Skip to main content

Geology of Icy Bodies

  • Chapter
  • First Online:
The Science of Solar System Ices

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 356))

Abstract

The exploration of the outer solar system in the last decades revealed an exotic icy world with surfaces showing the most diverse geology, sometimes exceptional to these icy bodies due to the peculiar rheology of ice. Each of these icy bodies exhibits unique characteristics and its own fascinating geological history – formed by the competition of external and internal forces.

Some satellites are still geologically active today while others appear to be mostly inactive at present time. Geologically old surfaces are heavily cratered. Some projectiles which created large craters or basins were massive enough that they could have destroyed the target body, like in the case of the impact crater Herschel on the Saturnian satellite Mimas. The observed impact crater morphologies are often exclusive to icy bodies like impact craters on the Galilean satellites Ganymede and Callisto. They mirror the target properties at the time of impact and thus help to understand the satellite’s geological evolution. They also reflect the external influence of the space environment onto the surface material since the impact occurred, which is of major importance since most of these icy bodies do not exhibit an atmosphere. Tectonic resurfacing can often be observed as widely distributed simple extensional fractures. Satellites that experienced a more intricate tectonic resurfacing also show more complex tectonic features like double ridges on the Jovian satellite Europa, the Saturnian satellite Enceladus as well as Neptun’s satellite Triton. Peculiar tectonic features that are restricted to a single satellite include Europa’s bands and chaotic terrain as well as Miranda’s coronae indicating outstanding geological evolutions of these two bodies. These complex features are far from being fully understood. They are, at least partly, expected to be associated with recent and/or past cryovolcanism. Current volcanism, however, has been detected only on the two satellites Enceladus and Triton, finding its peak in geysers on Enceladus originating from its south pole forming vapor plumes that reach up to 500 km into space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allison ML, Clifford SM (1987) Ice-covered water volcanism on Ganymede. J Geophys Res 92:7865–7876

    ADS  Google Scholar 

  • Alzate N, Barlow NG (2011) Central pit craters on Ganymede. Icarus 211:1274–1283

    ADS  Google Scholar 

  • Arvidson RE, Boyce J, Chapman C, Cintala M, Fulchignoni M, Moore H, Neukum G, Schultz P, Soderblom L, Strom R, Woronow A, Young R (1979) Standard techniques for presentation and analysis of crater size-frequency data. Icarus 37(2):467–474

    ADS  Google Scholar 

  • Asphaug E, Benz W (1996) Size, density, and structure of Comet Shoemaker-Levy 9 inferred from the physics of tidal breakup. Icarus 121(2):225–248

    ADS  Google Scholar 

  • Baldwin RB (1963) The measure of the Moon. University of Chicago Press, Chicago

    Google Scholar 

  • Baldwin RB (1964) Lunar crater counts. Astron J 69(5):377–392

    ADS  Google Scholar 

  • Baldwin RB (2006) Was there ever a Terminal Lunar Cataclysm? With lunar viscosity arguments. Icarus 184(2):308–318

    ADS  Google Scholar 

  • Barlow NG (2009) Martian central pit craters: summary of Northern Hemisphere results. In: Lunar and planetary science conference, The Woodlands, Texas, XL. Abstract 1915, 23–27 March 2009

    Google Scholar 

  • Barr AC, Preuss LJ (2010) On the origin of south polar folds on Enceladus. Icarus 208:499–503

    ADS  Google Scholar 

  • Beeman M, Durham WB, Kirby SH (1988) Friction of ice. J Geophys Res 93:7625–7633

    ADS  Google Scholar 

  • Billings SE, Kattenhorn SA (2005) The great thickness debate: ice shell thickness models for Europa and comparisons with estimates based on flexure at ridges. Icarus 177:397–412

    ADS  Google Scholar 

  • Bland MT, Showman AP (2007) The formation of Ganymede’s grooved terrain: numerical modeling of extensional necking instabilities. Icarus 189(2):439–456

    ADS  Google Scholar 

  • Bland MT, Beyer RA, Showman AP (2007) Unstable extension of Enceladus’ lithosphere. Icarus 192(1):92–105

    ADS  Google Scholar 

  • Bland MT, Showman AP, Tobie G (2009) The orbital–thermal evolution and global expansion of Ganymede. Icarus 200(1):207–221

    ADS  Google Scholar 

  • Boyce JM (1993) A structural origin for the cantaloupe terrain of Triton. In: Lunar and planetary science conference, Houston, Texas, XXIV. 24(Part 1: A-F (SEE N94-12015 01-91)), pp 165–166, 15–19 March 1993

    Google Scholar 

  • Boyce JM, Plescia JB (1985) Chronology of surface units on the icy satellites of Saturn. In: Ices in the solar system. Proceedings of the advanced research workshop, Nice, 16–19 Jan 1984 edited, D. Reidel, Dordrecht, pp 791–804

    Google Scholar 

  • Bray VJ, Smith DE, Turtle E, Perry J, Rathbun J, Barnash AN, Helfenstein P, Porco CC (2007) Impact crater morphology variations on Enceladus, In: Lunar and planetary science conference, League City, Texas, XXXVIII. LPI contribution no. 1338, p 1873, 12–17 March 2007

    Google Scholar 

  • Brown RH, Kirk RL, Johnson TV, Soderblom LA (1990) Energy sources for Triton’s geyser-like plumes. Science 250:431–435

    ADS  Google Scholar 

  • Brown RH, Soderblom LA, Soderblom JM, Clark RN, Jaumann R, Barnes JW, Sotin C, Buratti B, Baines KH, Nicholson PD (2008) The identification of liquid ethane in Titan’s Ontario Lacus. Nature 454(7204):607–610

    ADS  Google Scholar 

  • Burch JL, Goldstein J, Lewis WS, Young DT, Coates AJ, Dougherty MK, André N (2007) Tethys and Dione as sources of outward-flowing plasma in Saturn’s magnetosphere. Nature 447(7146):833–835

    ADS  Google Scholar 

  • Burchell MJ, Grey IDS, Shrine NRG (2001) Laboratory investigations of hypervelocity impact cratering in ice. Adv Space Res 28(10):1521–1526

    ADS  Google Scholar 

  • Carr MH, Belton MJS, Chapman CR, Davies ME, Geissler P, Greenberg R, McEwen AS, Tufts BR, Greeley R, Sullivan R, Head JW, Pappalardo RT, Klaasen KP, Johnson TV, Kaufman J, Senske D, Moore J, Neukum G, Schubert G, Burns JA, Thomas P, Veverka J (1998) Evidence for a subsurface ocean on Europa. Nature 391:363–365

    ADS  Google Scholar 

  • Carlson RW, Anderson MS, Johnson RE, Smythe WD, Hendrix AR, Barth CA, Soderblom LA, Hansen GB, McCord TB, Dalton JB, Clark RN, Shirley JH, Ocampo AC, Matson DL (1999) Hydrogen peroxide on the surface of Europa. Science 283(5410):2062–2064

    ADS  Google Scholar 

  • Casacchia R, Strom RG (1984) Geologic evolution of Galileo Regio, Ganymede. J Geophys Res 89(S2):B419–B428

    Google Scholar 

  • Castillo-Rogez JC, Matson DL, Sotin C, Johnson TV, Lunine JI, Thomas PC (2007) Iapetus’ geophysics: rotation rate, shape and equatorial ridge. Icarus 190(1):179–202

    ADS  Google Scholar 

  • Castillo-Rogez J, Johnson TV, Lee MH, Turner NJ, Matson DL, Lunine J (2009) 26Al decay: heat production and a revised age for Iapetus. Icarus 204(2):658–662

    ADS  Google Scholar 

  • Chapman CR, McKinnon WB (1986) Cratering of planetary satellites. In: Burns J, Matthews MS (eds) Satellites. University of Arizona Press, Tucson, pp 492–580

    Google Scholar 

  • Chapman CR, Merline WJ, Bierhaus B, Brooks S, Galileo Imaging Team (1998) Cratering in the jovian system: intersatellite comparisons, LPSC XXIX, 16–20 March, Houston, 1927

    Google Scholar 

  • Chuang FC, Greeley R (2000) Large mass movements on Callisto. J Geophys Res 105(E8):20227–20244

    ADS  Google Scholar 

  • Clark BE, Johnson RE (1996) Interplanetary weathering: surface erosion in outer space. Eos Trans Am Geophys Union 77(15):141. doi:10.1029/96EO00094

    ADS  Google Scholar 

  • Clark RN, Curchin JM, Jaumann R, Cruikshank DP, Brown RH, Hoefen TM, Stephan K, Moore JM, Buratti BJ, Baines KH, Nicholson PD, Nelson RM (2008) Compositional mapping of Saturn’s satellite Dione with Cassini VIMS and implications of dark material in the Saturn system. Icarus 193(2):372–386

    ADS  Google Scholar 

  • Collins GC (2006) Global expansion of Ganymede derived from strain measurements in grooved terrain. In: Lunar and planetary science conference, Houston, Texas, XXXVII. Abstract no. 2077, 13–17 March 2006

    Google Scholar 

  • Collins G, Nimmo F (2009) Chaotic terrain on Europa. In: Pappalardo RT, McKinnon WB, Khurana KK (eds) Europa, The University of Arizona space science series. University of Arizona Press, Tucson, pp 259–281

    Google Scholar 

  • Collins GC, Head JW, Pappalardo RT (1998) Formation of Ganymede grooved terrain by sequential extensional episodes: implications of Galileo observations for regional stratigraphy. Icarus 135(1):345–359

    ADS  Google Scholar 

  • Collins GC, Head JW III, Pappalardo RT, Spaun NA (2000) Evaluation of models for the formation of chaotic terrain on Europa. J Geophys Res 105(E1):1709–1716

    ADS  Google Scholar 

  • Collins GC, McKinnon WB, Moore JM, Nimmo F, Pappalardo RT, Prockter LM, Schenk PM (2009) Tectonics of the outer planet satellites. In: Schultz RA, Watters TR (eds) Planetary tectonics, Cambridge University Press, Leiden, pp 264–350

    Google Scholar 

  • Conca J (1981) Dark-ray craters on Ganymede. Lunar Planet. Sci. Conf. XII: Houston, TX, Pergamon Press, p. 1599–1606, 16–20 March 1981

    Google Scholar 

  • Cooper JF, Johnson RE, Mauk BH, Garrett HB, Gehrels N (2001) Energetic ion and electron irradiation of the icy Galilean satellites. Icarus 149:133–159

    ADS  Google Scholar 

  • Crawford GD, Stevenson DJ (1988) Gas-driven water volcanism and the resurfacing of Europa. Icarus 73(1):66–79

    ADS  Google Scholar 

  • Croft SK (1981) On the origin of pit craters. In: Lunar and planetary science conference, XII: Houston, Texas, Abstract no. 1070, 16–20 March 1981

    Google Scholar 

  • Croft SK (1983) A proposed origin for palimpsests and anomalous pit craters on Ganymede and Callisto. J Geophys Res 88:B71–B89

    Google Scholar 

  • Croft SK (1985) The scaling of complex craters. J Geophys Res 90:C828–C842

    Google Scholar 

  • Croft SK, Soderblom LA (1991) Geology of the uranian satellites. In: Bergstralh JT, Miner ED, Matthews MS (eds) Uranus. University of Arizona Press, Tucson, pp 561–628

    Google Scholar 

  • Croft SK, Kargel JS, Kirk RL, Moore JM, Schenk PM, Strom RG (1995) The geology of Triton. In: Cruikshank DP (ed) Neptune and Triton. University of Arizona Press, Tucson, pp 879–947

    Google Scholar 

  • Crow-Willard EN, Pappalardo RT (2009) Geological mapping of tectonized terrains in the trailing hemisphere of Enceladus, Spring meeting 2009, American Geophysical Union, Toronto, Ontario, Canada, 24–27 May 2009

    Google Scholar 

  • Czechowski L, Leliwa-Kopystynski J (2008) The Iapetus’s ridge: possible explanations of its origin. Adv Space Res 42:61–69

    ADS  Google Scholar 

  • Denk T, Neukum G, Roatsch T, Porco CC, Burns JA, Galuba GG, Schmedemann N, Helfenstein P, Thomas PC, Wagner RJ, West RA (2010) Iapetus: unique surface properties and a global color dichotomy from Cassini imaging. Science 327(5964):435–439

    ADS  Google Scholar 

  • DeRemer LC, Pappalardo RT (2003) Manifestations of strike slip faulting on Ganymede. In: Lunar and planetary science conference, XXXIV, Houston, Texas. Abstract no. 2033, 17–21 March 2003

    Google Scholar 

  • Dermott SF, Malhotra R, Murray CD (1988) Dynamics of the Uranian and Saturnian satellite systems: a chaotic route to melting Miranda? Icarus 76(2):295–334

    ADS  Google Scholar 

  • Dombard A, McKinnon W (2006) Folding of Europa’s icy lithosphere: an analysis of viscous-plastic buckling and subsequent topographic relaxation. J Struct Geol 28(12):2259–2269

    ADS  Google Scholar 

  • Dombard AJ, Cheng AF (2008) Constraints on the evolution of Iapetus from simulations of its ridge and bulge. In: Lunar and planetary science conference, XXXIX, League City, Texas, Abstract no. 2262, 10–14 March 2008

    Google Scholar 

  • Dombard AJ, McKinnon WB (2001) Formation of grooved Terrain on Ganymede: extensional instability mediated by cold, superplastic creep. Icarus 154(2):321–336

    ADS  Google Scholar 

  • Dombard AJ, Cheng AF, McKinnon WB, Kay JP (2010) The weirdest topography in the outer solar system: the ridge on Iapetus and its possible formation via giant impact. AGU fall meeting 2010, San Francisco, California. Abstract no. P31D-01, 5–9 December 2010

    Google Scholar 

  • Dones L, Chapman CR, McKinnon WB, Melosh HJ, Kirchoff MR, Neukum G, Zahnle KJ (2009) Icy satellites of Saturn: impact cratering and age determination. In: Dougherty MK, Esposito LW, Krimigis SM (eds) Saturn from Cassini-Huygens. Springer, Netherlands, pp 613–635

    Google Scholar 

  • Durda DD, Greenberg R, Jedicke R (1998) Collisional models and scaling laws: a new interpretation of the shape of the main-belt asteroid size distribution. Icarus 135(2):431–440

    ADS  Google Scholar 

  • Durham WB, Stern LA (2001) Rheological properties of water ice – application to satellites of the outer planets. Ann Rev Earth Pl Sc 29(1):295–330

    ADS  Google Scholar 

  • Durham WB, Prieto-Ballesteros O, Goldsby D, Kargel J (2010) Rheological and thermal properties of icy materials. Space Sci Rev 153(1):273–298

    ADS  Google Scholar 

  • Elachi C, Wall S, Janssen M, Stofan E, Lopes R, Kirk R, Lorenz R, Lunine J, Paganelli F, Soderblom L, Wood C, Wye L, Zebker H, Anderson Y, Ostro S, Allison M, Boehmer R, Callahan P, Encrenaz P, Flamini E, Francescetti G, Gim Y, Hamilton G, Hensley S, Johnson W, Kelleher K, Muhleman D, Picardi G, Posa F, Roth L, Seu R, Shaffer S, Stiles B, Vetrella S, West R (2006) Titan Radar Mapper observations from Cassini’s T3 fly-by. Nature 441(7094):709–713

    ADS  Google Scholar 

  • Fagents SA (2003) Considerations for effusive cryovolcanism on Europa: the post-Galileo perspective. J Geophys Res 108(E12):13-11–13-19

    Google Scholar 

  • Fagents SA, Greeley R, Sullivan RJ, Pappalardo RT, Prockter LM, The Galileo SSI Team (2000) Cryomagmatic mechanisms for the formation of Rhadamanthys Linea, triple band margins, and other low-albedo features on Europa. Icarus 144(1):54–88

    ADS  Google Scholar 

  • Figueredo PH, Greeley R (2000) Geologic mapping of the northern leading hemisphere of Europa from Galileo solid-state imaging data. J Geophys Res 105(E9):22629–22646

    ADS  Google Scholar 

  • Figueredo PH, Greeley R (2003) The emerging resurfacing history of Europa from pole-to-pole geologic mapping. In: Lunar and planetary science conference, XXXIV2003, Houston, Texas. Abstract no. 1017, 17–21 March 2003

    Google Scholar 

  • Figueredo PH, Greeley R (2004) Resurfacing history of Europa from pole-to-pole geological mapping. Icarus 167(2):287–312

    ADS  Google Scholar 

  • Figueredo PH, Chuang FC, Rathbun J, Kirk RL, Greeley R (2002) Geology and origin of Europa’s “Mitten” feature (Murias Chaos). J Geophys Res 107:5026

    Google Scholar 

  • Fink JH (1980) Possible Rhyolite flows in the Arcadia Planitia region of Mars: evidence from surface ridge geometry. In: Lunar and planetary science conference, Houston, Texas. Abstract no. 285–287, 17–21 March 1980

    Google Scholar 

  • Fletcher RC, Hallet B (1983) Unstable extension of the lithosphere: a mechanical model for basin-and-range structure. J Geophys Res 88(B9):7457–7466

    ADS  Google Scholar 

  • Fortes AD, Grindrod PM, Trickett SK, Vocadlo L (2007) Ammonium sulfate on Titan: possible origin and role in cryovolcanism. Icarus 188(1):139–153

    ADS  Google Scholar 

  • Friedson AJ, Stevenson DJ (1983) Viscosity of rock-ice mixtures and applications to the evolution of icy satellites. Icarus 56(1):1–14

    ADS  Google Scholar 

  • Gaidos EJ, Nimmo F (2000) Planetary science: tectonics and water on Europa. Nature 405(6787):637

    ADS  Google Scholar 

  • Gault D, Greeley R (1978) Exploratory experiments of impact craters formed in viscous-liquid targets: analogs for Martian rampart craters? Icarus 34:486–495

    ADS  Google Scholar 

  • Geissler PE (2000) Cryovolcanism in the outer Solar System. In: Sigurdsson H, Houghton BF, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic, San Diego/San Francisco/New York/Boston/London/Sydney/Toronto, pp 785–800

    Google Scholar 

  • Geissler PE, Greenberg R, Hoppa G, McEwen A, Tufts R, Phillips C, Clark B, Ockert-Bell M, Helfenstein P, Burns J, Veverka J, Sullivan R, Greeley R, Pappalardo RT, Head JW, Belton MJS, Denk T (1998) Evolution of lineaments on Europa: clues from Galileo multispectral imaging observations. Icarus 135(1):107–126

    ADS  Google Scholar 

  • Giese B, Oberst J, Roatsch T, Neukum G, Head JW, Pappalardo RT (1998) The local topography of Uruk Sulcus and Galileo Regio obtained from stereo images. Icarus 135(1):303–316

    ADS  Google Scholar 

  • Giese B, Wagner R, Neukum G, Sullivan R (1999) Doublet ridge formation on Europa: evidence from topographic data. In: American Astronomical Society, DPS meeting #31, edited, p 62.08

    Google Scholar 

  • Giese B, Wagner R, Neukum G, Pappalardo R, Head JW III, The Galileo SSI Team (2001) In: Lunar and planetary science conference, XXXII, Houston, Texas. Abstract no. 1743, 12–16 March 2001

    Google Scholar 

  • Giese B, Wagner R, Neukum G, Helfenstein P, Thomas PC (2007a) Tethys: lithospheric thickness and heat flux from flexurally supported topography at Ithaca Chasma. Geophys Res Lett 34:L21203

    ADS  Google Scholar 

  • Giese, B, Wagner R, Roatsch T, Denk T, Neukum G (2007b) The topographies of Rhea and Iapetus in comparison. In: AGU, Fall meeting 2007, San Francisco, California, edited, AGU, 10–14 December 2007

    Google Scholar 

  • Giese B, Denk T, Neukum G, Roatsch T, Helfenstein P, Thomas PC, Turtle EP, McEwen A, Porco CC (2008) The topography of Iapetus’ leading side. Icarus 193(2):359–371

    ADS  Google Scholar 

  • Golombek MP, Allison ML (1981) Sequential development of grooved terrain and polygons on Ganymede. Reports of planetary geology program, pp 54–56

    Google Scholar 

  • Gomes R, Levison HF, Tsiganis K, Morbidelli A (2005) Origin of the cataclysmic late heavy bombardment period of the terrestrial planets. Nature 435:466–469

    ADS  Google Scholar 

  • Greeley R, Fink J, Snyder DB, Gault DE, Guest JE, Schultz PH (1980) Impact cratering in viscous targets – laboratory experiments, vol 3. In: Lunar and planetary science conference, XI, League City, Texas. (A82-22351 09-91), pp 2075–2097, 10–14 March 2008

    Google Scholar 

  • Greeley R, Fink JH, Gault DE, Guest JE (1982) Experimental simulation of impact cratering on icy satellites. In: Morrison D (ed) Satellites of Jupiter. University of Arizona Press, Tucson, pp 340–378

    Google Scholar 

  • Greeley R (1985) Planetary landscapes. George Allen and Unwin, London/Boston, p 265

    Google Scholar 

  • Greeley R, Sullivan R, Coon MD, Geissler PE, Tufts BR, Head JW, Pappalardo RT, Moore JM (1998) Terrestrial sea ice morphology: considerations for Europa. Icarus 135(1):25–40

    ADS  Google Scholar 

  • Greeley R, Klemaszewski JE, Wagner R (2000) Galileo views of the geology of Callisto. Planet Space Sci 48(9):829–853

    ADS  Google Scholar 

  • Greeley R, Chyba CF, Head JW, McCord TB, McKinnon WB, Pappalardo RT, Figueredo PH (2004) Geology of Europa. In: Bagenal F, Dowling TE, McKinnon WB (eds) Jupiter: the planet, satellites, and magnetosphere. Cambridge University Press, New York, pp 363–396

    Google Scholar 

  • Greenberg R, Geissler P, Hoppa G, Tufts BR (2002) Tidal-tectonic processes and their implications for the character of Europa’s icy crust. Rev Geophys 40(2):1004

    ADS  Google Scholar 

  • Greenberg R (2004) The evil twin of Agenor: tectonic convergence on Europa. Icarus 167(2):313–319

    ADS  Google Scholar 

  • Greenberg R (2005) Europa – the Ocean Moon: search for an alien biosphere. Springer, Chichester, p 380

    Google Scholar 

  • Greenberg R, Croft SK, Janes DM, Kargel JS, Lebofsky LA, Lunine JI, Marcialis RL, Melosh HJ, Ojakangas GW, Strom RG (1991) Miranda. In: Bergstralh JT, Miner ED, Matthews MS (eds) Uranus. University of Arizona Press, Tucson, pp 693–735

    Google Scholar 

  • Greenberg R, Geissler P, Hoppa G, Tufts BR, Durda DD, Pappalardo R, Head JW, Greeley R, Sullivan R, Carr MH (1998) Tectonic processes on Europa: tidal stresses, mechanical response, and visible features. Icarus 135(1):64–78

    ADS  Google Scholar 

  • Greenberg R, Hoppa GV, Tufts BR, Geissler P, Riley J (1999a) Chaos, cracks and ridges: surface effects of thin ice over liquid water on Europa. In: Lunar and planetary science conference, XXX, Houston, Texas. Abstract no. 1421, 15–19 March 1999

    Google Scholar 

  • Greenberg R, Hoppa GV, Tufts BR, Geissler P, Riley J, Kadel S (1999b) Chaos on Europa. Icarus 141(2):263–286

    ADS  Google Scholar 

  • Grey IDS, Burchell MJ (2003) Hypervelocity impact cratering on water ice targets at temperatures ranging from 100 K to 253 K. J Geophys Res 108(E3):5019

    Google Scholar 

  • Grey IDS, Burchell MJ (2004) Hypervelocity impact craters in ammonia rich ice. Icarus 168(2):467–474

    ADS  Google Scholar 

  • Griffith CA, Owen T, Miller GA, Geballe T (1998) Transient clouds in Titan’s lower atmosphere. Nature 395(6702):575–578

    ADS  Google Scholar 

  • Griffith CA, Owen T, Geballe TR, Rayner J, Rannou P (2003) Evidence for the exposure of water ice on Titan’s surface. Science 300(5619):628–630

    ADS  Google Scholar 

  • Griffith CA, Penteado P, Baines K, Drossart P, Barnes J, Bellucci G, Bibring J, Brown R, Buratti B, Capaccioni F, Cerroni P, Clark R, Combes M, Coradini A, Cruikshank D, Formisano V, Jaumann R, Langevin Y, Matson D, McCord T, Mennella V, Nelson R, Nicholson P, Sicardy B, Sotin C, Soderblom LA, Kursinski R (2005) The evolution of Titan’s mid-latitude clouds. Science 310(5747):474–477

    ADS  Google Scholar 

  • Griffith CA, Penteado P, Rannou P, Brown R, Boudon V, Baines KH, Clark R, Drossart P, Buratti B, Nicholson P, McKay CP, Coustenis A, Negrao A, Jaumann R (2006) Evidence for a polar ethane cloud on Titan. Science 313(5793):1620–1622

    ADS  Google Scholar 

  • Grimm RE, Squyres SW (1985) Spectral analysis of groove spacing on Ganymede. J Geophys Res 90(B2):2013–2021

    ADS  Google Scholar 

  • Groenleer JM, Kattenhorn SA (2008) Cycloid crack sequences on Europa: relationship to stress history and constraints on growth mechanics based on cusp angles. Icarus 193:158–181

    ADS  Google Scholar 

  • Hansen CJ, Esposito L, Stewart AIF, Colwell J, Hendrix A, Pryor W, Shemansky D, West R (2006) Enceladus’ water vapor plume. Science 311(5766):1422–1425

    ADS  Google Scholar 

  • Hartmann WK (1966) Early lunar cratering. Icarus 5(1–6):406–418

    ADS  Google Scholar 

  • Hartmann WK et al (1981) Chronology of planetary volcanism by comparative studies of planetary cratering. In: BVS Project (ed) Basaltic volcanism on the terrestrial planets, Pergamon, Elmsford, pp 1050–1127

    Google Scholar 

  • Hartmann WK, Ryder G, Dones L, Grinspoon D (2000) The time-dependent intense bombardment of the primordial Earth/Moon system. In: Canup RM, Righter K (eds) Origin of the Earth and Moon. University of Arizona Press, Tucson, pp 493–512

    Google Scholar 

  • Hayes A, Aharonson O, Callahan P, Elachi C, Gim Y, Kirk R, Lewis K, Lopes R, Lorenz R, Lunine J, Mitchell K, Mitri G, Stofan E, Wall S (2008) Hydrocarbon lakes on Titan: distribution and interaction with a porous regolith. Geophys Res Lett 35(9):L09204

    Google Scholar 

  • Hayes A, Aharonson O, Lunine J, Wolf A, Wye L, Zebker H, Lorenz R, Turtle E, Kirk R, Wall S, Elachi C (2010) Cassini RADAR observations of the nature and seasonal varibility of Titan’s lakes. In Proceedings of the 38th COSPAR scientific assembly, Bremen

    Google Scholar 

  • Head JW, Pappalardo RT, Greeley R, Sullivan R, and a. t. G. I. Team (1997) European pits, domes, spots and ridges: evidence for an origin through recent solid-state convection (abstract), GSA Abstract Programs, Madison, Wisconsin, 29, A-312

    Google Scholar 

  • Head JW, Pappalardo RT, Greeley R, Sullivan R, The Galileo Imaging Team (1998a) Origin of ridges and bands on Europa: morphologic characteristics and evidence for linear diapirism from Galileo data. In: Lunar and planetary science conference, XXIX, Houston, Texas, 16–20 March 1998

    Google Scholar 

  • Head JW, Pappalardo RT, Kay J, Collins G, Prockter L, Greeley R, Chapman C, Carr M, Belton MJS, The Galileo Imaging Team (1998b) Cryovolcanism on Ganymede: evidence in bright terrain from Galileo solid state imaging data. In: Lunar and planetary science conference, XXIX. Abstract no. 1666

    Google Scholar 

  • Head JW, Pappalardo RT, Sullivan R (1999) Europa: morphological characteristics of ridges and triple bands from Galileo data (E4 and E6) and assessment of a linear diapirism model. J Geophys Res 104(E10):24,223–24,236

    ADS  Google Scholar 

  • Head JW, Pappalardo R, Collins G, Belton MJS, Giese B, Wagner R, Breneman H, Spaun N, Nixon B, Neukum G, Moore J (2002) Evidence for Europa-like tectonic resurfacing styles on Ganymede. Geophys Res Lett 29(24):2151

    ADS  Google Scholar 

  • Helfenstein P, Parmentier EM (1980) Fractures on Europa: possible response of an ice crust to tidal deformation. In: Proceedings of the lunar and planetary science conference, XI, Houston, Texas. vol 3. (A82-22351 09-91), pp 1987–1998, 17–21 March 1980

    Google Scholar 

  • Helfenstein P, Parmentier EM (1985) Patterns of fracture and tidal stresses due to nonsynchronous rotation: implications for fracturing on Europa. Icarus 61(2):175–184

    ADS  Google Scholar 

  • Helfenstein P, Thomas PC, Veverka J (1989) Evidence from Voyager II photometry for early resurfacing of Umbriel. Nature 338(6213):324–326

    ADS  Google Scholar 

  • Helfenstein P, Thomas P, Veverka J, Burns J, Roatsch T, Giese B, Wagner R, Denk T, Neukum G, Turtle E, Perry J, Bray VJ, Rathbun J, Porco C (2010) Planetary science: Tectonic overturn on Enceladus. Nat Geosci 3(2):75–76

    Google Scholar 

  • Herrick DL, Stevenson DJ (1990) Extensional and compressional instabilities in icy satellite lithospheres. Icarus 85(1):191–204

    ADS  Google Scholar 

  • Hillier J, Squyres SW (1991) Thermal stress tectonics on the Satellites of Saturn and Uranus. J Geophys Res 96(E1):15665–15674

    ADS  Google Scholar 

  • Hodges CA, Shew NB, Clow G (1980) Distribution of central pit craters on Mars. In: Lunar and planetary science conference, XI, Houston, Texas. Abstract no. 1160, pp 450–452, 17–21 March 1980

    Google Scholar 

  • Holsapple KA (1987) The scaling of impact phenomena. Int J Impact Eng 5(1–4):343–355

    Google Scholar 

  • Hoppa GV, Tufts BR, Greenberg R, Geissler PE (1999) Formation of cycloidal features on Europa. Science 285(5435):1899–1902

    ADS  Google Scholar 

  • Hoppa GV, Randall Tufts B, Greenberg R, Hurford TA, O’Brien DP, Geissler PE (2001) Europa’s rate of rotation derived from the tectonic sequence in the Astypalaea region. Icarus 153:208–213

    ADS  Google Scholar 

  • Horedt GP, Neukum G (1984a) Cratering rate over the surface of a synchronous satellite. Icarus 60:700–717

    ADS  Google Scholar 

  • Horedt GP, Neukum G (1984b) Planetocentric versus heliocentric impacts in the Jovian and Saturnian satellite system. J Geophys Res 89:10,405–10,410

    ADS  Google Scholar 

  • Horner VM, Greeley R (1982) Pedestal craters on Ganymede. Icarus 51(3):549–562

    ADS  Google Scholar 

  • Hussmann H, Choblet G, Lainey V, Matson D, Sotin C, Tobie G, Van Hoolst T (2010) Implications of rotation, orbital states, energy sources, and heat transport for internal processes in icy satellites. Space Sci Rev 153(1):317–348

    ADS  Google Scholar 

  • Ingersoll AP, Tryka KA (1990) Triton’s plumes: the dust devil hypothesis. Science 250(4979):435–437

    ADS  Google Scholar 

  • Ip WH (2006) On a ring origin of the equatorial ridge of Iapetus. Geophys Res Lett 33(16):L16203

    ADS  Google Scholar 

  • Ip WH, Williams DJ, McEntire RW, Mauk BH (1998) Ion sputtering and surface erosion at Europa. Geophys Res Lett 25(6):829–832

    ADS  Google Scholar 

  • Ivanov BA, Hartmann WK (2007) Exogenic dynamics, cratering and surface ages. In: Spohn T (ed) Planets and Moons. Elsevier, Amsterdam, pp 207–242

    Google Scholar 

  • Ivanov BA, Neukum G, Wagner R (2001) Size-frequency distributions of planetary impact craters and asteroids. In: Marov MY, Rickman H (eds) Collisional processes in the Solar System. Kluwer Academic, Dordrecht, pp 1–34

    Google Scholar 

  • Janes DM, Melosh HJ (1990) Tectonics of planetary loading: a general model and results. J Geophys Res 95(B13):21345–21355

    ADS  Google Scholar 

  • Jankowski DG, Squyres SW (1988) Solid-state ice volcanism on the satellites of Uranus. Science 241:1322–1325

    ADS  Google Scholar 

  • Jaumann R, Neukum G (2009) The surface ages of Titan. In: Lunar and planetary science conference, XL, The Woodlands, Texas. Abstract no. 1641, 23–27 March 2009

    Google Scholar 

  • Jaumann R, Stephan K, Hansen GB, Clark RN, Buratti BJ, Brown RH, Baines KH, Newman SF, Bellucci G, Filacchione G, Coradini A, Cruikshank DP, Griffith CA, Hibbitts CA, McCord TB, Nelson RM, Nicholson PD, Sotin C, Wagner R (2008) Distribution of icy particles across Enceladus’ surface as derived from Cassini-VIMS measurements. Icarus 193(2):407–419

    ADS  Google Scholar 

  • Jaumann R, Clark RN, Nimmo F, Hendrix AR, Buratti BJ, Denk T, Moore JM, Schenk PM, Ostro SJ, Srama R (2009a) Icy satellites: geological evolution and surface processes. In: Dougherty MK, Esposito LW, Krimigis SM (eds) Saturn from Cassini-Huygens. Springer, Dordrecht, pp 637–681

    Google Scholar 

  • Jaumann R, Kirk RL, Lorenz RD, Lopez RMG, Stofan ER, Turtle EP, Keller HU, Wood CA, Sotin C, Soderblom LA, Tomasko M (2009b) Geology and surface processes on Titan. In: Brown R, Lebreton J-P, Waite H (eds) Titan from Cassini-Huygens. Springer, Dordrecht, pp 75–140

    Google Scholar 

  • Johnson RE (1990) Energetic charged-particle interactions with atmospheres and surfaces. Springer, Berlin/Heidelberg/New York, p 230

    Google Scholar 

  • Johnson TV (2005) Geology of the icy satellites. Space Sci Rev 116(1):401–420

    ADS  Google Scholar 

  • Johnson RE, Famá M, Liu M, Baragiola RA, Sittler EC Jr, Smith HT (2008) Sputtering of ice grains and icy satellites in Saturn’s inner magnetosphere. Planet Sp Sci 56(9):1238–1243

    ADS  Google Scholar 

  • Johnson TV, McGetchin TR (1973) Topography on satellite surfaces and the shape of asteroids. Icarus 18(4):612–620

    ADS  Google Scholar 

  • Johnson RE, Lanzerotti LJ, Brown WL (1982) Planetary applications of ion induced erosion of condensed-gas frosts. Nucl Instrum Methods Phys Res 198(1):147–157

    ADS  Google Scholar 

  • Jones KB, Head Iii JW, Pappalardo RT, Moore JM (2003) Morphology and origin of palimpsests on Ganymede based on Galileo observations. Icarus 164(1):197–212

    ADS  Google Scholar 

  • Kadel SD, Fagents SA, Greeley R, The Galileo SSI Team (1998) Trough-bounding ridge pairs on Europa: considerations for an endogenic model of formation (abstract). In: Lunar and planetary science conference, XXIX, Houston, Texas. Abstract no. 1078, 16–20 March 1998

    Google Scholar 

  • Kadel SD, Chuang FC, Greeley R, Moore JM, The Galileo SSIT (2000) Geological history of the Tyre region of Europa: a regional perspective on Europan surface features and ice thickness. J Geophys Res 105(E9):22657–22669

    ADS  Google Scholar 

  • Kargel JS (1990) Cryomagmatism in the outer Solar System. Ph.D. Thesis, Arizona University, Tucson

    Google Scholar 

  • Kargel JS (1991) Brine volcanism and the interior structures of asteroids and icy satellites. Icarus 94(2):368–390

    ADS  Google Scholar 

  • Kargel JS (1992) Ammonia-water volcanism on icy satellites: phase relations at 1 atmosphere. Icarus 100(2):556–574

    ADS  Google Scholar 

  • Kargel JS (1995) Cryovolcanism on the icy satellites. Earth Moon Planets 67(1–3):101–113

    ADS  Google Scholar 

  • Kargel JS (1998) Physical chemistry of ices in the outer solar system. In: Schmitt B, de Bergh C, Festou M (eds) In: Solar system ices. Based on reviews presented at the international symposium “Solar system ices”, Toulouse, Kluwer Academic, Dordrecht, 27–30 March 1995, p 3

    Google Scholar 

  • Kargel JS, Pozio S (1996) The volcanic and tectonic history of Enceladus. Icarus 119(2):385–404

    ADS  Google Scholar 

  • Kargel JS, Croft SK, Lunine JI, Lewis JS (1991) Rheological properties of ammonia-water liquids and crystal-liquid slurries: planetological applications. Icarus 89(1):93–112

    ADS  Google Scholar 

  • Kato M, Iijima Y-I, Arakawa M, Okimura Y, Fujimura A, Maeno N, Mizutani H (1995) Ice-on-ice impact experiments. Icarus 113(2):423–441

    ADS  Google Scholar 

  • Kattenhorn SA (2002) Nonsynchronous rotation evidence and fracture history in the bright plains region, Europa. Icarus 157(2):490–506

    ADS  Google Scholar 

  • Kattenhorn SA (2004) Strike-slip fault evolution on Europa: evidence from tailcrack geometries. Icarus 172(2):582–602

    ADS  Google Scholar 

  • Kattenhorn SA, Hurford T (2009) Tectonics of Europa. In: Pappalardo RT, McKinnon WB, Khurana KK (eds) Europa, The University of Arizona space science series. University of Arizona Press, Tucson, pp 199–236

    Google Scholar 

  • Kattenhorn SA, Marshall ST (2006) Fault-induced perturbed stress fields and associated tensile and compressive deformation at fault tips in the ice shell of Europa: implications for fault mechanics. J Struct Geol 28:2204–2221

    ADS  Google Scholar 

  • Kay JE, Head JW III (1999) Geologic mapping of the Ganymede G8 Calderas region: evidence for cryovolcanism. In: Proceedings of the LPSC XXX, Houston, 15–29 March 1999

    Google Scholar 

  • Keller HU, Grieger B, Küppers M, Schröder SE, Skorov YV, Tomasko MG (2008) The properties of Titan’s surface at the Huygens landing site from DISR observations. Planet Sp Sci 56(5):728–752

    ADS  Google Scholar 

  • Khare BN, Sagan C, Bandurski EL, Nagy B (1978) Ultraviolet-photoproduced organic solids synthesized under simulated jovian conditions. Molecular analysis. Science 199(4334):1199–1201

    ADS  Google Scholar 

  • Kirchoff MR, Schenk PM (2009) Impactor populations in the Saturnian system: constraints from the cratering records. In: Lunar and planetary science conference, XL, The Woodlands, Texas. Abstract no. 2067, 23–27 March 2009

    Google Scholar 

  • Kirk RL, Stevenson DJ (1987) Thermal evolution of a differentiated Ganymede and implications for surface features. Icarus 69(1):91–134

    ADS  Google Scholar 

  • Kirk RL, Brown RH, Soderblom LA (1990) Subsurface energy storage and transport for solar-powered geysers on Triton. Science 250:424–429

    ADS  Google Scholar 

  • Kirk RL, Soderblom LA, Brown RH, Kieffer SW, Kargel JS (1995) Triton’s plumes: discovery, characteristics, and models. In: Cruikshank DP (ed) Neptune and Triton. University of Arizona Press, Tucson, pp 949–989

    Google Scholar 

  • Kirk RL, Howington-Kraus E, Redding BL, Becker TL, Lee EM, Stiles BW, Hensley S, Hayes AG, Lopes RMC, Lorenz RD, Mitchell KL, Radebaugh J, Paganelli F, Soderblom LA, Stofan ER, Wood CA, Wall SD, Cassini Radar Team (2009) Three-dimensional views of Titan’s diverse surface features from Cassini RADAR stereogrammetry. In: Lunar and planetary science conference, XL. Abstract no. 1413

    Google Scholar 

  • Kivelson MG, Khurana KK, Russell CT, Walker RJ, Warnecke J, Coroniti FV, Polanskey C, Southwood DJ, Schubert G (1996) Discovery of Ganymede’s magnetic field by the Galileo spacecraft. Nature 384(6609):537–541

    ADS  Google Scholar 

  • Leith AC, McKinnon WB (1996) Is there evidence for polar wander on Europa? Icarus 120(2):387–398

    ADS  Google Scholar 

  • Lopes RMC, Mitchell KL, Stofan ER, Lunine JI, Lorenz R, Paganelli F, Kirk RL, Wood CA, Wall SD, Robshaw LE, Fortes AD, Neish CD, Radebaugh J, Reffet E, Ostro SJ, Elachi C, Allison MD, Anderson Y, Boehmer R, Boubin G, Callahan P, Encrenaz P, Flamini E, Francescetti G, Gim Y, Hamilton G, Hensley S, Janssen MA, Johnson WTK, Kelleher K, Muhleman DO, Ori G, Orosei R, Picardi G, Posa F, Roth LE, Seu R, Shaffer S, Soderblom LA, Stiles B, Vetrella S, West RD, Wye L, Zebker HA (2007) Cryovolcanic features on Titan’s surface as revealed by the Cassini Titan radar mapper. Icarus 186(2):395–412

    ADS  Google Scholar 

  • Lopes RMC, Stofan ER, Peckyno R, Radebaugh J, Mitchell KL, Mitri G, Wood CA, Kirk RL, Wall SD, Lunine JI, Hayes A, Lorenz R, Farr T, Wye L, Craig J, Ollerenshaw RJ, Janssen M, LeGall A, Paganelli F, West R, Stiles B, Callahan P, Anderson Y, Valora P, Soderblom L (2010) Distribution and interplay of geologic processes on Titan from Cassini radar data. Icarus 205(2):540–558

    ADS  Google Scholar 

  • Lorenz RD, Lunine JI (1996) Erosion on Titan: past and present. Icarus 122(1):79–91

    ADS  Google Scholar 

  • Lorenz RD, Lunine JI (2005) Titan’s surface before Cassini. Planet Sp Sci 53(5):557–576

    ADS  Google Scholar 

  • Lorenz RD, Radebaugh J (2009) Global pattern of Titan’s dunes: Radar survey from the Cassini prime mission. Geophys Res Lett 36(3):L03202

    Google Scholar 

  • Lorenz RD, Lopes RM, Paganelli F, Lunine JI, Kirk RL, Mitchell KL, Soderblom LA, Stofan ER, Ori G, Myers M, Miyamoto H, Radebaugh J, Stiles B, Wall SD, Wood CA (2008a) Fluvial channels on Titan: initial Cassini RADAR observations. Planet Sp Sci 56(8):1132–1144

    ADS  Google Scholar 

  • Lorenz RD, Mitchell KL, Kirk RL, Hayes AG, Aharonson O, Zebker HA, Paillou P, Radebaugh J, Lunine JI, Janssen MA, Wall SD, Lopes RM, Stiles B, Ostro S, Mitri G, Stofan ER (2008b) Titan’s inventory of organic surface materials. Geophys Res Lett 35(2):L02206

    Google Scholar 

  • Lorenz RD, Wall S, Radebaugh J, Boubin G, Reffet E, Janssen M, Stofan E, Lopes R, Kirk R, Elachi C, Lunine J, Mitchell K, Paganelli F, Soderblom L, Wood C, Wye L, Zebker H, Anderson Y, Ostro S, Allison M, Boehmer R, Callahan P, Encrenaz P, Ori GG, Francescetti G, Gim Y, Hamilton G, Hensley S, Johnson W, Kelleher K, Muhleman D, Picardi G, Posa F, Roth L, Seu R, Shaffer S, Stiles B, Vetrella S, Flamini E, West R (2006) The sand seas of Titan: Cassini RADAR observations of longitudinal dunes. Science 312(5774):724–727

    ADS  Google Scholar 

  • Lucchitta BK (1980) Grooved terrain on Ganymede. Icarus 44(2):481–501

    ADS  Google Scholar 

  • Lucchitta BK, Ferguson HM (1988) Ganymede: “Moat” craters compared with palimpsests and basins. In: Lunar and planetary science conference, Houston, Texas. 19, pp 701–702, 14–18 March 1988

    Google Scholar 

  • Lucchitta BK, Soderblom LA (1982) Geology of Europa. In: Morrison D (ed) Satellites of Jupiter. University of Arizona Press, Tucson, pp 521–555, 940, 941

    Google Scholar 

  • Lunine JI (1993) Triton, Pluto, and the origin of the Solar system. Science 261(5122):697–698

    ADS  Google Scholar 

  • Lunine JI, Stevenson DJ, Yung YL (1983) Ethane ocean on Titan. Science 222(4629):1229–1230

    ADS  Google Scholar 

  • Lunine JI, Atreya SK (2008) The methane cycle on Titan. Nat Geosci 1:159–164

    ADS  Google Scholar 

  • Manga M, Sinton A (2004) Formation of bands and ridges on Europa by cyclic deformation: insights from analogue wax experiments. J Geophys Res 109(E9):E09001

    Google Scholar 

  • Manga M, Wang CY (2007) Pressurized oceans and the eruption of liquid water on Europa and Enceladus. Geophys Res Lett 34(7):L07202

    Google Scholar 

  • Matsuyama I, Nimmo F (2007) Rotational stability of tidally deformed planetary bodies. J Geophys Res 112(E11):E11003

    ADS  Google Scholar 

  • Matsuyama I, Nimmo F (2008) Tectonic patterns on reoriented and despun planetary bodies. Icarus 195(1):459–473

    ADS  Google Scholar 

  • Mauk BH, Hamilton DC, Hill TW, Hospodarsky GB, Johnson RE, Paranicas C, Roussos E, Russell CT, Shemansky DE, Sittler EC, Thorne RM (2009) Fundamental plasma processes in Saturn’s magnetosphere. In: Dougherty MK, Esposito LW, Krimigis SM (eds) Saturn from Cassini-Huygens. Springer, Netherlands, pp 281–331

    Google Scholar 

  • McCord TB, Hansen GB, Clark RN, Martin PD, Hibbitts CA, Fanale FP, Granahan JC, Segura M, Matson DL, Johnson TV, Carlson RW, Smythe WD, Danielson GE, The NT (1998) Non-water-ice constituents in the surface material of the icy Galilean satellites from the Galileo near-infrared mapping spectrometer investigation. J Geophys Res 103(E4):8603–8626

    ADS  Google Scholar 

  • McDonald KC (1982) Mid-ocean ridges: fine scale tectonic, volcanic and hydrothermal processes within the plate boundary zone. Ann Rev Earth Planet Sci 10:155–190

    ADS  Google Scholar 

  • McKinnon WB (1988) Odd tectonics of a rebuilt moon. Nature 333(6175):701–702

    ADS  Google Scholar 

  • McKinnon WB, Kirk RL (2007) Triton. In: Lucy-Ann M, Paul RW, Torrence VJ (eds) Encyclopedia of the Solar System, 2nd edn. Academic, San Diego, pp 483–502

    Google Scholar 

  • McKinnon WB, Melosh HJ (1980) Evolution of planetary lithospheres: evidence from multiringed structures on Ganymede and Callisto. Icarus 44(2):454–471

    ADS  Google Scholar 

  • McKinnon WB, Schenk PM (1995) Estimates of comet fragment masses from impact crater chains on Callisto and Ganymede. Geophys Res Lett 22(13):1829–1832

    ADS  Google Scholar 

  • McKinnon WB, Schenk PM, Moore JM (2001) Topographic and morphologic evidence for flooding of Ganymede’s resurfaced terrains by low-viscosity water-ice lavas. In: Lunar and planetary science conference, XXXII, Houston, Texas. Abstract no. 2179, 12–16 March 2001

    Google Scholar 

  • Melosh HJ (1977) Global tectonics of a despun planet. Icarus 31(2):221–243

    ADS  Google Scholar 

  • Melosh HJ (1980) Tectonic patterns on a tidally distorted planet. Icarus 43(3):334–337

    ADS  Google Scholar 

  • Melosh HJ (1989) Impact cratering: a geologic process. Oxford University Press, New York, p 245

    Google Scholar 

  • Melosh HJ, Janes DM (1989) Ice volcanism on Ariel. Science 245(4914):195–196

    ADS  Google Scholar 

  • Melosh HJ, Nimmo F (2009) An intrusive dike origin for Iapetus’ enigmatic ridge? In: Lunar and planetary science conference, XL, The Woodlands, Texas. Abstract no. 2478, 23–27 March 2009

    Google Scholar 

  • Melosh HJ, Turtle EP (2004) Ridges on Europa: origin by incremental ice-wedging. In: Lunar and planetary science conference, XXXV, Houston, Texas. Abstract no. 2029, 15–19 March 2004

    Google Scholar 

  • Mével L, Mercier E (2002) Geodynamics on Europa: evidence for a crustal resorption process. In: Lunar and planetary science conference, XXXIII, Houston, Texas. Abstract no. 1476, 11–15 March 2002

    Google Scholar 

  • Mével L, Mercier E (2007) Large-scale doming on Europa: a model of formation of Thera Macula. Planet Space Sci 55:915–927

    ADS  Google Scholar 

  • Miller DJ, Barnash AN, Bray VJ, Turtle EP, Helfenstein P, Squyres SW, Rathbun JA (2007) Interactions between impact craters and tectonic features on Enceladus and Dione. In: Paper presented at workshop on ices, oceans, and fire: satellites of the outer solar system, LPI Contribution, Boulder, 13–15 Aug 2007

    Google Scholar 

  • Mitchell JL (2008) The drying of Titan’s dunes: Titan’s methane hydrology and its impact on atmospheric circulation. J Geophys Res 113(E8):E08015

    Google Scholar 

  • Mitri G, Bland MT, Showman AP, Radebaugh J, Stiles B, Lopes RMC, Lunine JI, Pappalardo RT (2010) Mountains on Titan: modeling and observations. J Geophys Res 115:E10002

    ADS  Google Scholar 

  • Miyamoto H, Mitri G, Showman AP, Dohm JM (2005) Putative ice flows on Europa: geometric patterns and relation to topography collectively constrain material properties and effusion rates. Icarus 177(2):413–424

    ADS  Google Scholar 

  • Moons M, Henrard J (1994) Surfaces of section in the Miranda-Umbriel 3:1 inclination problem. Celest Mech Dynam Astr 59:129–148

    ADS  MATH  Google Scholar 

  • Moore JM (1984) The tectonic and volcanic history of Dione. Icarus 59(2):205–220

    ADS  Google Scholar 

  • Moore JM, Ahern JL (1983) The geology of Tethys. J Geophys Res 88(S2):A577–A584

    Google Scholar 

  • Moore JM, Malin MC (1988) Dome craters on Ganymede. Geophys Res Lett 15(3):225–228

    ADS  Google Scholar 

  • Moore JM, Schenk PM (2007) Topography of endogenic features on Saturnian mid-sized satellites. In: Lunar and planetary science, XXXVIII, Houston, Texas. LPI contribution no. 1338, p 2136, 12–16 March 2007

    Google Scholar 

  • Moore JM, Horner VM, Greeley R (1985) The geomorphology of RHEA – implications for geologic history and surface processes. J Geophys Res 90(Suppl):C785–C795

    Google Scholar 

  • Moore JM, Asphaug E, Morrison D, Spencer JR, Chapman CR, Bierhaus B, Sullivan RJ, Chuang FC, Klemaszewski JE, Greeley R, Bender KC, Geissler PE, Helfenstein P, Pilcher CB (1999) Mass movement and landform degradation on the icy Galilean Satellites: results of the Galileo nominal mission. Icarus 140(2):294–312

    ADS  Google Scholar 

  • Moore JM, Mellon MT, Zent AP (1996) Mass wasting and ground collapse in terrains of volatile-rich deposits as a Solar System-wide geological process: the pre-Galileo view. Icarus 122:63–78

    ADS  Google Scholar 

  • Moore JM, Asphaug E, Sullivan RJ, Klemaszewski JE, Bender KC, Greeley R, Geissler PE, McEwen AS, Turtle EP, Phillips CB, Tufts BR, Head JW, Pappalardo RT, Jones KB, Chapman CR, Belton MJS, Kirk RL, Morrison D (1998) Large impact features on Europa: results of the Galileo nominal mission. Icarus 135(1):127–145

    ADS  Google Scholar 

  • Moore JM, Asphaug E, Belton MJS, Bierhaus B, Breneman HH, Brooks SM, Chapman CR, Chuang FC, Collins GC, Giese B, Greeley R, Head JW, Kadel S, Klaasen KP, Klemaszewski JE, Magee KP, Moreau J, Morrison D, Neukum G, Pappalardo RT, Phillips CB, Schenk PM, Senske DA, Sullivan RJ, Turtle EP, Williams KK (2001) Impact features on Europa: results of the Galileo Europa Mission (GEM). Icarus 151(1):93–111

    ADS  Google Scholar 

  • Moore JM, Schenk PM, Bruesch LS, Asphaug E, McKinnon WB (2004a) Large impact features on middle-sized icy satellites. Icarus 171(2):421–443

    ADS  Google Scholar 

  • Moore JM, Chapman CR, Bierhaus EB, Greeley R, Chuang FC, Klemaszewski J, Clark RN, Dalton JB, Hibbitts CA, Schenk PM, Spencer JR, Wagner R (2004b) Callisto. In: Bagenal F, Dowling TE, McKinnon WB (eds) Jupiter: the planet, satellites, and magnetosphere. Cambridge University Press, Cambridge, UK, pp 397–426

    Google Scholar 

  • Morbidelli A, Levison HF, Tsiganis K, Gomes R (2005) Chaotic capture of Jupiter’s Trojan asteroids in the early Solar System. Nature 435:462–465

    ADS  Google Scholar 

  • Mueller S, McKinnon WB (1988) Three-layered models of Ganymede and Callisto: compositions, structures, and aspects of evolution. Icarus 76(3):437–464

    ADS  Google Scholar 

  • Murchie SL, Head JW III (1986) Global reorientation and its effect on tectonic patterns on Ganymede. Geophys Res Lett 13(4):345–348

    ADS  Google Scholar 

  • Murchie SL, Head JW (1988) Possible breakup of dark terrain on Ganymede by large-scale shear faulting. J Geophys Res 93(B8):8795–8824

    ADS  Google Scholar 

  • Murray CD, Dermott SF (1999) Solar system dynamics. Cambridge University Press, Cambridge, NY

    MATH  Google Scholar 

  • Neish CD, Lorenz RD (2012) Titan’s global crater population: A new assessment. Planet Space Sci 60, 26–33

    Google Scholar 

  • Neukum G (1975) Cratering in the Earth-Moon system – some comparison with other terrestrial planets. In: Proceedings of the international college Planet Geology (exp. abstracts), p 341

    Google Scholar 

  • Neukum G (1977) Lunar cratering. Philos Trans R Soc Lond A 285(1327):267–272

    ADS  Google Scholar 

  • Neukum G (1985) Cratering records of the satellites of Jupiter and Saturn. Adv Space Res 5(8):107–116

    ADS  Google Scholar 

  • Neukum G (1997) Bombardment history of the Jovian system. In: The three Galileos: the man, the spacecraft, the telescope. In: Proceedings of the conference held in Padova, Italy, edited, Kluwer Academic, Dordrecht, 7–10 Jan 1997

    Google Scholar 

  • Neukum G, Ivanov BA (1994) Crater size distributions and impact probabilities on Earth from lunar, terrestrial-type planets, and asteroid cratering data. In: Gehrels T (ed) Hazards due to comets and asteroids. University of Arizona Press, Tucson, pp 359–416

    Google Scholar 

  • Neukum G, Wagner R, Wolf U, Ivanov BA, Head JW, Pappalardo RT, Klemaszewski JE, Greeley R, Belton MJS, Galileo SSI Team (1998) Cratering chronology in the Jovian system and derivation of absolute ages. In: Lunar and planetary science conference, XXIX, Houston, Texas. Abstract no. 1742, 16–20 March 1998

    Google Scholar 

  • Neukum G, Ivanov BA, Hartmann WK (2001) Cratering records in the inner solar system in relation to the lunar reference system. In: Geiss J, Kallenbach R, Hartmann WK (eds) Chronology and evolution of Mars: proceedings from an ISSI workshop, 10–14 April 2000, Bern, Kluwer Academic, Boston, pp 55–86

    Google Scholar 

  • Neukum G, Wagner RJ, Denk T, Porco CC, The Cassini ISS Team (2005) The cratering record of the Saturnian satellites Phoebe, Tethys, Dione and Iapetus in comparison: first results from analysis of the Cassini ISS imaging data. In: Lunar and planetary science conference, XXXVI, Houston, Texas. Abstract no. 2034, 14–18 March 2005

    Google Scholar 

  • Neukum G, Wagner R, Denk T, Porco CC (2006) Cratering chronologies and ages of the major Saturnian satellites. Geophys Res Abstr 8(09252), EGU General Assembly, Vienna, Austria, 2–7 Apirl 2006

    Google Scholar 

  • Nimmo F (2004) Stresses generated in cooling viscoelastic ice shells: application to Europa. J Geophys Res 109:E12001

    ADS  Google Scholar 

  • Nimmo F, Gaidos E (2002) Strike-slip motion and double ridge formation on Europa. J Geophys Res 107(E4):5021

    Google Scholar 

  • Nimmo F, Giese B (2005) Thermal and topographic tests of Europa chaos formation models from Galileo E15 observations. Icarus 177(2):327–340

    ADS  Google Scholar 

  • Nimmo F, Matsuyama I (2007) Reorientation of icy satellites by impact basins. Geophys Res Lett 34(19):L19203

    ADS  Google Scholar 

  • Nimmo F, Pappalardo RT (2004) Furrow flexure and ancient heat flux on Ganymede. Geophys Res Lett 31:L19701

    ADS  Google Scholar 

  • Nimmo F, Pappalardo RT (2006) Diapir-induced reorientation of Saturn’s moon Enceladus. Nature 441(7093):614–616

    ADS  Google Scholar 

  • Noll KS, Roush TL, Cruikshank DP, Johnson RE, Pendleton YJ (1997) Detection of ozone onSaturn’s satellitesRhea and Dione. Nature 388:45

    ADS  Google Scholar 

  • O’Brien DP, Geissler P, Greenberg R (2002) A melt-through model for Chaos formation on Europa. Icarus 156:152–161

    ADS  Google Scholar 

  • Öpik EJ (1960) The lunar surface as an impact counter. Mon Not R Astron Soc 120:404

    ADS  Google Scholar 

  • Pappalardo RT (1994) The origin and evolution of ridge and trough terrain and the geological history of Miranda. Arizona State University, Tempe

    Google Scholar 

  • Pappalardo RT, Collins GC (2005) Strained craters on Ganymede. J Struct Geol 27(5):827–838

    ADS  Google Scholar 

  • Pappalardo RT, Crawford Z, Gleeson D, Mullen M, Wahr J (2005) Europa’s lineament history: combining nonsynchronous rotation and diurnal stresses. Astrobiology 5:315

    Google Scholar 

  • Pappalardo RT, Davis DM (2007) Where’s the compression? Explaining the lack of contractional structures on icy satellites. Lunar Planet Sci C 1357:108–109

    Google Scholar 

  • Pappalardo RT, Greeley R (1995) A review of the origins of subparallel ridges and troughs: generalized morphological predictions from terrestrial models. J Geophys Res 100(E9):18985–19007

    ADS  Google Scholar 

  • Pappalardo RT, Sullivan RJ (1996) Evidence for separation across a gray band on Europa. Icarus 123(2):557–567

    ADS  Google Scholar 

  • Pappalardo RT, Reynolds SJ, Greeley R (1997) Extensional tilt blocks on Miranda: evidence for an upwelling origin of Arden Corona. J Geophys Res 102(E6):13369–13380

    ADS  Google Scholar 

  • Pappalardo RT, Head JW, Greeley R, Sullivan RJ, Pilcher C, Schubert G, Moore WB, Carr MH, Moore JM, Belton MJS, Goldsby DL (1998a) Geological evidence for solid-state convection in Europa’s ice shell. Nature 391(6665):365–368, 18–22 March 1996, 18–22 March 1996

    ADS  Google Scholar 

  • Pappalardo RT, Head JW, Collins GC, Kirk RL, Neukum G, Oberst J, Giese B, Greeley R, Chapman CR, Helfenstein P, Moore JM, McEwen A, Tufts BR, Senske DA, Breneman HH, Klaasen K (1998b) Grooved terrain on Ganymede: first results from Galileo high-resolution imaging. Icarus 135(1):276–302

    ADS  Google Scholar 

  • Pappalardo RT, Belton MJS, Breneman HH, Carr MH, Chapman CR, Collins GC, Denk T, Fagents S, Geissler PE, Giese B, Greeley R, Greenberg R, Head JW, Helfenstein P, Hoppa G, Kadel SD, Klaasen KP, Klemaszewski JE, Magee K, McEwen AS, Moore JM, Moore WB, Neukum G, Phillips CB, Prockter LM, Schubert G, Senske DA, Sullivan RJ, Tufts BR, Turtle EP, Wagner R, Williams KK (1999) Does Europa have a subsurface ocean? Evaluation of the geological evidence. J Geophys Res 104(E10):24015–24055

    ADS  Google Scholar 

  • Pappalardo RT, Collins GC, Head JW, Helfenstein P, McCord TB, Moore JM, Prockter LM, Schenk PM, Spencer JR (2004) Geology of Ganymede. In: Bagenal F, Dowling TE, McKinnon WB (eds) Jupiter: the planet, satellites, and magnetosphere. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Pappalardo RT, Crow-Willard E, Golombek M (2010) Thrust faulting as the origin of Dorsa in the trailing hemisphere of Enceladus. DPS meeting #42, Bulletin of the American Astronomical Society, DPS Meeting, Pasadena, California, 3–8 Oct 2010, p 976

    Google Scholar 

  • Passey QR, Shoemaker EM (1982) Craters and basins on Ganymede and Callisto – morphological indicators of crustal evolution. In: Morrison D (ed) Satellites of Jupiter. University of Arizona Press, Tucson, pp 379–434

    Google Scholar 

  • Patel JG, Pappalardo RT, Prockter LM, Collins GC, Head JW (1999a) Morphology of ridge and trough terrain on Europa: Fourier analysis and comparison to Ganymede. Eos Trans AGU Fall Meeting, San Francisco, California 80(17):210, 13–17 December 1999

    Google Scholar 

  • Patel JG, Pappalardo RT, Head JW, Collins GC, Hiesinger H, Sun J (1999b) Topographic wavelengths of Ganymede groove lanes from Fourier analysis of Galileo images. J Geophys Res 104(E10):24 057–24 074

    ADS  Google Scholar 

  • Patterson GW, Head JW, Pappalardo RT (2006) Plate motion on Europa and nonrigid behavior of the Icy lithosphere: the Castalia Macula region. J Struct Geol 28:2237–2258

    ADS  Google Scholar 

  • Patterson GW, Collins GC, Head JW, Pappalardo RT, Prockter LM, Lucchitta BK, Kay JP (2010) Global geological mapping of Ganymede. Icarus 207(2):845–867

    ADS  Google Scholar 

  • Peale SJ (1999) Origin and evolution of the natural satellites. Ann Rev Astron Astr 37(1):533–602

    ADS  Google Scholar 

  • Pechmann JB, Melosh HJ (1979) Global fracture patterns of a despun planet: application to Mercury. Icarus 38:243–250

    ADS  Google Scholar 

  • Petrenko VF, Whitworth RW (1999) Physics of ice. Oxford University Press, Oxford, p 386

    Google Scholar 

  • Phillips CB, McEwen AS, Hoppa GV, Fagents SA, Greeley R, Klemaszewski JE, Pappalardo RT, Klaasen KP, Breneman HH (2000) The search for current geologic activity on Europa. J Geophys Res 105(E9):22579–22597

    ADS  Google Scholar 

  • Pieri DC (1981) Lineament and polygon patterns on Europa. Nature 289(5793):17–21

    ADS  Google Scholar 

  • Pieters CM, Adams JB, Head JW, McCord TB, Zisk SH (1982) Primary ejecta in crater rays: the Copernicus example. In: Lunar and planetary science, XIII, Houston, Texas. Abstract no. 1320, pp 623–624, 15–19 March 1982

    Google Scholar 

  • Pike RJ (1980) Control of crater morphology by gravity and target type – Mars, Earth, Moon. In: Proceedings of the lunar and planetary science conference, XI, Houston, Texas. vol 3. (A82-22351 09-91), pp 2159–2189, 17–21 March 1980

    Google Scholar 

  • Pike RJ (1988) Geomorphology of impact craters on Mercury. In: Vilas F, Chapman C, Matthews MS (eds) Mercury. University of Arizona Press, Tucson, pp 165–273

    Google Scholar 

  • Plescia JB (1983) The geology of Dione. Icarus 56(2):255–277

    ADS  Google Scholar 

  • Plescia JB (1987) Cratering history of the Uranian Satellites: Umbriel, Titania, and Oberon. J Geophys Res 92(A13):14918–14932

    ADS  Google Scholar 

  • Plescia JB (1988) Cratering history of Miranda: implications for geologic processes. Icarus 73(3):442–461

    ADS  Google Scholar 

  • Plescia JB, Boyce JM (1983) Crater numbers and geological histories of Iapetus, Enceladus, Tethys and Hyperion. Nature 301(5902):666–670

    ADS  Google Scholar 

  • Plescia JB, Boyce JM (1985) Impact cratering history of the Saturnian satellites. J Geophys Res 90:2029–2037

    ADS  Google Scholar 

  • Pollack JB, Consolmagno G (1984) Origin and evolution of the Saturn system. In: Gehrels T, Matthews MS (eds) Saturn. University of Arizona Press, Tucson, pp 811–866

    Google Scholar 

  • Porco CC, Baker E, Barbara J, Beurle K, Brahic A, Burns JA, Charnoz S, Cooper N, Dawson DD, Del Genio AD, Denk T, Dones L, Dyudina U, Evans MW, Giese B, Grazier K, Helfenstein P, Ingersoll AP, Jacobson RA, Johnson TV, McEwen A, Murray CD, Neukum G, Owen WM, Perry J, Roatsch T, Spitale J, Squyres S, Thomas PC, Tiscareno M, Turtle E, Vasavada AR, Veverka J, Wagner R, West R (2005a) Cassini imaging science: initial results on Phoebe and Iapetus. Science 307(5713):1237–1242

    ADS  Google Scholar 

  • Porco CC, Baker E, Barbara J, Beurle K, Brahic A, Burns JA, Charnoz S, Cooper N, Dawson DD, Del Genio AD, Denk T, Dones L, Dyudina U, Evans MW, Fussner S, Giese B, Grazier K, Helfenstein P, Ingersoll AP, Jacobson RA, Johnson TV, McEwen A, Murray CD, Neukum G, Owen WM, Perry J, Roatsch T, Spitale J, Squyres S, Thomas P, Tiscareno M, Turtle EP, Vasavada AR, Veverka J, Wagner R, West R (2005b) Imaging of Titan from the Cassini spacecraft. Nature 434(7030):159–168

    ADS  Google Scholar 

  • Porco CC, Helfenstein P, Thomas PC, Ingersoll AP, Wisdom J, West R, Neukum G, Denk T, Wagner R, Roatsch T, Kieffer S, Turtle E, McEwen A, Johnson TV, Rathbun J, Veverka J, Wilson D, Perry J, Spitale J, Brahic A, Burns JA, DelGenio AD, Dones L, Murray CD, Squyres S (2006) Cassini observes the active south pole of Enceladus. Science 311(5766):1393–1401

    ADS  Google Scholar 

  • Prockter LM, Antman AM, Pappalardo RT, Head JW, Collins GC (1999) Europa: stratigraphy and geological history of the anti-Jovian region from Galileo E14 solid-state imaging data. J Geophys Res 104(E7):16531–16540

    ADS  Google Scholar 

  • Prockter LM, Pappalardo RT (2000) Folds on Europa: implications for crustal cycling and accommodation of extension. Science 289(5481):941–943

    ADS  Google Scholar 

  • Prockter LM (2001) Creation and destruction of lithosphere on Europa: from bands to folds. In: Lunar and planetary science conference, XXXII, Houston, Texas. Abstract no. 1452, 12–16 March 2001

    Google Scholar 

  • Prockter LM, Patterson GW (2009) Morphology and evolution of Europa’s ridges and bands. In: Pappalardo RT, McKinnon WB, Khurana KK (eds) Europa. University of Arizona Press, Tucson, pp 237–258

    Google Scholar 

  • Prockter LM, Head JW, Pappalardo RT, Senske DA, Neukum G, Wagner R, Wolf U, Oberst JO, Giese B, Moore JM, Chapman CR, Helfenstein P, Greeley R, Breneman HH, Belton MJS (1998) Dark Terrain on Ganymede: geological mapping and interpretation of Galileo Regio at high resolution. Icarus 135(1):317–344

    ADS  Google Scholar 

  • Prockter LM, Head JW III, Pappalardo RT, Sullivan RJ, Clifton AE, Giese B, Wagner R, Neukum G (2002) Morphology of Europan bands at high resolution: a mid-ocean ridge-type rift mechanism. J Geophys Res 107:5028

    Google Scholar 

  • Prockter LM, Nimmo F, Pappalardo RT (2005) A shear heating origin for ridges on Triton. Geophys Res Lett 32(14):L14202

    ADS  Google Scholar 

  • Prockter LM, Lopes RMC, Giese B, Jaumann R, Lorenz RD, Pappalardo RT, Patterson GW, Thomas PC, Turtle EP, Wagner RJ (2010) Characteristics of icy surfaces in: satellites of the outer Solar system: exchange Processes involving the interiors. Space Sci Rev 211(1):63–111

    ADS  Google Scholar 

  • Purves NG, Pilcher CB (1980) Thermal migration of water on the Galilean satellites. Icarus 43(1):51–55

    ADS  Google Scholar 

  • Radebaugh J, Lorenz RD, Kirk RL, Lunine JI, Stofan ER, Lopes RMC, Wall SD (2007) Mountains on Titan observed by Cassini Radar. Icarus 192:77–91

    ADS  Google Scholar 

  • Radebaugh J, Lorenz RD, Lunine JI, Wall SD, Boubin G, Reffet E, Kirk RL, Lopes RM, Stofan ER, Soderblom L, Allison M, Janssen M, Paillou P, Callahan P, Spencer C, Cassini Radar T (2008) Dunes on Titan observed by Cassini Radar. Icarus 194(2):690–703

    ADS  Google Scholar 

  • Radebaugh J (2009) Planetary science: Titan’s sticky dunes? Nat Geosci 2(9):608–609

    ADS  Google Scholar 

  • Rathbun JA, Musser GS Jr, Squyres SW (1998) Ice diapirs on Europa: implications for liquid water. Geophys Res Lett 25:4157–4160

    ADS  Google Scholar 

  • Riley J, Hoppa GV, Greenberg R, Tufts BR, Geissler P (2000) Distribution of chaotic terrain on Europa. J Geophys Res 105(E9):22599–22615

    ADS  Google Scholar 

  • Rhoden AR, Hurford TA, Manga M (2011) Strike-slip fault patterns on Europa: obliquity or polar wander? Icarus 211(1):636–647

    ADS  Google Scholar 

  • Roatsch T, Kersten E, Waehlisch M, Hoffmeister A, Neukum G, Porco CC (2009) High resolution Rhea Atlas derived from Cassini ISS images. European planetary science congress, Potsdam, Germany. Abstracts 4, abstract no. EPSC2009-61, 13–18 September

    Google Scholar 

  • Roberts JH, Nimmo F (2009) Tidal dissipation due to despinning and the equatorial ridge on Iapetus. In: Lunar and planetary science conference, The Woodlands, Texas, XL. Abstract no. 1927, 23–27 March 2009

    Google Scholar 

  • Rothery DA (1999) Satellites of the outer Planets: Worlds in their own right. Oxford University Press, New York, p 230

    Google Scholar 

  • Sandwell D, Schubert G (2010) A contraction model for the flattening and equatorial ridge of Iapetus. Icarus 210(2):817–822

    ADS  Google Scholar 

  • Sarid AR, Greenberg R, Hoppa GV, Hurford TA, Tufts BR, Geissler P (2002) Polar wander and surface convergence of Europa’s ice shell: evidence from a survey of strike-slip displacement. Icarus 158:24–41

    ADS  Google Scholar 

  • Sarid AR, Greenberg R, Hoppa GV, Geissler P, Preblich B (2004) Crack azimuths on Europa: time sequence in the southern leading face. Icarus 168:144–157

    ADS  Google Scholar 

  • Sarid AR, Greenberg R, Hoppa GV, Brown JDM, Geissler P (2005) Crack azimuths on Europa: the G1 lineament sequence revisited. Icarus 173:469–479

    ADS  Google Scholar 

  • Sarid AR, Greenberg R, Hurford TA (2006) Crack azimuths on Europa: sequencing of the northern leading hemisphere. J Geophys Res 111:E08004

    Google Scholar 

  • Schaller EL, Brown ME, Roe HG, Bouchez AH (2006a) A large cloud outburst at Titan’s south pole. Icarus 182(1):224–229

    ADS  Google Scholar 

  • Schaller EL, Brown ME, Roe HG, Bouchez AH, Trujillo CA (2006b) Dissipation of Titan’s south polar clouds. Icarus 184(2):517–523

    ADS  Google Scholar 

  • Schenk PM (1989) Crater formation and modification on the icy satellites of Uranus and Saturn: depth/diameter and central peak occurrence. J Geophys Res 94(B4):3813–3832

    MathSciNet  ADS  Google Scholar 

  • Schenk PM (1991) Fluid volcanism on Miranda and Ariel: flow morphology and composition. J Geophys Res 96(B2):1887–1906

    ADS  Google Scholar 

  • Schenk PM (1993) Central pit and dome craters: exposing the interiors of Ganymede and Callisto. J Geophys Res 98(E4):7475–7498

    ADS  Google Scholar 

  • Schenk PM (1995) The geology of Callisto. J Geophys Res 100(E9):19023–19040

    ADS  Google Scholar 

  • Schenk PM, Jackson MPA (1993) Diapirism on Triton: a record of crustal layering and instability. Geology 21(4):299–302

    ADS  Google Scholar 

  • Schenk PM, McKinnon WB (1989) Fault offsets and lateral crustal movement on Europa: evidence for a mobile ice shell. Icarus 79(1):75–100

    ADS  Google Scholar 

  • Schenk PM, McKinnon WB (1991) Dark-ray and dark-floor craters on Ganymede, and the provenance of large impactors in the Jovian system. Icarus 89:318–346

    ADS  Google Scholar 

  • Schenk PM, Moore JM (1995) Volcanic constructs on Ganymede and Enceladus: topographic evidence from stereo images and photoclinometry. J Geophys Res 100(E9):19009–19022

    ADS  Google Scholar 

  • Schenk PM, Moore JM (1998) Geologic landforms and processes on icy satellites. In: Schmitt B, de Bergh C, Festou M (eds) Solar System ices, based on reviews presented at the international symposium “Solar system ices”, Toulouse, Kluwer Academic, Dordrecht, 27–30 Mar 1998, p 551

    Google Scholar 

  • Schenk PM, Pappalardo RT (2004) Topographic variations in chaos on Europa: implications for diapiric formation. Geophys Res Lett 31(16):L16703

    ADS  Google Scholar 

  • Schenk PM, Moore JM (2007) Impact crater topography and morphology on Saturnian mid-sized satellites. In: Lunar and planetary science conference, XXXVIII, Houston, Texas. LPI contribution no. 1338, p 2305, 12–16 March 2007

    Google Scholar 

  • Schenk PM, Moore JM (2009) Eruptive volcanism on Saturn’s icy Moon Dione. In: Lunar and planetary science conference, The Woodlands, Texas, XL. Abstract no. 2465, 23–27 March 2007

    Google Scholar 

  • Schenk PM, Murphy SW (2011) The rayed craters of Saturn’s icy satellites (including Iapetus): current impactor populations and origins. In: Lunar and planetary science conference, XLII, The Woodlands, Texas. Abstract no. 2098, 7–11 March 2011

    Google Scholar 

  • Schenk P, Hamilton DP, Johnson RE, McKinnon WB, Paranicas C, Schmidt J, Showalter MR (2011) Plasma, plumes and rings: Saturn system dynamics as recorded in global color patterns on its midsize icy satellites. Icarus 211(1):740–757

    ADS  Google Scholar 

  • Schenk PM, Ridolfi FJ (2002) Morphology and scaling of ejecta deposits on icy satellites. Geophys Res Lett 29:31–34

    ADS  Google Scholar 

  • Schenk PM, Zahnle K (2007) On the negligible surface age of Triton. Icarus 192(1):135–149

    ADS  Google Scholar 

  • Schenk PM, Asphaug E, McKinnon WB, Melosh HJ, Weissman PR (1996) Cometary nuclei and tidal disruption: the geologic record of crater chains on Callisto and Ganymede. Icarus 121(2):249–274

    ADS  Google Scholar 

  • Schenk PM, Chapman CR, Zahnle K, Moore JM (2004) Ages and interiors: the cratering record of the Galilean satellites. In: Bagenal F, Dowling TE, McKinnon WB (eds) Jupiter: the planet, satellites, and magnetosphere. Cambridge University Press, Cambridge, UK, pp 427–456

    Google Scholar 

  • Schenk PM, Matsuyama I, Nimmo F (2008) True polar wander on Europa from global-scale small-circle depressions. Nature 453(7193):368–371

    ADS  Google Scholar 

  • Schmedemannn N, Neukum G, Denk T, Wagner R (2008) Stratigraphy and surface ages on Iapetus and other Saturnian satellites. In: Lunar and planetary science, XXXIX, League City, Texas, LPI contribution no. 1391, p 2070. 10–14 March 2008

    Google Scholar 

  • Schmidt RM, Housen KR (1987) Some recent advances in the scaling of impact and explosion cratering. Int J Impact Eng 5:543–560

    ADS  Google Scholar 

  • Shaya EJ, Pilcher CB (1984) Polar cap formation on Ganymede. Icarus 58(1):74–80

    ADS  Google Scholar 

  • Shoemaker EM, Wolfe RF (1982) Cratering time scales for the Galilean satellites. In: Morrison D (ed) Satellites of Jupiter. University of Arizona Press, Tucson, pp 277–339

    Google Scholar 

  • Shoemaker EM, Lucchitta BK, Wilhelms DE, Plescia JB, Squyres SW (1982) The geology of Ganymede. In: Morrison D (ed) Satellites of Jupiter. University of Arizona Press, Tucson, pp 435–520

    Google Scholar 

  • Showman AP, Stevenson DJ, Malhotra R (1997) Coupled orbital and thermal evolution of Ganymede. Icarus 129(2):367–383

    ADS  Google Scholar 

  • Showman AP, Mosqueira I, Head Iii JW (2004) On the resurfacing of Ganymede by liquid-water volcanism. Icarus 172(2):625–640

    ADS  Google Scholar 

  • Singer K, McKinnon WB (2010) Iapetian tectonics: despinning, respinning, contraction, or something completely different? DPS meeting #42, Bulletin of the American Astronomical Society: Pasadena, p 941

    Google Scholar 

  • Singer K, McKinnon WB, Schenk PM, Moore JM (2009) Large landslides on Iapetus: implications for crater and ridge modifications, Bulletin of the American Astronomical Society. DPS Meeting, Puerto Rico,USA, Abstract 38.01, 4–9 October 2009

    Google Scholar 

  • Singer KN, McKinnon WB, Schenk PM (2010) Pits, spots, uplifts, and small Chaos regions on Europa: evidence for diapiric upwelling from morphology and morphometry. In: Lunar and planetary science conference, The Woodlands, Texas, XXXXI. Abstract no. 2195, 1–5 March 2010

    Google Scholar 

  • Smith BA, Soderblom LA, Johnson TV, Ingersoll A, Collins SA, Shoemaker EM, Hunt GE, Masursky H, Carr M, Davies ME, Cook AF, Boyce J, Danielson GE, Owen T, Sagan C, Beebe R, Veverka J, Strom R, McCauley J, Morrison D, Briggs G, Suomi VE (1979a) The Jupiter system through the eyes of Voyager 1. Science 204(4396):951–972

    ADS  Google Scholar 

  • Smith BA, Soderblom LA, Beebe R, Boyce J, Briggs G, Carr M, Collins SA, Cook AF, Danielson GE, Davies ME, Hunt GE, Ingersoll A, Johnson TV, Masursky H, McCauley J, Morrison D, Owen T, Sagan C, Shoemaker EM, Strom R, Suomi VE, Veverka J (1979b) The Galilean satellites and Jupiter: Voyager 2 imaging science results. Science 206(4421):927–950

    ADS  Google Scholar 

  • Smith BA, Soderblom L, Beebe R, Boyce J, Briggs G, Bunker A, Collins SA, Hansen CJ, Johnson TV, Mitchell JL, Terrile RJ, Carr M, Cook AF, Cuzzi J, Pollack JB, Danielson GE, Ingersoll A, Davies ME, Hunt GE, Masursky H, Shoemaker E, Morrison D, Owen T, Sagan C, Veverka J, Strom R, Suomi VE (1981) Encounter with Saturn: Voyager 1 imaging science results. Science 212(4491):163–191

    ADS  Google Scholar 

  • Smith BA, Soderblom L, Batson R, Bridges P, Inge JAY, Masursky H, Shoemaker E, Beebe R, Boyce J, Briggs G, Bunker A, Collins SA, Hansen CJ, Johnson TV, Mitchell JL, Terrile RJ, Cook AF, Cuzzi J, Pollack JB, Danielson GE, Ingersoll AP, Davies ME, Hunt GE, Morrison D, Owen T, Sagan C, Veverka J, Strom R, Suomi VE (1982) A new look at the Saturn system: the Voyager 2 images. Science 215(4532):504–537

    ADS  Google Scholar 

  • Smith BA, Soderblom LA, Beebe RF, Bollinger K, Boyce JM, Brahic A, Briggs GA, Brown RH, Chyba C, Collins SA, Cook AF, Croft SK, Cruikshank D, Cuzzi JN, Danielson GE, Davies ME, Dowling TE, Godfrey D, Hansen CJ, Harris C, Helfenstein CP, Hunt GE, Ingersoll AP, Johnson TV, Krauss RJ, Masursky H, Morrison D, Owen T, Plescia JB, Pollack JB, Porco CC, Rages K, Sagan C, Schwartz J, Shoemaker EM, Sromovsky LA, Stoker C, Strom RG, Suomi VE, Synott SP, Terrile RJ, Thomas P, Thompson WR, Veverka J (1986) Voyager 2 in the Uranian system: imaging science results. Science 233(4759):43–64

    ADS  Google Scholar 

  • Smith BA, Soderblom LA, Banfield D, Barnet C, Basilevsky AT, Beebe RF, Bollinger K, Boyce JM, Brahic A, Briggs GA, Brown RH, Chyba C, Collins SA, Colvin T, Cook AF, Crisp D, Croft SK, Cruikshank D, Cuzzi JN, Danielson GE, Davies ME, De Jong E, Dones L, Godfrey D, Goguen J, Grenier I, Haemmerle VR, Hammel H, Hansen CJ, Helfenstein CP, Howell C, Hunt GE, Ingersoll AP, Johnson TV, Kargel J, Kirk R, Kuehn DI, Limaye S, Masursky H, McEwen A, Morrison D, Owen T, Owen W, Pollack JB, Porco CC, Rages K, Rogers P, Rudy D, Sagan C, Schwartz J, Shoemaker EM, Showalter M, Sicardy B, Simonelli D, Spencer J, Sromovsky LA, Stoker C, Strom RG, Suomi VE, Synott SP, Terrile RJ, Thomas P, Thompson WR, Verbiscer A, Veverka J (1989) Voyager 2 at Neptune: imaging science results. Science 246(4936):1422–1449

    ADS  Google Scholar 

  • Smith HT, Johnson RE, Sittler EC, Shappirio M, Reisenfeld D, Tucker OJ, Burger M, Crary FJ, McComas DJ, Young DT (2007) Enceladus: the likely dominant nitrogen source in Saturn’s magnetosphere. Icarus 188(2):356–366

    ADS  Google Scholar 

  • Soderblom LA, Kieffer SW, Becker TL, Brown RH, Cook AF, Hansen CJ, Johnson TV, Kirk RL, Shoemaker EM (1990) Triton’s geyser-like plumes: discovery and basic characterization. Science 250(4979):410–415

    ADS  Google Scholar 

  • Soderblom LA, Kirk RL, Lunine JI, Anderson JA, Baines KH, Barnes JW, Barrett JM, Brown RH, Buratti BJ, Clark RN, Cruikshank DP, Elachi C, Janssen MA, Jaumann R, Karkoschka E, Mouélic SL, Lopes RM, Lorenz RD, McCord TB, Nicholson PD, Radebaugh J, Rizk B, Sotin C, Stofan ER, Sucharski TL, Tomasko MG, Wall SD (2007) Correlations between Cassini VIMS spectra and RADAR SAR images: implications for Titan’s surface composition and the character of the huygens probe landing site. Planet Sp Sci 55(13):2025–2036

    ADS  Google Scholar 

  • Spahn F, Schmidt J, Albers N, Horning M, Makuch M, Seiss M, Kempf S, Srama R, Dikarev V, Helfert S, Moragas-Klostermeyer G, Krivov AV, Sremcevic M, Tuzzolino AJ, Economou T, Grun E (2006) Cassini dust measurements at Enceladus and implications for the origin of the E ring. Science 311(5766):1416–1418

    ADS  Google Scholar 

  • Spaun NA, Head JW, Collins GC, Prockter LM, Pappalardo RT (1998) Conamara Chaos region, Europa: reconstruction of mobile polygonal ice blocks. Geophys Res Lett 25:4277–4280

    ADS  Google Scholar 

  • Spaun NA, Head JW III, Pappalardo RT, The Galileo SSI Team (1999) Chaos and lenticulae on Europa: structure, morphology and comparative analysis. In: Lunar and planetary science conference, XXX, Houston, Texas. Abstract no. 1276, 15–19 March 1999

    Google Scholar 

  • Spaun NA, Head JW III, Pappalardo RT, The Galileo SSI Team (2001) Scalloped depressions on Ganymede from Galileo (G28) very high resolution imaging. In: Lunar and planetary science conference, XXXII, Houston, Texas. Abstract no.1448, 12–16 March 2001

    Google Scholar 

  • Spaun NA, Head JW III, Pappalardo RT (2004) Europan Chaos and lenticulae: a synthesis of size, spacing, and areal density analyses. In: Lunar and planetary science conference, Houston, Texas, XXXV. Abstract no. 1409, 15–19 March 2004

    Google Scholar 

  • Spencer JR, Maloney PR (1984) Mobility of water ice on Callisto: evidence and implications. Geophys Res Lett 11(12):1223–1226

    ADS  Google Scholar 

  • Spencer JR (1987) Icy Galilean satellite reflectance spectra: less ice on Ganymede and Callisto? Icarus 70(1):99–110

    ADS  Google Scholar 

  • Spencer JR, Prockter L, Pappalardo R, Head J, Moore J, Galileo SSI Team (1998) Local volatile migration on Ganymede: Galileo SSI images, PPR radiometry, and theoretical considerations, LPSC XXIX, 16–20 March, Houston, 1149

    Google Scholar 

  • Spencer JR, Calvin WM (2002) Condensed O2 on Europa and Callisto. Astron J 124(6):3400

    ADS  Google Scholar 

  • Spencer JR, Barr AC, Esposito LW, Helfenstein P, Ingersoll AP, Jaumann R, McKay CP, Nimmo F, Waite JH (2009) Enceladus: an active cryovolcanic satellite. In: Dougherty MK, Esposito LW, Krimigis SM (eds) Saturn from Cassini-Huygens. Springer, Dordrecht, pp 683–724

    Google Scholar 

  • Spencer JR, Pearl JC, Segura M, Flasar FM, Mamoutkine A, Romani P, Buratti BJ, Hendrix AR, Spilker LJ, Lopes RMC (2006) Cassini encounters enceladus: background and the discovery of a South polar hot spot. Science 311(5766):1401–1405

    ADS  Google Scholar 

  • Spencer JR, Denk T (2010) Formation of Iapetus’ extreme Albedo Dichotomy by exogenically triggered thermal ice migration. Science 327(5964):432–435

    ADS  Google Scholar 

  • Spitale JN, Porco CC (2007) Association of the jets of enceladus with the warmest regions on its south-polar fractures. Nature 449(7163):695–697

    ADS  Google Scholar 

  • Stofan ER, Elachi C, Lunine JI, Lorenz RD, Stiles B, Mitchell KL, Ostro S, Soderblom L, Wood C, Zebker H, Wall S, Janssen M, Kirk R, Lopes R, Paganelli F, Radebaugh J, Wye L, Anderson Y, Allison M, Boehmer R, Callahan P, Encrenaz P, Flamini E, Francescetti G, Gim Y, Hamilton G, Hensley S, Johnson WTK, Kelleher K, Muhleman D, Paillou P, Picardi G, Posa F, Roth L, Seu R, Shaffer S, Vetrella S, West R (2007) The lakes of Titan. Nature 445(7123):61–64

    ADS  Google Scholar 

  • Stone EC, Cummings AC, Loooper MD, Selesnick RS, Lal N, McDonald FB, Trainor JH, Chenette DL (1989) Energetic charged particles in the magnetosphere of Neptune. Science 246(4936):1489–1494

    ADS  Google Scholar 

  • Spudis PD (1993) The geology of multi-ring impact basins: the Moon and other planets. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Squyres SW (1980) Volume changes in Ganymede and Callisto and the origin of grooved terrain. Geophys Res Lett 7(8):593–596

    ADS  Google Scholar 

  • Squyres SW (1981) The topography of Ganymede’s grooved terrain. Icarus 46(2):156–168

    ADS  Google Scholar 

  • Squyres SW, Croft SK (1986) The tectonics of icy satellites. In: Burns J, Matthews MS (eds) Satellites. University of Arizona Press, Tucson, pp 293–341

    Google Scholar 

  • Squyres SW, Reynolds RT, Cassen PM, Peale SJ (1983) The evolution of Enceladus. Icarus 53(2):319–331

    ADS  Google Scholar 

  • Stephan K (2006) Chemisch-physikalische Zusammensetzung der Ganymedoberfläche: Zusammenhänge mit geologischen Strukturen und deren Gestaltungsprozessen. Ph.D. Dissertation (in German) Thesis

    Google Scholar 

  • Stephan K, Hibbitts CA, Wagner R, Jaumann R, Hansen GB (2009) Ganymede’s spectral properties: implications for further investigations in a future mission to Jupiter and its satellites, In: European planetary science congress, Potsdam, Germany, 4 EPSC2009-2633, 13–18 September

    Google Scholar 

  • Stephan K, Jaumann R, Wagner R, Clark RN, Cruikshank DP, Hibbitts CA, Roatsch T, Hoffmann H, Brown RH, Filiacchione G, Buratti BJ, Hansen GB, McCord TB, Nicholson PD, Baines KH (2010) Dione’s spectral and geological properties. Icarus 206(2):631–652

    ADS  Google Scholar 

  • Stephan K, Jaumann R, Wagner R, Clark RN, Cruikshank DP, Hibbits CA, Roatsch T, Hoffmann H, Brown RH, Filacchione G, Buratti BJ, Hansen GB, Nicholson PD, Baines KH, Nelson RM, and Matson DL (2011) The Saturnian satellite Rhea as seen by Cassini VIMS. Icarus (submitted)

    Google Scholar 

  • Stevenson DJ (1982) Volcanism and igneous processes in small icy satellites. Nature 298(5870):142–144

    ADS  Google Scholar 

  • Stofan ER, Lunine JI, Lopes R, Paganelli F, Lorenz RD, Wood CA, Kirk R, Wall S, Elachi C, Soderblom LA, Ostro S, Janssen M, Radebaugh J, Wye L, Zebker H, Anderson Y, Allison M, Boehmer R, Callahan P, Encrenaz P, Flamini E, Francescetti G, Gim Y, Hamilton G, Hensley S, Johnson WTK, Kelleher K, Muhleman D, Picardi G, Posa F, Roth L, Seu R, Shaffer S, Stiles B, Vetrella S, West R (2006) Mapping of Titan: results from the first Titan radar passes. Icarus 185(2):443–456

    ADS  Google Scholar 

  • Stooke PJ (1989) Geology of Mimas. In: Abstracts of the lunar and planetary science conference, Houston, Texas, 20, p 1069, 13–17 March 1989

    Google Scholar 

  • Stooke PJ (2001) Voyager images revisited: new views of the satellites of Saturn and Uranus. In: Lunar and planetary science conference, Houston, Texas, XXXII. Abstract no. 1074, 12–16 March 2001

    Google Scholar 

  • Stooke PJ (2002) Tethys and Dione: new geological interpretations. In: Lunar and planetary science conference, XXXIII, Houston, Texas. Abstract no. 1553, 11–15 March 2002

    Google Scholar 

  • Strom RG, Woronow A, Gurnis M (1981) Crater populations on Ganymede and Callisto. J Geophys Res 86(A10):8659–8674

    ADS  Google Scholar 

  • Strom RG, Malhotra R, Ito T, Yoshida F, Kring DA (2005) The origin of planetary impactors in the inner Solar System. Science 309(5742):1847–1850

    ADS  Google Scholar 

  • Sullivan R, Greeley R, Homan K, Klemaszewski J, Belton MJS, Carr MH, Chapman CR, Tufts R, Head JW, Pappalardo R, Moore J, Thomas P, The Galileo SSI Team (1998) Episodic plate separation and fracture infill on the surface of Europa. Nature 391(6665):371–373

    ADS  Google Scholar 

  • Tanaka KL (1986) The stratigraphy of Mars. J Geophys Res 91(B13):E139–E158

    Google Scholar 

  • Teolis BD, Jones GH, Miles PF, Tokar RL, Magee BA, Waite JH, Roussos E, Young DT, Crary FJ, Coates AJ, Johnson RE, Tseng WL, Baragiola RA (2010) Cassini finds an oxygen-carbon dioxide atmosphere at Saturn’s icy moon Rhea. Science 330(6012):1813–1815

    ADS  Google Scholar 

  • Tera F, Papanastassiou DA, Wasserburg GJ (1974) Isotopic evidence for a terminal lunar cataclysm. Earth Planet Sci Lett 22(1):1–21

    ADS  Google Scholar 

  • Thomas PC (1988) Radii, shapes, and topography of the satellites of Uranus from limb coordinates. Icarus 73:427–441

    ADS  Google Scholar 

  • Thomas PC, Burns JA, Helfenstein P, Squyres S, Veverka J, Porco C, Turtle EP, McEwen A, Denk T, Giese B, Roatsch T, Johnson TV, Jacobson RA (2007) Shapes of the saturnian icy satellites and their significance. Icarus 190(2):573–584

    ADS  Google Scholar 

  • Tian F, Stewart AIF, Toon OB, Larsen KW, Esposito LW (2007) Monte Carlo simulations of the water vapor plumes on Enceladus. Icarus 188(1):154–161

    ADS  Google Scholar 

  • Tittemore WC, Wisdom J (1990) Tidal evolution of the Uranian satellites: III. Evolution through the Miranda-Umbriel 3:1, Miranda-Ariel 5:3, and Ariel-Umbriel 2:1 mean-motion commensurabilities. Icarus 85(2):394–443

    ADS  Google Scholar 

  • Tokano T (2008) Dune-forming winds on Titan and the influence of topography. Icarus 194(1):243–262

    ADS  Google Scholar 

  • Tomasko MG, Archinal B, Becker T, Bezard B, Bushroe M, Combes M, Cook D, Coustenis A, de Bergh C, Dafoe LE, Doose L, Doute S, Eibl A, Engel S, Gliem F, Grieger B, Holso K, Howington-Kraus E, Karkoschka E, Keller HU, Kirk R, Kramm R, Kuppers M, Lanagan P, Lellouch E, Lemmon M, Lunine J, McFarlane E, Moores J, Prout GM, Rizk B, Rosiek M, Rueffer P, Schroder SE, Schmitt B, See C, Smith P, Soderblom L, Thomas N, West R (2005) Rain, winds and haze during the Huygens probe’s descent to Titan’s surface. Nature 438(7069):765–778

    ADS  Google Scholar 

  • Tran BN, Joseph JC, Ferris JP, Persans PD, Chera JJ (2003) Simulation of Titan haze formation using a photochemical flow reactor: the optical constants of the polymer. Icarus 165(2):379–390

    ADS  Google Scholar 

  • Tsiganis K, Gomes R, Morbidelli A, Levison HF (2005) Origin of the orbital architecture of the giant planets of the Solar System. Nature 435:459–461

    ADS  Google Scholar 

  • Turtle EP, Phillips CB, Collins GC, McEwen AS, Moore JM, Pappalardo RT, Schenk PM, The Galileo Imaging Team (1999) Europan impact crater diameters and inferred transient crater dimensions and excavation depths. Lunar and planetary science conference, Houston, Texas, XXX. Abstract no. 1882, 15–19 March 1999

    Google Scholar 

  • Turtle EP, Perry JE, McEwen AS, DelGenio AD, Barbara J, West RA, Dawson DD, Porco CC (2009) Cassini imaging of Titan’s high-latitude lakes, clouds, and south-polar surface changes. Geophys Res Lett 36(2):L02204

    Google Scholar 

  • Van Dorn WG (1968) Tsunamis on the Moon? Nature 220(5172):1102–1107

    ADS  Google Scholar 

  • Wagner RJ (2007) Untersuchungen zur Chronostratigraphie, Impaktchronologie und geologischen Entwicklung des Jupitersatelliten Callisto auf der Basis der Galileo-SSI-Kameradaten. Ph.D. Dissertation (in German) Thesis

    Google Scholar 

  • Wagner RJ, Neukum G, Giese B, Roatsch T, Wolf U, Denk T, The Cassini ISS Team (2006) Geology, ages and topography of Saturn’s satellite Dione observed by the Cassini ISS camera. In: Lunar and planetary science conference, Houston, Texas, XXXVII. Abstract no. 1805, 13–17 March 2006

    Google Scholar 

  • Wagner RJ, Neukum G, Giese B, Roatsch T, Wolf U (2007a) The global geology of Rhea: preliminary implications from the Cassini ISS data. In: Lunar and planetary science, League City, Texas, XXXVIII. LPI contribution no. 1338, 1958, 12–17 March 2007

    Google Scholar 

  • Wagner RJ, Neukum G, Giese B, Roatsch T, Denk T (2007b) Geology and geomorphology of Rhea: a first look at the high-resolution Cassini images from the targeted flyby on Aug. 30, 2007. In: Paper presented at AGU Fall Meeting, 10–14 Dec 2007, San Francisco, California

    Google Scholar 

  • Wagner RJ, Neukum G, Giese B, Roatsch T, Denk T, Wolf U, Porco CC (2008) Geology of Saturn’ satellite Rhea on the basis of the high-resolution images from the targeted flyby 049 on 30 Aug 2007. In: Lunar and Planetary Science Conf. XXXIX, 10–14 March 2008, League City, Texas. Abstr. No. 1930

    Google Scholar 

  • Wagner RJ, Neukum G, Giese B, Roatsch T, Denk T, Wolf U, Porco CC (2010) The geology of Rhea: a first look at the ISS camera data from orbit 121, 21 Nov 2009 in Cassini’s extended mission. In: Lunar and Planetary Science Conf. XLI, 1–5 March 2010. The Woodlands, Texas. Abstr. No. 1672

    Google Scholar 

  • Wagner RJ, Neukum G, Wolf U, Schmedemann N, Denk T, Stephan K, Roatsch T, Porco CC (2011) Rayed craters on Dione and Rhea. In: Lunar and planetary science conference, The Woodlands, Texas, XLII. Abstract no. 2249, 7–11 March 2011

    Google Scholar 

  • Waite JH, Combi MR, Ip W-H, Cravens TE, McNutt RL, Kasprzak W, Yelle R, Luhmann J, Niemann H, Gell D, Magee B, Fletcher G, Lunine J, Tseng W-L (2006) Cassini ion and neutral mass spectrometer: Enceladus plume composition and structure. Science 311(5766):1419–1422

    ADS  Google Scholar 

  • Wetherill GW (1975) Late heavy bombardment of the moon and terrestrial planets. In: Lunar science conference, Houston, Texas, VI, 2 (A78-46668 21-91), pp 1539–1561, 17–21 March 1975

    Google Scholar 

  • Wetherill GW (1981) Nature and origin of basin-forming projectiles, Multi-ring basins: formation and evolution. In: Proceedings of lunar and planetary science conference, Houston, Texas, vol 12A. pp 1–18, 16–20 March 1981

    Google Scholar 

  • Wilhelms DE (1987) The geologic history of the Moon, U.S.G.S. Professional paper 1349, Flagstaff, p 302

    Google Scholar 

  • Williams KK, Greeley R (1998) Estimates of ice thickness in the Conamara Chaos region of Europa. Geophys Res Lett 25(23):4273–4276

    ADS  Google Scholar 

  • Wilson L, Head JW, Pappalardo RT (1997) Eruption of lava flows on Europa: theory and application to Thrace Macula. J Geophys Res 102(E4):9263–9272

    ADS  Google Scholar 

  • Wood CA, Lorenz R, Kirk R, Lopes R, Mitchell K, Stofan E, The Cassini RADAR Team (2010) Impact craters on Titan. Icarus 206:334–344

    ADS  Google Scholar 

  • Woronow A, Strom RG, Gurnis M (1982) Interpreting the cratering record – mercury to Ganymede and Callisto. In: Morrison D (ed) Satellites of Jupiter. University of Arizona Press, Tucson, pp 237–276

    Google Scholar 

  • Yasui M, Arakawa M (2008) Experimental study on the rheology of ice-silica beads mixtures: effects of silica content and temperature on the flow law. In: Paper presented at the science of solar system ices (ScSSI): a cross-disciplinary workshop, Oxnard, 5–8 May 2008

    Google Scholar 

  • Yung YL, Allen M, Pinto JP (1984) Photochemistry of the atmosphere of Titan – comparison between model and observations. Astrophys J Suppl Ser 55:465–506 (ISSN 0067–0049)

    ADS  Google Scholar 

  • Zahnle K, Dones L, Levison HF (1998) Cratering rates on the Galilean Satellites. Icarus 136(2):202–222

    ADS  Google Scholar 

  • Zahnle K, Schenk P, Levison H, Dones L (2003) Cratering rates in the outer Solar System. Icarus 163(2):263–289

    ADS  Google Scholar 

  • Zhong F, Mitchell KL, Hays CC, Choukroun M, Barmatz M, Kargel JS (2009) The rheology of cryovolcanic slurries: motivation and phenomenology of methanol-water slurries with implications for Titan. Icarus 202(2):607–619

    ADS  Google Scholar 

  • Zuber MT, Parmentier EM (1984) Lithospheric stresses due to radiogenic heating of an ice-silicate planetary body: implications for Ganymede’s tectonic evolution. J Geophys Res 89:B429–B437

    Google Scholar 

Download references

Acknowledgments

We thank H. Hussmann for his valuable comments and an anonymous reviewer for his careful review that significantly improved this chapter. This work has been partly supported by DLR and the Helmholtz Alliance ‘Planetary Evolution and Life’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrin Stephan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Stephan, K., Jaumann, R., Wagner, R. (2013). Geology of Icy Bodies. In: Gudipati, M., Castillo-Rogez, J. (eds) The Science of Solar System Ices. Astrophysics and Space Science Library, vol 356. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3076-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3076-6_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3075-9

  • Online ISBN: 978-1-4614-3076-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics