of OH(X2Œ†3/2) and the enthalpy of formation of OH(X2Œ†3/2), ClOH, and BrOH from thermochemical cycles. J Phys Chem A 105(49):11041–11044

    Google Scholar 

  • Johnson RE, Jesser WA (1997) O2/O3 Microatmospheres in the surface of Ganymede. Astrophys J 480:L79–L82

    ADS  Google Scholar 

  • Johnson RE, Quickenden TI (1997) Photolysis and radiolysis of water ice on outer solar system bodies. J Geophys Res 102(E5):10985–10996

    ADS  Google Scholar 

  • Johnson RE, Cooper PD et al (2005a) Production of oxygen by electronically induced dissociations in ice. J Chem Phys 123(18)

    Google Scholar 

  • Johnson RE, Cooper PD et al (2005b) Production of oxygen by electronically induced dissociations in ice. J Chem Phys 123(18):8

    Google Scholar 

  • Kanaev AV, Museur L et al (2001) Dissociation and suppressed ionization of H2O molecules embedded in He clusters: the role of the cluster as a cage. J Chem Phys 115(22):10248–10253

    ADS  Google Scholar 

  • Khriachtchev L, Pettersson M et al (2000) Photochemistry of hydrogen peroxide in Kr and Xe matrixes. J Chem Phys 112(5):2187–2194

    ADS  Google Scholar 

  • Khriachtchev L, Tanskanen H et al (2002) Isotopic effect on thermal mobility of atomic hydrogen in solid xenon. J Chem Phys 116(13):5708–5716

    ADS  Google Scholar 

  • Kimmel GA, Orlando TM et al (1994) Low-energy electron-stimulated production of molecular-hydrogen from amorphous water ice. J Chem Phys 101(4):3282–3286

    ADS  Google Scholar 

  • Laffon C, Lacombe S et al (2006) Radiation effects in water ice: a near edge x-ray absorption fine structure study. J Chem Phys 125:204714

    ADS  Google Scholar 

  • Langford VS, McKinley AJ et al (2000a) Identification of H2O center dot HO in argon matrices. J Am Chem Soc 122(51):12859–12863

    Google Scholar 

  • Langford VS, McKinley AJ et al (2000b) Luminescent photoproducts in UV-irradiated ice. Acc Chem Res 33:665–671

    Google Scholar 

  • Langford VS, McKinley AJ et al (2001) Temperature dependence of the visible-near-infrared absorption spectrum of liquid water. J Phys Chem A 105(39):8916–8921

    Google Scholar 

  • Lennon D, Quickenden TI et al (1993) Uv-excited luminescences from amorphous and polycrystalline H2O ices. Chem Phys Lett 201(1–4):120–126

    ADS  Google Scholar 

  • Loeffler MJ, Baragiola RA (2005) The state of hydrogen peroxide on Europa. Geophys Res Lett 32(17):4

    Google Scholar 

  • Loeffler MJ, Baragiola RA (2009) Is the 3.5 mu m infrared feature on enceladus due to hydrogen peroxide? Astrophys J Lett 694(1):L92–L94

    ADS  Google Scholar 

  • Loeffler MJ, Raut U et al (2006a) Synthesis of hydrogen peroxide in water ice by ion irradiation. Icarus 180:265–273

    ADS  Google Scholar 

  • Loeffler MJ, Teolis BD et al (2006b) A model study of the thermal evolution of astrophysical ices. Astrophys J 639(2):L103–L106

    ADS  Google Scholar 

  • Low GR, Kjaergaard HG (1999) Calculation of OH-stretching band intensities of the water dimer and trimer. J Chem Phys 110(18):9104–9115

    ADS  Google Scholar 

  • Maksyutenko P, Rizzo TR et al (2006) A direct measurement of the dissociation energy of water. J Chem Phys 125(18):3

    Google Scholar 

  • Matich AJ, Bakker MG et al (1993) O2 Luminescence from UV-Excited H2O and D2O Ices. J Phys Chem 97:10539–10553

    Google Scholar 

  • Meierhenrich UJ, Muñoz Caro GM et al (2002) Amino acids from ultraviolet irradiation of interstellar ice analogues. Geochim et Cosmochim Acta 66(15A):A505

    Google Scholar 

  • Meyer A, van Gastel M (2011) EPR and ENDOR study of the frozen ammoniated electron at low alkali-metal concentrations. J Phys Chem A 115(10):1939–1945

    Google Scholar 

  • Moore MH, Hudson RL (1998) Infrared study of ion-irradiated water-ice mixtures with hydrocarbons relevant to comets. Icarus 135(2):518–527

    ADS  Google Scholar 

  • Moore MH, Hudson RL (2000) IR detection of H2O2 at 80 K in ion-irradiated laboratory ices relevant to Europa. Icarus 145(1):282–288

    ADS  Google Scholar 

  • Mordaunt DH, Ashfold MNR et al (1994) Dissociation dynamics Of H2O(D2O) following photoexcitation at the lyman-alpha wavelength (121.6-Nm). J Chem Phys 100(10):7360–7375

    ADS  Google Scholar 

  • Muñoz Caro GM, Meierhenrich UJ et al (2002) Amino acids from ultraviolet irradiation of interstellar ice analogues. Nature 416:403–406

    ADS  Google Scholar 

  • Newman SF, Buratti BJ et al (2007) Hydrogen peroxide on Enceladus. Astrophys J 670(2):L143–L146

    ADS  Google Scholar 

  • Orlando TM, Sieger MT (2003) The role of electron-stimulated production of O-2 from water ice in the radiation processing of outer solar system surfaces. Surf Sci 528(1–3):1–7

    ADS  Google Scholar 

  • Orzechowska GE, Goguen JD et al (2007) Ultraviolet photolysis of amino acids in a 100 K water ice matrix: application to the outer Solar System bodies. Icarus 187(2):584–591

    ADS  Google Scholar 

  • Quickenden TI, Irvin JA (1980) The ultraviolet-absorption spectrum of liquid water. J Chem Phys 72(8):4416–4428

    ADS  Google Scholar 

  • Quickenden TI, Trotman SM et al (1982) Pulse radiolytic studies of the ultraviolet and visible emissions from purified H2O ice. J Chem Phys 77(8):3790–3802

    ADS  Google Scholar 

  • Quickenden TI, Litjens RAJ et al (1985) Uv excited luminescence from crystalline H2O ice. Chem Phys Lett 114(2):164–167

    ADS  Google Scholar 

  • Quickenden TI, Litjens RAJ et al (1988) Red emission from pulse irradiated H2O ice. Radiat Res 115(3):403–412

    Google Scholar 

  • Quickenden TI, Green TA et al (1996) Luminescence from UV-irradiated amorphous H2O ice. J Phys Chem 100(42):16801–16807

    Google Scholar 

  • Quickenden TI, Hanlon AR et al (1997) Activation energy for the emission of 420 nm luminescence from UV-excited polycrystalline H2O ice. J Phys Chem A 101(25):4511–4516

    Google Scholar 

  • Quirico E, Borg J et al (2005) A micro-Raman survey of 10 IDPs and 6 carbonaceous chondrites. Planet Space Sci 53(14–15):1443–1448

    ADS  Google Scholar 

  • Selby BJ, Quickenden TI et al (2006) Isotopic effects on the time-dependences of 420 nm ice luminescence excited by UV light. Kinet Catal 47(5):686–698

    Google Scholar 

  • Spencer JR, Calvin WM (2002) Condensed O2 on Europa and Callisto. Astrophys J 124(December):3400–3403

    ADS  Google Scholar 

  • Spencer JR, Calvin WM et al (1995) Charge-coupled device spectra of the Galilean Satellites: molecular oxygen on Ganymede. J Geophys Res 100:19049–19056

    ADS  Google Scholar 

  • Strazzulla G, Leto G et al (2005) Production of oxidants by ion irradiation of water/carbon dioxide frozen mixtures. Astrobiology 5(5):612–621

    ADS  Google Scholar 

  • Szabo A, Ostlund NS (1996) Modern quantum chemistry: introduction to advanced electronic structure theory, vol 11501. Dover Publications, Mineola

    Google Scholar 

  • Tanskanen H, Khriachtchev L et al (2008) Formation of noble-gas hydrides and decay of solvated protons revisited: diffusion-controlled reactions and hydrogen atom losses in solid noble gases. Phys Chem Chem Phys 10(5):692–701

    Google Scholar 

  • Teolis BD, Vidal RA et al (2005) Mechanisms of O-2 sputtering from water ice by keV ions. Phys Rev B 72(24):9

    Google Scholar 

  • Teolis BD, Loeffler MJ et al (2006) Ozone synthesis on the icy satellites. Astrophys J 644(2):L141–L144

    ADS  Google Scholar 

  • Teolis BD, Shi J et al (2009) Formation, trapping, and ejection of radiolytic O-2 from ion-irradiated water ice studied by sputter depth profiling. J Chem Phys 130(13):9

    Google Scholar 

  • van Harrevelt R, van Hemert MC (2000) Photodissociation of water. II. Wave packet calculations for the photofragmentation of H2O and D2O in the (B)over-tilde band. J Chem Phys 112(13):5787–5808

    ADS  Google Scholar 

  • van Harrevelt R, van Hemert MC (2008) Quantum mechanical calculations for the H2O + h nu→ O(D-1) + H-2 photodissociation process. J Phys Chem A 112(14):3002–3009

    Google Scholar 

  • van Harrevelt R, van Hemert MC et al (2001) A comparative classical-quantum study of the photodissociation of water in the (B)over-tilde band. J Phys Chem A 105(51):11480–11487

    Google Scholar 

  • Verlet JRR, Bragg AE et al (2005) Observation of large water-cluster anions with surface-bound excess electrons. Science 307:93–96

    ADS  Google Scholar 

  • Vernon CF, Bakker MG et al (1990) The luminescence spectrum of electron-irradiated D2O ice – the effects of decay time, accumulated dose and isotopic-substitution. Radiat Phys Chem 36(4):529–531

    Google Scholar 

  • Vidal RA, Bahr D et al (1997) Oxygen on Ganymede: laboratory studies. Science 276(5320):1839–1842

    ADS  Google Scholar 

  • Warren SG (1984) Optical constants of ice from the ultraviolet to the microwave. Appl Opt 23:1206–1225

    ADS  Google Scholar 

  • Weber AS, Hodyss R et al (2009) Hydrogen-deuterium exchange in photolyzed methane-water ices. Astrophys J 703(1):1030–1033

    ADS  Google Scholar 

  • Woon DE, Park JY (2004) Photoionization of benzene and small polycyclic aromatic hydrocarbons in ultraviolet-processed astrophysical ices: a computational study. Astrophys J 607(1):342–345

    ADS  Google Scholar 

  • Yi WK, Park J et al (2007) Photodissociation dynamics of water at Lyman alpha (121.6 nm). Chem Phys Lett 439(1–3):46–49

    ADS  Google Scholar 

  • Zheng WJ, Jewitt D et al (2006a) Formation of hydrogen, oxygen, and hydrogen peroxide in electron-irradiated crystalline water ice. Astrophys J 639(1):534–548

    ADS  Google Scholar 

  • Zheng WJ, Jewitt D et al (2006b) Temperature dependence of the formation of hydrogen, oxygen, and hydrogen peroxide in electron-irradiated crystalline water ice. Astrophys J 648(1):753–761

    ADS  Google Scholar 

  • Zheng WJ, Jewitt D et al (2007) Electron irradiation of crystalline and amorphous D2O ice. Chem Phys Lett 435(4–6):289–294

    ADS  Google Scholar 

  • Zins EL, Joshi PR et al (2011) Production and isolation of OH radicals in water ice. Mon Not R Astron Soc 415(4):3107–3112

    ADS  Google Scholar 

Download references

Acknowledgments

MSG thanks NASA funding through several grants (NASA Planetary Atmospheres, NASA Discovery Data Analysis, NASA Cassini Data Analysis Programs, NASA Astrobiology Institute Nodes “Icy Worlds” and “Titan Prebiotic Chemistry”), JPL’s DRDF and R&TD funding. MSG’s research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. PDC acknowledges funding through the NASA Astrobiology Institute “Icy Worlds” node and the Jeffress Memorial Trust. We thank Will Grundy for critical reading and for helpful suggestions to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murthy S. Gudipati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gudipati, M.S., Cooper, P.D. (2013). Chemistry in Water Ices: From Fundamentals to Planetary Applications. In: Gudipati, M., Castillo-Rogez, J. (eds) The Science of Solar System Ices. Astrophysics and Space Science Library, vol 356. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3076-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3076-6_15

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3075-9

  • Online ISBN: 978-1-4614-3076-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics