Skip to main content

Observed Ices in the Solar System

  • Chapter
  • First Online:
The Science of Solar System Ices

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 356))

Abstract

Ices have been detected and mapped on the Earth and all planets and/or their satellites further from the sun. Water ice is the most common frozen volatile observed and is also unambiguously detected or inferred in every planet and/or their moon(s) except Venus. Carbon dioxide is also extensively found in all systems beyond the Earth except Pluto although it sometimes appears to be trapped rather than as an ice on some objects. The largest deposits of carbon dioxide ice is on Mars. Sulfur dioxide ice is found in the Jupiter system. Nitrogen and methane ices are common beyond the Uranian system. Saturn’s moon Titan probably has the most complex active chemistry involving ices, with benzene (C6H6) and many tentative or inferred compounds including ices of Cyanoacetylene (HC3N), Toluene (C7H8), Cyanogen (C2N2), Acetonitrile (CH3CN), H2O, CO2, and NH3. Confirming compounds on Titan is hampered by its thick smoggy atmosphere. Ammonia was predicted on many icy moons but is notably absent among the definitively detected ices with the possible exception of Enceladus. Comets, storehouses of many compounds that could exist as ices in their nuclei, have only had small amounts of water ice definitively detected on their surfaces. Only one asteroid has had a direct detection of surface water ice, although its presence can be inferred in others. This chapter reviews some of the properties of ices that lead to their detection, and surveys the ices that have been observed on solid surfaces throughout the Solar System.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anders E, Grevasse N (1989) Abundances of the elements: meteoritic and solar. Geochim Cosmochim Acta 53:197–214

    ADS  Google Scholar 

  • Apt J, Carleton NP, Mackay CD (1983) Methane on Triton and Pluto: new CCD spectra. Astrophys J 270:342–350

    ADS  Google Scholar 

  • Bagenal F, Dowling TE, McKinnon WB (eds) (2004) Jupiter. Cambridge University Press, Cambridge

    Google Scholar 

  • Baines KH, Yanamandra-Fisher PA, Lebofsky LA, Momary TW, Golisch W, Kaminski C, Wild WJ (1998) Near-infrared absolute photometric imaging of the uranian system. Icarus 132:266–284

    ADS  Google Scholar 

  • Baklouti D, Schmitt B, Brissaud O (2008) S2O, polysulfur oxide and sulfur polymer on Io’s surface? Icarus 194:647–659

    ADS  Google Scholar 

  • Barkume KM, Brown ME, Schaller EL (2006) Water ice on the satellite of Kuiper belt object 2003 EL61. Astrophys J 640:L87–L89

    ADS  Google Scholar 

  • Barkume KM, Brown ME, Schaller EL (2008) Near-infrared spectra of Centaurs and Kuiper belt objects. Astron J 135:55–67

    ADS  Google Scholar 

  • Barnes JW, Brown RH, Turtle EP, McEwen AS, Lorenz RD, Janssen M, Schaller EL, Brown ME, Buratti BJ, Sotin C, Griffith C, Clark R, Perry J, Fussner S, Barbara J, West R, Elachi C, Bouchez AH, Roe HG, Baines KH, Bellucci G, Bibring J-P, Capaccioni F, Cerroni P, Combes M, Coradini A, Cruikshank DP, Drossart P, Formisano V, Jaumann R, Langevin Y, Matson DL, McCord TB, Nicholson PD, Sicardy B (2005) A 5-ÎĽm bright spot on Titan: evidence for surface diversity. Science 310:92–94, http://www.sciencemag.org/cgi/content/full/310/5745/92

    ADS  Google Scholar 

  • Barnes JW, Radebaugh J, Brown RH, Wall S, Soderblom L, Lunine J, Burr D, Sotin C, Le MouĂ©lic S, Rodriguez S, Buratti BJ, Clark RN, Baines KH, Jaumann R, Nicholson PD, Kirk RL, Lopes R, Lorenz R, Mitchell K, Wood CA (2007) Near-infrared spectral mapping of Titan’s mountains and channels. J Geophys Res 112:E11006. doi:10.1029/2007JE002932

    ADS  Google Scholar 

  • Barnes JW, Brown RH, Soderblom L, Sotin C, Le MouĂ©lic S, Rodriguez S, Jaumann R, Beyer RA, Buratti BJ, Pitman K, Baines KH, Clark R, Nicholson P (2008) Spectroscopy, morphometry, and photoclinometry of Titans Dunefields from Cassini/VIMS. Icarus 195:400–414. doi:10.1016/j.icarus.2007.12.006

    ADS  Google Scholar 

  • Barucci MA, Cruikshank DP, Dotto E, Merlin F, Poulet F, Dalle Ore C, Fornasier S, de Bergh C (2005) Is Sedna another Triton? Astron Astrophys 439:L1–L4

    ADS  Google Scholar 

  • Bauer JM, Roush TL, Geballe TR, Meech KJ, Owen TC, Vacca WD, Rayner JT, Jim KTC (2002) The near infrared spectrum of Miranda: evidence of crystalline water ice. Icarus 158:178–190

    ADS  Google Scholar 

  • Bibring JP et al (2004) Perennial water ice identified in the south polar cap of Mars. Nature 428:627–630

    ADS  Google Scholar 

  • Bohn RB, Sandford SA, Allamandola LJ, Cruikshank DP (1994) Infrared spectroscopy of Triton and Pluto ice analogs: the case for saturated hydrocarbons. Icarus 111:151–173

    ADS  Google Scholar 

  • Brodyanski AP, Medvedev SA, Vetter M, Kreutz J, Jodl HJ (2002) Nature of infrared-active phonon sidebands to internal vibrations: spectroscopic studies of solid oxygen and nitrogen. Phys Rev B 66:104301, 1–19

    ADS  Google Scholar 

  • Brown RH (1983) The uranian satellites and Hyperion: new spectrophotometry and compositional implications. Icarus 56:414–425

    ADS  Google Scholar 

  • Brown RH, Clark RN (1984) Surface of Miranda: identification of water ice. Icarus 58:288–292

    ADS  Google Scholar 

  • Brown RH, Kirk RL, Johnson TV, Soderblom LA (1990) Energy sources for Triton’s geyser-like plumes. Science 250:431–435

    ADS  Google Scholar 

  • Brown RH, Johnson TV, Synnott S, Anderson JD, Jacobson RA, Dermott SF, Thomas PC (1991) Physical properties of the Uranian satellites. In: Bergstralh JT, Miner ED, Matthews MS (eds) Uranus. University of Arizona Press, Tucson, pp 513–527

    Google Scholar 

  • Brown ME, Koresko CD, Blake GA (1998) Detection of water ice on Nereid. Astrophys J 508:L175–L176

    ADS  Google Scholar 

  • Brown RH, Cruikshank DP, Pendleton Y, Veeder GJ (1999) Water ice on Nereid. Icarus 139:374–378

    ADS  Google Scholar 

  • Brown ME, Trujillo CA, Rabinowitz DL (2005) Discovery of a planetary-sized object in the scattered Kuiper belt. Astrophys J 635:L97–L100

    ADS  Google Scholar 

  • Brown RH, Baines KH, Bellucci JP, Bibring BJ, Buratti E, Bussoletti F, Capaccioni P, Cerroni P, Clark RN, Coradini DP, Cruikshank P, Drossart Y, Formisano R, Jaumann Y, Langevin DJ, Matson TR (2005) The Cassini visual and infrared mapping spectrometer investigation: Space Science Reviews 115(1–4):111–168

    Google Scholar 

  • Brown RH, Clark RN, Buratti BJ, Cruikshank DP, Barnes JW, Mastrapa RME, Bauer J, Newman S, Momary T, Baines KH, Bellucci G, Capaccioni F, Cerroni P, Combes M, Coradini A, Drossart P, Formisano V, Jaumann R, Langevin Y, Matson DL, McCord TB, Nelson RM, Nicholson PD, Sicardy B, Sotin C (2006) Composition and physical properties of Enceladus surface. Science 311:1425–1428, http://www.sciencemag.org/cgi/content/abstract/311/5766/1425

    ADS  Google Scholar 

  • Brown ME, Barkume KM, Blake GA, Schaller EL, Rabinowitz DL, Roe HG, Trujillo CA (2007) Methane and ethane on the bright Kuiper belt object 2005 FY9. Astron J 133:284–289

    ADS  Google Scholar 

  • Brown RH, Soderblom LA, Soderblom JM, Clark RN, Jaumann R, Barnes JW, Sotin C, Buratti B, Baines KH, Nicholson PD (2008) The identification of liquid ethane in Titan’s Ontario Lacus. Nature 454:607–610

    ADS  Google Scholar 

  • Brunetto R, Caniglia G, Baratta GA, Palumbo ME (2008) Integrated near-infrared band strengths of solid CH4 and its mixtures with N2. Astrophys J 686:1480–1485

    ADS  Google Scholar 

  • Buie MW, Cruikshank DP, Lebofsky LA, Tedesco EF (1987) Water frost on Charon. Nature 329:522–523

    ADS  Google Scholar 

  • Buie MW, Grundy WM, Young EF, Young LA, Stern SA (2010) Pluto and Charon with the hubble space telescope. II. Resolving changes on Pluto’s surface and a map for Charon. Astron J 139:1128–1143

    ADS  Google Scholar 

  • Buratti BJ, Hicks MD, Tryka KA, Sittig MS, Newburn RL (2002) High-resolution 0.33–0.92 micron spectra of Iapetus, Hyperion, Phoebe, Rhea, Dione, and D-type asteroids: how are they related? Icarus 155:375–381

    ADS  Google Scholar 

  • Buratti BJ, Cruikshank DP, Brown RH, Clark RN, Bauer JM, Jaumann R, McCord TB, Simonelli DP, Hibbitts CA, Hansen GA, Owen TC, Baines KH, Bellucci G, Bibring J-P, Capaccioni F, Cerroni P, Coradini A, Drossart P, Formisano V, Langevin Y, Matson DL, Mennella V, Nelson RM, Nicholson PD, Sicardy B, Sotin C, Roush TL, Soderlund K, Muradyan A (2005) Cassini visual and infrared mapping spectrometer observations of Iapetus: detection of CO2. Astrophys J 622:L149–L152

    ADS  Google Scholar 

  • Byrne S, Ingersoll AP (2003) A sublimation model for martian south polar ice features. Science 299:1051–1053

    ADS  Google Scholar 

  • Calvin WM, Johnson RE, Spencer JR (1996) O2 on Ganymede: spectral characteristics and plasma formation mechanisms. Geophys Res Lett 23:673–676

    ADS  Google Scholar 

  • Campins H, Hargrove K, Howell ES, Kelley MS, Licandro J, Mothi-Diniz T, Ziffer J, Fernandez Y, Pinilla-Alonso N (2009) Confirming water ice on the surface of Asteroid 24 Themis, In: American Astronomical Society, DPS meeting #41, #32.05, Puerto Rico. http://adsabs.harvard.edu/abs/2009DPS....41.3205C

  • Canup RM (2005) A giant impact origin of Pluto-Charon. Science 307:546–550

    ADS  Google Scholar 

  • Canup RM, Ward WR (2002) Formation of the Galilean satellites: conditions of accretion. Astron J 124:3404–3423

    ADS  Google Scholar 

  • Carlson RW, Smythe W, Baines K, Barbinis E, Becker K, Burns R, Calcutt S, Calvin W, Clark R, Danielson G, Davies A, Drossart P, Encrenaz T, Fanale F, Granahan J, Hansen G, Herrera P, Hibbitts C, Hui J, Irwin P, Johnson T, Kamp L, Kieffer H, Leader F, Lellouch E, LopesGautier R, Matson D, McCord T, Mehlman R, Ocampo A, Orton G, RoosSerote M, Segura M, Shirley J, Soderblom L, Stevenson A, Taylor F, Torson J, Weir A, Weissman P (1996) Near-infrared spectroscopy and spectral mapping of Jupiter and the Galilean satellites: results from Galileo’s initial orbit. Science 274:385–388

    ADS  Google Scholar 

  • Carlson RW, Smythe WD, LopesGautier RMC, Davies AG, Kamp LW, Mosher JA, Soderblom LA, Leader FE, Mehlman R, Clark RN, Fanale FP (1997) The distribution of sulfur dioxide and other infrared absorbers on the surface of Io. Geophys Res Lett 24:2479–2482

    ADS  Google Scholar 

  • Carlson RW, Anderson MS, Johnson RE, Smythe WD, Hendrix AR, Barth CA, Soderblom LA, Hansen GB, McCord TB, Dalton JB, Clark RN, Shirley JH, Ocampo AC, Matson DL (1999a) Hydrogen peroxide on the surface of Europa. Science 283:2062–2064

    ADS  Google Scholar 

  • Carlson RW, Johnson RE, Anderson MS (1999b) Sulfuric acid on Europa and the radiolytic sulfur cycle. Science 286:97–99

    ADS  Google Scholar 

  • Carlson RW, Anderson MS, Johnson RE, Schulman MB, Yavrouian AH (2002) Sulfuric acid production on Europa: the radiolysis of sulfur in water ice. Icarus 157:456–463

    ADS  Google Scholar 

  • Carlson RW, Anderson MS, Mehlman R, Johnson RE (2005) Distribution of hydrate on Europa: further evidence for sulfuric acid hydrate. Icarus 177:461–471

    ADS  Google Scholar 

  • Carlson RW, Kargel JS, Doute S, Soderblom LA, Dalton B (2007) Io’s surface composition. In: Lopes RMC, Spencer JR (eds) Io after Galileo. Springer/Praxis, Chester, pp 193–229

    Google Scholar 

  • Carlson RW, Calvin WM, Dalton JB, Hansen GB, Hudson RL, Johnson RE, McCord TB, Moore MH (2009) Europa’s Surface Composition. In: Pappalardo RT, McKinnon WB, Khurana KK (eds) Europa. University of Arizona Press, Tucson

    Google Scholar 

  • Carr MH (2006) The surface of Mars. Cambridge University Press, New York, p 307

    Google Scholar 

  • Cassini GD (1672) Phil. Trans. 12, 831. Quoted in Alexander, A. F. O’D., 1962. The planet Saturn. McMillan, New York, p 474

    Google Scholar 

  • Cheng AF, Haff PK, Johnson RE, Lanzerotti LJ (1986) Interactions of magnetospheres with icy satellite surfaces. In: Burns JA, Matthews MS (eds) Satellites. University of Arizona Press, Tucson, pp 403–436

    Google Scholar 

  • Clark RN (1980) Ganymede, Europa, Callisto, and Saturns rings – compositional analysis from reflectance spectroscopy. Icarus 44:388–409

    ADS  Google Scholar 

  • Clark RN (1999) Chapter 1: spectroscopy of rocks and minerals and principles of spectroscopy. In: Rencz AN (ed) Manual of remote sensing. Wiley, New York, pp 3–58

    Google Scholar 

  • Clark RN (2009) Detection of adsorbed water and hydroxyl on the moon. Science 326:562–564. doi:10.1126/science.1178105

    ADS  Google Scholar 

  • Clark RN, McCord TB (1980) The Galilean satellites: new near-infrared spectral reflectance measurements (0.65–2.5 μm) and a 0.325–5 μm summary. Icarus 41:323–329

    ADS  Google Scholar 

  • Clark RN, Brown RH, Owensby PD, Steele A (1984) Saturn’s satellites: near-infrared spectrophotometry (0.65–2.5 μm) of the leading and trailing sides and compositional implications. Icarus 58:265–281

    ADS  Google Scholar 

  • Clark RN, Fanale FP, Gaffey MJ (1986) Surface composition of natural satellites. In: Burns JA, Matthews MS (eds) Satellites. University of Arizona Press, Tucson, pp 437–491

    Google Scholar 

  • Clark RN, Brown RH, Jaumann R, Cruikshank DP, Nelson RM, Buratti BJ, McCord TB, Lunine J, Baines KH, Bellucci G, Bibring J-P, Capaccioni F, Cerroni P, Coradini A, Formisano F, Langevin Y, Matson DL, Mennella V, Nicholson PD, Sicardy B, Sotin C, Hoefen TM, Curchin JM, Hansen G, Hibbits K, Matz K-D (2005) Compositional maps of Saturn’s moon Phoebe from imaging spectroscopy. Nature. doi:10.1038/nature03558

  • Clark RN, Curchin JM, Jaumann R, Cruikshank DP, Brown RH, Hoefen TM, Stephan K, Moore JM, Buratti BJ, Baines KH, Nicholson PD, Nelson RM (2008a) Compositional mapping of Saturn’s satellite Dione with Cassini VIMS and implications of dark material in the Saturn system. Icarus 193:372–386

    ADS  Google Scholar 

  • Clark RN, Cruikshank DP, Jaumann R, Filacchione G, Nicholson PD, Brown RH, Stephan K, Hedman M, Buratti BJ, Curchin JM, Hoefen TM, Baines KH, Nelson R (2008b) Compositional mapping of Saturn’s rings and icy satellites with Cassini VIMS. Saturn after Cassini-Huygens, London, July 2008

    Google Scholar 

  • Clark RN, Curchin JM, Hoefen TM, Swayze GA (2009) Reflectance spectroscopy of organic compounds I: alkanes. J Geophys Res 114:E03001. doi:10.1029/2008JE003150

    Google Scholar 

  • Clark RN, Cruikshank DP, Jaumann R, Brown RH, Curchin JM, Hoefen TM, Stephan K, Dalle Ore CM, Buratti BJ, Filacchione G, Baines KH, Nicholson PD (2010a) The composition of Iapetus: mapping results from Cassini VIMS. Icarus, in review

    Google Scholar 

  • Clark RN, Curchin JM, Barnes JW, Jaumann R, Soderblom L, Cruikshank DP, Lunine J, Stephan K, Hoefen TM, Le Mouelic S, Sotin C, Baines KH, Buratti B, Nicholson P (2010b) Detection and mapping of hydrocarbon deposits on Titan. J Geophys Res, in press

    Google Scholar 

  • Clifford SM (1993) A model for the hydrologic and climate behaviour of water on Mars. J Geophys Res 98:10973–11016

    ADS  Google Scholar 

  • Cook JC, Desch SJ, Roush TL, Trujillo CA, Geballe TR (2007) Near-infrared spectroscopy of Charon: possible evidence for cryovolcanism on kuiper belt objects. Astrophys J 663:1406–1419

    ADS  Google Scholar 

  • Cornelison DM, Tegler SC, Grundy W, Abernathy M (2008) Near-infrared laboratory spectroscopy of CH4/N2 ice mixtures: implications for icy dwarf planets. Paper presented at the science of solar system ices (ScSSI): a cross-disciplinary workshop, Oxnard, 5–8 May 2008

    Google Scholar 

  • Coustenis A (2005) Formation and evolution of Titan’s atmosphere. Space Sci Rev 116:171–184

    ADS  Google Scholar 

  • Coustenis A, Salama A, Schultz B, Ott S, Lellouch E, Encrenaz T, Gautier D, Feuchtgruber H (2003) Titan’s atmosphere from ISO mid-infrared spectroscopy. Icarus 161:383–403

    ADS  Google Scholar 

  • Coustenis A, Achterberg R, Conrath B, Jennings D, Marten A, Gautier D, Nixon C, Flasar M, Teanby N, Bezard B, Samuelson RE, Carlson R, Lellouch E, Bjoraker G, Romani P, Taylor FW, Irwin P, Fouchet Th, Hubert A, Orton G, Kunde V, Vinatier S, Mondellini J, Abbas M, Courtin R (2006a) The composition of Titan’s stratosphere from Cassini/CIRS mid-infrared spectra. Icarus 189:35–62

    ADS  Google Scholar 

  • Coustenis A, NegrĂŁo A, Salama A, Schulz B, Lellouch E, Rannou P, Drossart P, Encrenaz T, Schmitt B, Boudon V, Nikitin A (2006b) Titan’s 3-ÎĽm spectral region from ISO high-resolution spectroscopy. Icarus 180:176–185. doi:10.1016/j.icarus.2005.08.007

    ADS  Google Scholar 

  • Coustenis A et al (2007) The composition of Titan’s stratosphere from Cassini/CIRS mid-infrared spectra. Icarus 189:35–62

    ADS  Google Scholar 

  • Cruikshank DP (1980) Near infrared studies of the satellites of Saturn and Uranus. Icarus 41:246–258

    ADS  Google Scholar 

  • Cruikshank DP, Apt J (1984) Methane on Triton: physical state and distribution. Icarus 58:306–311

    ADS  Google Scholar 

  • Cruikshank DP, Brown RH (1981) The Uranian satellites: water ice on Ariel and Umbriel. Icarus 45:607–611

    ADS  Google Scholar 

  • Cruikshank DP, Silvaggio PM (1979) Triton: a satellite with an atmosphere. Astrophys J 233:1016–1020

    ADS  Google Scholar 

  • Cruikshank DP, Pilcher CB, Morrison D (1976) Pluto – evidence for methane frost. Science 194:835–837

    ADS  Google Scholar 

  • Cruikshank DP, Bell JF, Gaffey MJ, Brown RH, Howell R, Beerman C, Rognstad M (1983) The dark side of Iapetus. Icarus 53:90–104

    ADS  Google Scholar 

  • Cruikshank DP, Brown RH, Clark RN (1984) Nitrogen on Triton. Icarus 58:293–305

    ADS  Google Scholar 

  • Cruikshank DP, Brown RH, Tokunaga AT, Smith RG, Piscitelli JR (1988) Volatiles on Triton: the infrared spectral evidence, 2.0–2.5 microns. Icarus 74:413–423

    ADS  Google Scholar 

  • Cruikshank DP, Brown RH, Giver LP, Tokunaga AT (1989) Triton: do we see the surface? Science 245:283–286

    ADS  Google Scholar 

  • Cruikshank DP, Roush TL, Owen TC, Geballe TR, de Bergh C, Schmitt B, Brown RH, Bartholomew MJ (1993) Ices on the surface of Triton. Science 261:742–745

    ADS  Google Scholar 

  • Cruikshank DP, Brown RH, Calvin W, Roush TL, Bartholomew MJ (1998) Ices on the satellites of Jupiter, Saturn, and Uranus. In: Schmitt B, de Bergh C, Festou M (eds) Solar system ices. Kluwer, Dordrecht, pp 579–606

    Google Scholar 

  • Cruikshank DP, Schmitt B, Roush TL, Owen TC, Quirico E, Geballe TR, de Bergh C, Bartholomew MJ, Dalle Ore CM, Doute S, Meier R (2000) Water ice on Triton. Icarus 147:309–316

    ADS  Google Scholar 

  • Cruikshank DP, Owen TC, Ore CD, Geballe TR, Roush TL, de Bergh C, Sandford SA, Poulet F, Benedix GK, Emery JP (2005) A spectroscopic study of the surfaces of Saturn’s large satellites: H2O ice, tholins, and minor constituents. Icarus 175:268–283

    ADS  Google Scholar 

  • Cruikshank DP, Dalton JB, Dalle Ore CM, Bauer J, Stephan K, Filacchione G, Hendrix CJ, Hansen CJ, Coradini A, Cerroni P, Tosi F, Capaccioni F, Jaumann R, Buratti BJ, Clark RN, Brown RH, Nelson RM, McCord TB, Baines KH, Nicholson PD, Sotin C, Meyer AW, Bellucci G, Combes M, Bibring J-P, Langevin Y, Sicardy B, Matson DL, Formisano V, Drossart P, Mennella V (2007) Surface composition of Hyperion. Nature 448:54–57. doi:101038/nature05948

    ADS  Google Scholar 

  • Cruikshank DP, Wegryn E, Dalle Ore CM, Brown RH, Baines KH, Bibring J-P, Buratti BJ, Clark RN, McCord TB, Nicholson PD, Pendleton YJ, Owen TC, Filacchionej G, the VIMS Team (2008) Hydrocarbons on Saturn’s satellites Iapetus and Phoebe. Icarus 193:334–343. doi:10.1016/j.icarus.2007.04.036

    ADS  Google Scholar 

  • Cull S, Arvidson RE, Mellon MT, Wiseman SJ, Clark RN, Titus TN, Morris RV, McGuire P (2010) Seasonal H2O and CO2 ice cycles at the Mars Phoenix landing site: 1. Prelanding CRISM and HiRISE observations. J Geophys Res. doi:10.1029/2009JE003340, in press

  • Curchin JM, Shaffer CJ, Clark RN, McMahon J, Hoefen TM (2010) Reflectance spectroscopy of 2-propynenitrile, cyanoacetylene (HC3N). Icarus, submitted

    Google Scholar 

  • Cuzzi JN, Burns JA, Charnoz S, Clark RN, Colwell JE, Dones L, Esposito LW, Filacchione G, French RG, Hedman MM, Kempf S, Marouf EA, Murray CD, Nicholson PD, Porco CC, Schmidt J, Showalter MR,Spilker LJ, Spitale JN, Srama R, Sremcevic M, Tiscareno MS, Weiss J (2010) Science, 327:1470 -1475 doi: 10.1126/science.1179118

    Google Scholar 

  • Davies JK, Roush TL, Cruikshank DP, Bartholomew MJ, Geballe TR, Owen TC, de Bergh C (1997) The detection of water ice in comet Hale-Bopp. Icarus 127:238–245

    ADS  Google Scholar 

  • de Bergh C, Schaller EL, Brown ME, Brunetto R, Cruikshank DP, Schmitt B (2010) The ices on transneptunian objects and Centaurs (this volume)

    Google Scholar 

  • DeMeo FE, Dumas C, de Bergh C, Protopapa S, Cruikshank DP, Geballe TR, Alvarez-Candal A, Merlin F, Barucci MA (2010) A search for ethane on Pluto and Triton. Icarus (in press)

    Google Scholar 

  • Domingue DL, Lane AL, Beyer RA (1998) IUE’s detection of tenuous SO2 frost on Ganymede and its rapid time variability. Geophys Res Lett 25:3117–3120

    ADS  Google Scholar 

  • Dotto E, Barucci MA, Boehnhardt H, Romon J, Doressoundiram A, Peixinho N, de Bergh C, Lazzarin M (2003) Searching for water ice on 47171 1999 TC36, 1998 SG35, and 2000 QC243: ESO large program on TNOs and Centaurs. Icarus 162:408–414

    ADS  Google Scholar 

  • Doute S, Schmitt B, Lopes-Gautier R, Carlson R, Soderblom L, Shirley J (2001) Mapping SO2 frost on Io by the modeling of NIMS hyperspectral images. Icarus 149:107–132

    ADS  Google Scholar 

  • Dumas C, Terrile RJ, Smith BA, Schneider G (2002) Astrometry and near-infrared photometry of Neptune’s inner satellites and ring arcs. Astron J 123:1776–1783

    ADS  Google Scholar 

  • Duxbury NS, Brown RH (1993) The phase composition of Triton’s polar caps. Science 261:748–751

    ADS  Google Scholar 

  • Elachi CS, Wall M, Allison Y, Anderson R, Boehmer P, Callahan P, Encrenaz E, Flamini G, Franceschetti Y, Gim G, Hamilton S, Hensley M, Janssen W, Johnson K, Kelleher R, Kirk R, Lopes R, Lorenz J, Lunine D, Muhleman S, Ostro F, Paganelli G, Picardi F, Posa L, Roth R, Seu S, Shaffer L, Soderblom B, Stiles E, Stofan S, Vetrella R, West C, Wood L, Wye HZ (2005) Cassini radar views the surface of Titan. Science 308:970–974

    ADS  Google Scholar 

  • Eluszkiewicz J (1991) On the microphysical state of the surface of Triton. J Geophys Res 96:19217–19229

    ADS  Google Scholar 

  • Eviatar A, Richardson JD (1986) Predicted satellite plasma tori in the magnetosphere of Uranus. Astrophys J 300:L99–L102

    ADS  Google Scholar 

  • Fanale FP, Brown RH, Cruikshank DP, Clark RN (1979) Significance of absorption features in Io’s IR absorption spectrum. Nature 280:761–763

    ADS  Google Scholar 

  • Farmer CB, Davies DW, Laporte DD (1976) Mars: Northern summer ice cap – water vapor observations from Viking 2. Science 194:1339–1341. doi:10.1126/science.194.4271.1339

    ADS  Google Scholar 

  • Feldman WC, Maurice S, Binder AB, Barraclough BL, Elphic RC, Lawrence DJ (1998) Fluxes of fast and epithermal neutrons from lunar prospector: evidence for water ice at the lunar poles. Science 281:1496–1500

    ADS  Google Scholar 

  • Feldman WC, Lawrence DJ, Elphic RC, Barraclough BL, Maurice S, Genetay I, Binder AB (2000) Polar hydrogen deposits on the Moon. J Geophys Res 105:4175–4195

    ADS  Google Scholar 

  • Feldman WC, Maurice S, Lawrence DJ, Little RC, Lawson SL, Gasnault O, Wiens RC, Barraclough BL, Elphic RC, Prettyman TH (2001) Evidence for water ice near the lunar poles. J Geophys Res 106:23231–23251

    ADS  Google Scholar 

  • Filacchione G, Capaccioni F, McCord TB, Coradini A, Cerroni P, Bellucci G, Tosi F, D’Aversa E, Formisano V, Brown RH, Baines KH, Bibring J-P, Buratti BJ, Clark RN, Combes M, Cruikshank DP, Drossart P, Jaumann R, Langevin Y, Matson DL, Mennella V, Nelson RM, Nicholson PD, Sicardy B, Sotin C, Hansen G, Hibbitts K, Showalter M, Newmann S (2007) Saturn’s icy satellites investigated by Cassini VIMS. I. Full-disk properties: 350–5100 nm reflectance spectra and phase curves. Icarus 186:259–290

    ADS  Google Scholar 

  • Filacchione G, Capaccioni F, Tosi F, Cerroni P, McCord TB, Baines KH, Bellucci G, Brown RH, Buratti BJ, Clark RN, Cruikshank DP, Cuzzi JN, Jaumann R, Stephan K, Matson DL, Nelson RM, Nicholson PD (2008) Analysis of the Saturnian icy satellites full-disk spectra by Cassini-VIMS, Saturn After Cassini-Huygens, London, July 2008

    Google Scholar 

  • Fink U, Larson HP (1975) Temperature dependence of the water-ice spectrum between 1 and 4 microns: application to Europa, Ganymede, and Saturn’s rings. Icarus 24:411–420

    ADS  Google Scholar 

  • Fink U, Dekkers NH, Larson HP (1973) Infrared spectra of the Galilean satellites of Jupiter. Astrophys J 179:L155–L159

    ADS  Google Scholar 

  • Flasar FM et al (2005) Titan’s atmospheric temperatures, winds, and composition. Science 308:975–978

    ADS  Google Scholar 

  • Forget F, Hansen GB, Pollack JB (1995) Low brightness temperatures of Martian polar caps: CO2 clouds or low surface emissivity? J Geophys Res 100(E10):21219–21234

    ADS  Google Scholar 

  • Geissler P, McEwen AS, Keszthelyi L, Lopes-Gautier RMC, Granahan J, Simonelli DP (2001) Galileo imaging of SO2 frosts on Io. J Geophys Res 106:33253–33266

    ADS  Google Scholar 

  • Grundy WM, Fink U (1991) The absorption coefficient of the liquid N2 2.15 micron band and application to Triton. Icarus 93:169–173

    ADS  Google Scholar 

  • Grundy WM, Stansberry JA (2000) Solar gardening and the seasonal evolution of nitrogen ice on Triton and Pluto. Icarus 148:340–346

    ADS  Google Scholar 

  • Grundy WM, Young LA (2004) Near infrared spectral monitoring of Triton with IRTF/SpeX I: establishing a baseline. Icarus 172:455–465

    ADS  Google Scholar 

  • Grundy WM, Schmitt B, Quirico E (1993) The temperature dependent spectra of alpha and beta nitrogen ice with application to Triton. Icarus 105:254–258

    ADS  Google Scholar 

  • Grundy WM, Buie MW, Stansberry JA, Spencer JR, Schmitt B (1999) Near-infrared spectra of icy outer solar system surfaces: remote determination of H2O ice temperatures. Icarus 142:536–549

    ADS  Google Scholar 

  • Grundy WM, Buie MW, Spencer JR (2002) Spectroscopy of Pluto and Triton at 3–4 microns: possible evidence for wide distribution of nonvolatile solids. Astron J 124:2273–2278

    ADS  Google Scholar 

  • Grundy WM, Young LA, Young EF (2003) Discovery of CO2 ice and leading-trailing spectral asymmetry on the Uranian satellite Ariel. Icarus 162:222–229

    ADS  Google Scholar 

  • Grundy WM, Young LA, Spencer JR, Johnson RE, Young EF, Buie MW (2006) Distributions of H2O and CO2 ices on Ariel, Umbriel, Titania, and Oberon from IRTF/SpeX observations. Icarus 184:543–555

    ADS  Google Scholar 

  • Grundy WM (2009) Is the missing ultra-red material colorless ice? Icarus 199:560–563

    ADS  Google Scholar 

  • Grundy WM, Young LA, Olkin CB, Buie MW, Stansberry JA (2009) Observed spatial distribution and secular evolution of ices on Pluto and Triton. Bull Am Astron Soc 41:6.01

    Google Scholar 

  • Grundy WM, Young LA, Stansberry JA, Buie MW, Olkin CB, Young EF (2010) Near-infrared spectral monitoring of Triton with IRTF/SpeX II: spatial distribution and evolution of ices. Icarus 205:594–604

    ADS  Google Scholar 

  • Guilbert A, Alvarez-Candal A, Merlin F, Barucci MA, Dumas C, de Bergh C, Delsanti A (2009) ESO-large program on TNOs: near-infrared spectroscopy with SINFONI. Icarus 201:272–283

    ADS  Google Scholar 

  • Hage W, Liedl KR, Hallbrucker A, Mayer E (1998) Carbonic acid in the gas phase and its astrophysical relevance. Science 279:1332–1335

    ADS  Google Scholar 

  • Hand KP, Carlson RW, Cooper JF, Chyba CF (2006) Clathrate hydrates of oxidants in the europan ice shell. Astrobiology 6:463–482

    ADS  Google Scholar 

  • Hand KP, Carlson RW, Chyba CF (2007) Energy, chemical disequilibrium, and geological constraints on Europa. Astrobiology 7:1006–1022

    ADS  Google Scholar 

  • Hanel RA, Conrath BJ, Jennings DE, Samuelson RE (2003) Exploration of the solar system by infrared remote sensing. Cambridge University Press, Cambridge

    Google Scholar 

  • Hansen GB, McCord TB (2004) Amorphous and crystalline ice on the Galilean satellites: a balance between thermal and radiolytic processes. J Geophys Res 109(E01012):1–19, 10.1029/2003JE002149

    Google Scholar 

  • Hansen GB, McCord TB (2008) Widespread CO2 and other non-ice compounds on the anti-Jovian and trailing sides of Europa from Galileo/NIMS observations. Geophys Res Lett 35:L01202

    Google Scholar 

  • Hansen CJ, Paige DA (1992) A thermal model for the seasonal nitrogen cycle on Triton. Icarus 99:273–288

    ADS  Google Scholar 

  • Hapke B (1979) Io’s surface and environs: a magmatic-volatile model. Geophys Res Lett 6:799–802

    ADS  Google Scholar 

  • Hendirx AR, Domingue D, Noll KS (2010) Ultraviolet properties of planetary ices (this volume)

    Google Scholar 

  • Hendrix AR, Johnson RE (2008) Callisto: new insights from Galileo disk-resolved UV measurements. Astrophys J 687:706–713

    ADS  Google Scholar 

  • Hendrix AR, Barth CA, Stewart AIF, Hord CW, Lane AL (1999) Hydrogen peroxide on the icy Galilean satellites. In: Lunar and planetary science conference XXX, Vol. LPI Contribution 964. Lunar and Planetary Institute, Houston (CD-ROM), pp Abstract #2043

    Google Scholar 

  • Hibbits CA, Hansen GB (2007) The other non-ice material on Ganymede: dark ray ejecta (abstract). Bull Am Astron Soc 39:428

    ADS  Google Scholar 

  • Hibbits CA, Pappalardo RT, Hansen GB, MCCord TB (2003) Carbon dioxide on Ganymede. J Geophys Res 108:2-1–2-21. doi:10:1029/2002JE001956, 5084

    Google Scholar 

  • Hibbitts CA, McCord TB, Hansen GB (2000) The distributions of CO2 and SO2 on the surface of Callisto. J Geophys Res 105:22541–22557

    ADS  Google Scholar 

  • Hibbitts CA, Klemaszewski JE, McCord TB, Hansen GB, Greeley R (2002) CO2-rich impact craters on Callisto. J Geophys Res 107:14-1–14-12. doi:10.1029/2000JE001412, 5084

    Google Scholar 

  • Hicks MD, Buratti BJ (2004) The spectral variability of Triton from 1997–2000. Icarus 171:210–218

    ADS  Google Scholar 

  • Hobbs PV (1975) Ice physics. Oxford University Press, Hardcover, 856p

    Google Scholar 

  • Hodyss R, Johnson PV, Orzechowska GE, Goguen JD, Kanik I (2008) Carbon dioxide segregation in 1:4 and 1:9 CO2:H2O ices. Icarus 194:836–842

    ADS  Google Scholar 

  • Hopkins AG, Tang S-Y, Brown CW (1973) Infrared and Raman spectra of the low-temperature products from discharged sulfur dioxide. J Amer Chem Soc 95:3486–3490

    Google Scholar 

  • Hudson RL, Moore MH, Gerakines PA (2001) The formation of cyanate ion (OCN-) in interstellar ice analogs. Astrophys J 550:1140–1150

    ADS  Google Scholar 

  • Israel G, Szopa C, Raulin F, Cabane M, Niemann H, Atreya S, Bauer S, Brun J-F, Chassefiere E, Coll P, Conde E, Coscia D, Hauchecorne A, Millian P, Nguyen M-J, Owen T, Riedler W, Samuelson R, Siguier J-M, Steller M, Sternberg R, Vidal-Madjar C (2005) Complex organic matter in Titan’s atmospheric aerosols from in situ pyrolysis and analysis. Nature 438:796–798

    ADS  Google Scholar 

  • James PB, Kieffer HH, Paige DA (1993) The Seasonal Cycle of Carbon Dioxide on Mars, in MARS. Kieffer, Jakosky, Snyder, Matthews, eds., University of Arizona Press.

    Google Scholar 

  • Jarvis KS, Vilas F, Larson SM, Gaffey MJ (2000) Are Hyperion and Phoebe linked to Iapetus? Icarus 146:125–132

    ADS  Google Scholar 

  • Jaumann R, Stephan K, Buratti BJ, Hansen GB, Clark RN, Brown RH, Baines KH, Bellucci G, Coradini A, Cruikshank DP, Griffith CA, Hibbitts CA, McCord TB, Nelson RM, Nicholson PD, Sotin C, Wagner R (2006) Distribution of icy particles across Enceladus’ surface as derived from Cassini VIMS measurements. Icarus 193(2008):407–419. doi:10.1016/j.icarus.2007.09.013

    ADS  Google Scholar 

  • Jaumann R, Clark RN, Nimmo F, Hendrix AR, Buratti BJ, Denk T, Moore JM, Schenk PM, Ostro SJ, Srama R (2009) Icy satellites: geological evolution and surface processes. In: Dougherty MK et al (eds) Saturn after Cassini/Huygens. Springer, doi: 10.1007/978-1-4020-9215-2, pp 637–681

    Google Scholar 

  • Jenniskens P, Blake DF, Kouchi A (1998) Amorphous water ice. In: Schmitt B, De Bergh C, Festou M (eds) Solar system ices. Kluwer, Boston, pp 199–240

    Google Scholar 

  • Johnson RE (1990) Energetic charged-particle interactions with atmospheres and surfaces. Springer, New York

    Google Scholar 

  • Johnson RE (1997) Polar “caps” on Ganymede and Io revisited. Icarus 128:469–471

    ADS  Google Scholar 

  • Johnson RE, Jesser WA (1997) O2/O3 microatmospheres in the surface of Ganymede. Astrophys J 480:L79–L82

    ADS  Google Scholar 

  • Johnson TV, McCord TB (1971) Spectral geometric albedo of the Galilean satellites 0.3–2.5 microns. Astrophys J 169:589–593

    ADS  Google Scholar 

  • Johnson RE, Carlson RW, Cooper JF, Paranicas C, Moore MH, Wong M (2004) Radiation effects on the surfaces of the Galilean satellites. In: Bagenal F, McKinnon W (eds) Jupiter. Cambridge University Press, Cambridge

    Google Scholar 

  • Kargel JS (1998) Physical chemistry of ices in the solar system. In: Schmitt B, de Bergh C, Festou M (eds) Solar system ices. Kluwer, Dordrecht, pp 3–32

    Google Scholar 

  • Khanna RK, Pearl JC, Dahmani R (1995) Infrared-spectra and structure of solid-phases of sulfur- trioxide – possible identification of solid SO3 on Io surface. Icarus 115:250–257

    ADS  Google Scholar 

  • Khurana KK, Pappalardo RT, Murphy N, Denk T (2007) The origin of Ganymede’s polar caps. Icarus 191:193–202

    ADS  Google Scholar 

  • Kieffer HH, Titus TN (2001) TES mapping of Mars’ northern seasonal cap. Icarus 154:162–180

    ADS  Google Scholar 

  • Kieffer S, Chase C Jr, Martin TZ, Miner ED, Palluconi FD (1976) Martian North Pole summer temperatures: dirty water ice. Science 194:1341–1344. doi:10.1126/science.194.4271.1341

    ADS  Google Scholar 

  • Kieffer SW, Lu XL, Bethke CM, Spencer JR, Marshak S, Navrotsky A (2006) A clathrate reservoir hypothesis for Enceladus’ south polar plume. Science 314:1764–1766. doi:10.1126/science.1133519

    ADS  Google Scholar 

  • Kuiper GP (1957) Infrared observations of planets and satellites (abstract). Astron J 62:245

    ADS  Google Scholar 

  • Lamy P, Toth I (2009) The colors of cometary nuclei: comparison with other primitive bodies of the Solar System and implications for their origin. Icarus 201:674–713

    ADS  Google Scholar 

  • Lane AL, Domingue DL (1997) IUE’s view of Callisto: detection of an SO2 absorption correlated to possible torus neutral wind alterations. Geophys Res Lett 24:1143–1146

    ADS  Google Scholar 

  • Laver C, de Pater I (2008) Spatially resolved SO2 ice on Io, observed in the near IR. Icarus 195:752–757. doi:10.1016/j.icarus.2007.12.023

    ADS  Google Scholar 

  • Laver C, de Pater I (2009) The global distribution of sulfur dioxide ice on Io, observed with OSIRIS on the WM Keck telescope. Icarus 201:172–181. doi:10.1016/j.icarus.2008.12.037

    ADS  Google Scholar 

  • Lee P, Helfenstein P, Veverka J, McCarthy D (1992) Anomalous-scattering region on Triton. Icarus 99:82–97

    ADS  Google Scholar 

  • Lellouch E, Crovisier J, Lim T, Bockelee-Morvan D, Leech K, Hanner MS, Altieri B, Schmitt B, Trotta F, Keller HU (1998) Evidence for water ice and estimate of dust production rate in comet Hale-Bopp at 2.9 AU from the Sun. Astron Astrophys 339:L9–L12

    Google Scholar 

  • Lellouch E, Paubert G, Moses JI, Schneider NM, Strobel DF (2003) Volcanically emitted sodium chloride as a source for Io’s neutral clouds and plasma torus. Nature 421:45–47

    ADS  Google Scholar 

  • Licandro J, Pinilla-Alonso N, Pedani M, Oliva E, Tozzi GP, Grundy WM (2006) The methane ice rich surface of large TNO 2005 FY9: a Pluto-twin in the trans-neptunian belt? Astron Astrophys 445:L35–L38

    ADS  Google Scholar 

  • Loeffler MJ, Teolis BD, Baragiola RA (2006) A model study of the thermal evolution of astrophysical ices. Astrophys J 639:L103–L106

    ADS  Google Scholar 

  • Lopes RMC, Spencer JR (eds) (2007) Io after Galileo. Springer/Praxis, Chichester

    Google Scholar 

  • Lopes RMC, Kamp LW, Doute S, Smythe WD, Carlson RW, McEwen AS, Geissler PE, Kieffer SW, Leader FE, Davies AG, Barbinis E, Mehlman R, Segura M, Shirley J, Soderblom LA (2001) Io in the near infrared: near-infrared mapping spectrometer (NIMS) results from the Galileo flybys in 1999 and 2000. J Geophys Res 106:33053–33078

    ADS  Google Scholar 

  • Lunine JI, Stevenson DJ (1985) Physical state of volatiles on the surface of Triton. Nature 317:238–240

    ADS  Google Scholar 

  • Martonchik JV, Orton GS (1994) Optical constants of solid and liquid methane. Appl Opt 33:8306–8317

    ADS  Google Scholar 

  • Mastrapa RM, Bernstein MP, Sandford SA, Roush TL, Cruikshank DP, Dalle Ore CM (2008) Optical constants of amorphous and crystalline H2O-ice in the near infrared from 1.1 to 2.6 μm. Icarus 197:307–320

    ADS  Google Scholar 

  • Mastrapa RM et al. This Volume

    Google Scholar 

  • Matson DL, Nash DB (1983) Ios atmosphere – pressure control by regolith cold trapping and surface venting. J Geophys Res 88:4771–4783

    ADS  Google Scholar 

  • McCauley JF, Smith BA, Soderblom LA (1979) Erosional scarps on Io. Nature 280:736–738

    ADS  Google Scholar 

  • McCord TB, Carlson RW, Smythe WD, Hansen GB, Clark RN, Hibbitts CA, Fanale FP, Granahan JC, Segura M, Matson DL, Johnson TV, Martin PD (1997) Organics and other molecules in the surfaces of Callisto and Ganymede. Science 278:271–275

    ADS  Google Scholar 

  • McCord TB, Hansen GB, Fanale FP, Carlson RW, Matson DL, Johnson TV, Smythe WD, Crowley JK, Martin PD, Ocampo A, Hibbitts CA, Granahan JC (1998a) Salts an Europa’s surface detected by Galileo’s near infrared mapping spectrometer. Science 280:1242–1245

    ADS  Google Scholar 

  • McCord TB, Hansen GB, Clark RN, Martin PD, Hibbits CA, Fanale FP, Granahan JC, Segura M, Matson DL, Johnson TV, Carlson RW, Smythe WD, Danielson GE, Team TN (1998b) Non-water-ice constituents in the surface material of the icy Galilean satellites from the Galileo near infrared mapping spectrometer investigation. J Geophys Res 103:8603–8626

    ADS  Google Scholar 

  • McCord TB, Hansen GB, Matson DL, Johnson TV, Crowley JK, Fanale FP, Carlson RW, Smythe WD, Martin PD, Hibbitts CA, Granahan JC, Ocampo A, Team, a. t. N. (1999) Hydrated salt minerals on Europa’s surface from the Galileo NIMS investigation. J Geophys Res Planets 104:11827–11851

    Google Scholar 

  • McCord TB, Hansen GB, Hibbitts CA (2001) Hydrated salt minerals on Ganymede’s surface: evidence of an ocean below. Science 292:1523–1525

    ADS  Google Scholar 

  • McCord TB, Hansen GB, Buratti BJ, Clark RN, Cruikshank DP, D’Aversa E, Griffith CA, Baines KH, Brown RH, Dalle Ore CM, Filacchione G, Formisano V, Hibbitts CA, Jaumann R, Lunine JI, Nelson RM, Sotin C, the Cassini VIMS Team (2006) Composition of Titan’s surface from Cassini VIMS. Planet Space Sci 54:1524–1539

    ADS  Google Scholar 

  • McCord TB, Hayne P, Combe J-P, Hnasen G, Barnes J, Rodriguez S, Le Mouelic S, Baines K, Buratti B, Sotin C, Nicholson P, Jaumann R, Nelson R, the Cassini VIMS Team (2008) Titan’s surface: search for spectral diversity and composition using the Cassini VIMS investigation. Icarus 194:212–242

    ADS  Google Scholar 

  • McEwen AS, Johnson TV, Matson DL, Soderblom LA (1988) The global distribution, abundance, and stability of SO2 on Io. Icarus 75:450–478

    ADS  Google Scholar 

  • McEwen AS, Belton MJS, Breneman HH, Fagents SA, Geissler P, Greeley R, Head JW, Hoppa G, Jaeger WL, Johnson TV, Keszthelyi L, Klaasen KP, Lopes-Gautier R, Magee KP, Milazzo MP, Moore JM, Pappalardo RT, Phillips CB, Radebaugh J, Schubert G, Schuster P, Simonelli DP, Sullivan R, Thomas PC, Turtle EP, Williams DA (2000) Galileo at Io: results from high-resolution imaging. Science 288:1193–1198. doi:10.1126/science.288.5469.1193

    ADS  Google Scholar 

  • McKellar ARW (1989) Low-temperature infrared absorption of gaseous N2 and N2 + H2 in the 2.0–2.5 micron region: application to the atmospheres of Titan and Triton. Icarus 80:361–369

    ADS  Google Scholar 

  • McKinnon WB (2007) Formation and early evolution of Io. In: Lopes RMC, Spencer JR (eds) Io after Galileo. Chichester, Springer, pp 61–88

    Google Scholar 

  • Moore MH (1984) Studies of proton-irradiated SO2 at low-temperatures – implications for Io. Icarus 59:114–128

    ADS  Google Scholar 

  • Moore MH, Hudson RL (2003) Infrared study of ion-irradiated N2-dominated ices relevant to Triton and Pluto: formation of HCN and HNC. Icarus 161:486–500

    ADS  Google Scholar 

  • Moore JM, Asphaug E, Morrison D, Spencer JR, Chapman CR, Bierhaus B, Sullivan RJ, Chuang FC, Klemaszewski JE, Greeley R, Bender KC, Geissler PE, Helfenstein P, Pilcher CB (1999) Mass movement and landform degradation on the icy Galilean satellites: results of the Galileo nominal mission. Icarus 140:294–312

    ADS  Google Scholar 

  • Moore JM, Sullivan RJ, Chuang FC, Head JW III, McEwen AS, Milazzo MP, Nixon BE, Pappalardo RT, Schenk PM, Turtle EP (2001) Landform degradation and slope processes on Io: the Galileo view. J Geophys Res 106:33223–33240. doi:10.1029/2000je001375

    ADS  Google Scholar 

  • Moroz VI (1965) Infrared spectrophotometry of the Moon and the Galilean satellites of Jupiter. Sov Astron 9:999–1006

    ADS  Google Scholar 

  • Mousis O, Gautier D (2004) Constraints on the presence of volatiles in Ganymede and Callisto from an evolutionary turbulant model of the Jovian subnubula. Planet Space Sci 52:361–370

    ADS  Google Scholar 

  • Murphy RE, Cruikshank DP, Morrison D (1972) Radii, albedos, and 20-micron brightness temperatures of Iapetus and Rhea. Astrophys J Lett 177:L93–L96

    ADS  Google Scholar 

  • Nash DB, Betts BH (1995) Laboratory infrared spectra (2.3–23 ÎĽm) of SO2 phases: applications to Io surface analysis. Icarus 117:402–419

    ADS  Google Scholar 

  • Nash DB, Betts BH (1998) Ices on Io – composition and texture. In: Schmitt B, de Bergh C, Festou M (eds) Solar system ices. Kluwer, Dordrecht, pp 607–638

    Google Scholar 

  • Nelson RM, Kamp LW, Matson DL, Irwin PGJ, Baines KH, Boryta MD, Leader FE, Jaumann R, Smythe WD, Sotin C, Clark RN, Cruikshank DP, Drossart P, Pearl JC, Hapke BW, Lunine J, Combes M, Bellucci G, Bibring J-P, Capaccioni F, Cerroni P, Coradini A, Formisano V, Filacchione G, Langevin RY, McCord TB, Mennella V, Nicholson PD, Sicardy B (2009) Saturn’s Titan: surface change, ammonia, and implications for atmospheric and tectonic activity. Icarus 199:429–441

    ADS  Google Scholar 

  • Nicholson PD, Hedman MM, Clark RN, Showalter MR, Cruikshank DP, Cuzzi JN, Filacchione G, Capaccioni F, Cerroni P, Hansen GB, Sicardy B, Drossart P, Brown RH, Buratti BJ, Baines KH (2008) Angioletta Coradini, a close look at Saturn’s rings with Cassini VIMS. Icarus 193:182–212. doi:10.1016/j.icarus.2007.08.036

    ADS  Google Scholar 

  • Niemann HB, Atreya S, Bauer S, Carignan G, Demick J, Frost R, Gautier D, Haberman J, Harpold D, Hunten D, Israel G, Lunine J, Kasprzak W, Owen T, Paulkovich M, Raulin F, Raaen E, Way S (2005) The abundance of constituents of Titan’s atmosphere from the GCMS instrument on the Huygens probe. Nature 438:779–784

    ADS  Google Scholar 

  • Noll KS, Johnson RE, Lane AL, Domingue DL, Weaver HA (1996) Detection of ozone on Ganymede. Science 273:341–343

    ADS  Google Scholar 

  • Noll KS, Johnson RE, McGrath MA, Caldwell JJ (1997) Detection of SO2 on Callisto with the Hubble space telescope. Geophys Res Lett 24:1139–1142

    ADS  Google Scholar 

  • Owen TC, Cruikshank DP, Dalle Ore CM, Geballe TR, Roush TL, de Bergh C, Pendleton YJ, Khare BN (2001) Decoding the domino: the dark side of Iapetus. Icarus 149:160–172

    ADS  Google Scholar 

  • Pang KD, Nicholson PD (1984) Composition and size of Uranian ring particles. LPSC XV:627–628 (abstract)

    ADS  Google Scholar 

  • Pappalardo RT, McKinnon WB, Khurana K (eds) (2009) EUROPA. University of Arizona Press, Tucson

    Google Scholar 

  • Picardi G, Plaut JJ, Biccari D, Bombaci O, Calabrese D, Cartacci M, Cicchetti A, Clifford SM, Edenhofer P, Farrell WM, Federico C, Frigeri A, Gurnett DA, Hagfors T, Heggy E, Herique A, Huff RL, Ivanov AB, Johnson WTK, Jordan RL, Kirchner DL, Kofman W, Leuschen CJ, Nielsen E, Orosei R, Pettinelli E, Phillips RJ, Plettemeier D, Safaeinili A, Seu R, Stofan ER, Vannaroni G, Watters TR, Zampolini E (2005) Radar soundings of the subsurface of Mars. Science 310:1925–1928. doi:10.1126/science.1122165

    ADS  Google Scholar 

  • Pieters CM, Goswami JN, Clark RN, Annadurai M, Boardman J, Buratti B, Combe J-P, Dyar MD, Green R, Head JW, Hibbitts C, Hicks M, Isaacson P, Klima R, Kramer G, Kumar S, Livo E, Lundeen S, Malaret E, McCord T, Mustard J, Nettles J, Petro N, Runyon C, Staid M, Sunshine J, Taylor LA, Tompkins S, Varanasi P (2009) Character and spatial distribution of OH/H2O on the surface of the Moon seen by M3 on Chandrayaan-1. Science 326:568–572. doi:10.1126/science.1178658

    ADS  Google Scholar 

  • Pilcher CB, Ridgeway ST, McCord TB (1972) Galilean satellites: identification of water frost. Science 178:1087–1089

    ADS  Google Scholar 

  • Pinilla-Alonso N, Brunetto R, Licandro J, Gil-Hutton R, Roush TL, Strazzulla G (2009) The surface of (136108) Haumea (2003 EL61), the largest carbon-depleted object in the trans-Neptunian belt. Astron Astrophys 496:547–556

    ADS  Google Scholar 

  • Pollack JB, Witteborn FC, Erickson EF, Strecker DW, Baldwin BJ, Bunch TE (1978) Near-infrared spectra of the Galilean satellites: observations and compositional implications. Icarus 36:271–303

    ADS  Google Scholar 

  • Pospieszalska MK, Johnson RE (1989) Magnetospheric ion bombardment profiles of satellites: Europa and Dione. Icarus 78:1–13

    ADS  Google Scholar 

  • Prinn RG, Fegley B (1981) Kinetic inhibition of CO and N2 reduction in circumplanetary nebulae – implications for satellite compositions. Astrophys J 249:308–317

    ADS  Google Scholar 

  • Prinn RG, Fegley B Jr (1989) Origin of planetary, satellite, and cometary volatiles. In: Atreya SK, Pollack JB, Mathews MS (eds) Origin and evolution of planetary and satellite atmospheres. University of Arizona Press, Tucson, pp 8–136

    Google Scholar 

  • Quirico E, Schmitt B (1997a) Near-infrared spectroscopy of simple hydrocarbons and carbon oxides diluted in solid N2 and as pure ices: implications for Triton and Pluto. Icarus 127:354–378

    ADS  Google Scholar 

  • Quirico E, Schmitt B (1997b) A spectroscopic study of CO diluted in N2 ice: applications for Triton and Pluto. Icarus 128:181–188

    ADS  Google Scholar 

  • Quirico E, Doute S, Schmitt B, de Bergh C, Cruikshank DP, Owen TC, Geballe TR, Roush TL (1999) Composition, physical state, and distribution of ices at the surface of Triton. Icarus 139:159–178

    ADS  Google Scholar 

  • Ramaprasad KR, Caldwell J, McClure DS (1978) The vibrational overtone spectrum of liquid methane in the visible and near infrared: applications to planetary studies. Icarus 35:400–409

    ADS  Google Scholar 

  • Rieke GH, Lebofsky LA, Lebofsky MJ (1985) A search for nitrogen on Triton. Icarus 64:153–155

    ADS  Google Scholar 

  • Rivkin AS, Emery JP (2008) Water ice on 24 Themis? asteroids, comets, meteors, (abstract), Baltimore. http://www.lpi.usra.edu/meetings/acm2008/pdf/8099.pdf

  • Rodriguez S, Le MouĂ©lic S, Sotin C, Clenet H, Clark R, Buratti B, Brown R, McCord T, Nicholson P, Baines K, the VIMS Science Team (2006) Cassini/VIMS hyperspectral observations of the HUYGENS landing site on Titan. Planet Space Sci 54:1510–1523

    ADS  Google Scholar 

  • Roush TL, Cruikshank DP, Owen TC (1995) Surface ices in the outer solar system. In: Farley KA (eds) AIP conference proceedings 341: volatiles in the Earth and solar system, The American Institute of Physics, New York, pp 143–153

    Google Scholar 

  • Sagan C, Thompson WR, Khare B (1992) Titan: a laboratory for pre-biological organic chemistry. Acc Chem Res 25:286–292

    Google Scholar 

  • Sandford SA, Allamandola LJ (1993) The condensation and vaporization behaviour of ices containing SO2, H2S, and CO2: implications for Io. Icarus 106:478–488

    ADS  Google Scholar 

  • Schaller EL, Brown ME (2007) Volatile loss and retention on Kuiper belt objects. Astrophys J 659:L61–L64

    ADS  Google Scholar 

  • Schenk PM, Zahnle K (2007) On the negligible surface age of Triton. Icarus 192:135–149

    ADS  Google Scholar 

  • Schmitt B, de Bergh C, Lellouch E, Maillard J-P, Barbe A, Doute S (1994) Identification of three absorption bands in the 2-mm spectrum of Io. Icarus 111:79–105

    ADS  Google Scholar 

  • Schmitt B, de Bergh C, Festou M (eds) (1998a) Solar system ices. Kluwer, Dordrecht

    Google Scholar 

  • Schmitt B, Quirica E, Trotta F, Grundy WM (1998b) Optical properties of ices from the UV to infrared. In: Schmitt B, De Bergh C, Festou M (eds) Solar system ices. Kluwer, Dordrecht, pp 199–240

    Google Scholar 

  • Schriver A, Schriver L, Perchard JP (1988) Infrared matrix isolation studies of complexes between water and sulfur dioxide: identification and structure of the 1:1, 1:2, and 2:1 species. J Mol Spectr 127:125–142

    ADS  Google Scholar 

  • Schriver-Mazzuoli L, Chaabouni H, Schriver A (2003a) Infrared spectra of SO2 and SO2: H2O ices at low temperature. J Mol Struct 644:151–164

    ADS  Google Scholar 

  • Schriver-Mazzuoli L, Schriver A, Chaabouni H (2003b) Photo-oxidation of SO2 and of SO2 trapped in amorphous water ice studied by IR spectroscopy. Implications for Jupiter’s satellite Europa. Can J Phys 81:301–309

    ADS  Google Scholar 

  • Schroder SE, Keller HU (2008) The reflectance spectrum of Titan’s surface at the Huygens landing site determined by the descent imager/spectral radiometer. Planet Space Sci 56:753–769

    ADS  Google Scholar 

  • Schubert G, Anderson JD, Spohn T, McKinnon WB (2004) Interior composition, structure, and dynamics of the Galilean satellites. In: Bagenal F, Dowling TE, McKinnon W (eds) Jupiter: the atmosphere, satellites, and magnetosphere. Cambridge University Press, Cambridge, pp 281–306

    Google Scholar 

  • Scott TA (1976) Solid and liquid nitrogen. Phys Rep 27:89–157

    ADS  Google Scholar 

  • Shapiro MM, Gush HP (1966) The collision-induced fundamental and first overtone bands of oxygen and nitrogen. Can J Phys 44:949–963

    ADS  Google Scholar 

  • Sheng DT, Ewing GE (1971) Collision induced infrared absorption of gaseous nitrogen at low temperatures. J Chem Phys 55:5425–5430

    ADS  Google Scholar 

  • Sloan ED Jr (1998) Clathrate hydrates of natural gases. Taylor and Francis, New York, p 705

    Google Scholar 

  • Smythe WD, Nelson RM, Nash DB (1979) Spectral evidence for SO2 frost or adsorbate on Io’s surface. Nature 280:766

    ADS  Google Scholar 

  • Smythe WD, Carlson RW, Ocampo A, Matson D, Johnson TV, McCord TB, Hansen GE, Soderblom LA, Clark RN (1998) Absorption bands in the spectrum of Europa detected by the Galileo NIMS instrument. In: XXIX lunar and planetary science conference, Vol. CD. Lunar and Planetary Institute, Houston

    Google Scholar 

  • Soderblom LA, Barnes JW, Brown RH, Clark RN, Janssen MA, McCord TB, Niemann HB, Tomasko MG (2009) Composition of Titan’s surface, chapter 6. In: Brown RH, Lebreton J-P, Waite JH (eds) Titan from Cassini-Huygens. Springer, Dordrecht/New York, pp 141–175. doi:10.1007/978-1-4020-9215-2

    Google Scholar 

  • Soifer BT, Neugebauer G, Matthews K (1981) Near-infrared photometry of the satellites and rings of Uranus. Icarus 45:612–617

    ADS  Google Scholar 

  • Sotin C, Jaumann R, Buratti BJ, Brown RH, Clark RN, Soderblom LA, Baines KH, Bellucci G, Bibring J-P, Capaccioni F, Cerroni P, Combes M, Coradini A, Cruikshank DP, Drossart P, Formisano V, Langevin Y, Matson DL, McCord TB, Nelson RM, Nicholson PD, Sicardy B, LeMouelic S, Rodriguez S, Stephan K, Scholz CK (2005) Release of volatiles from a possible cryovolcano from near-infrared imaging of Titan. Nature 435. doi:10.1038nature03596, http://www.nature.com/nature/journal/v435/n7043/full/nature03596.html

  • Spencer JR, Calvin WM (2002) Condensed O2 on Europa and Callisto. Astron J 124:3400–3403

    ADS  Google Scholar 

  • Spencer JR, Buie MW, Bjoraker GL (1990) Solid methane on Triton and Pluto- 3- to 4-micron spectrophotometry. Icarus 88:491–496

    ADS  Google Scholar 

  • Spencer JR, Calvin WM, Person MJ (1995) Charge-coupled-device spectra of the galilean satellites: molecular-oxygen on Ganymede. J Geophys Res 100:19049–19056

    ADS  Google Scholar 

  • Stansberry JA, Pisano DJ, Yelle RV (1996) The emissivity of volatile ices on Triton and Pluto. Planet Space Sci 44:945–955

    ADS  Google Scholar 

  • Sunshine JM, A’Hearn MF, Groussin O, Li JY, Belton MJS, Delamere WA, Kissel J, Klaasen KP, McFadden LA, Meech KJ, 13 co-authors (2006) Exposed water ice deposits on the surface of Comet 9P/Tempel 1. Science 311:1453–1455

    Google Scholar 

  • Sunshine JS, Farnham TL, Feaga LM, Groussin O, Merlin F, Milliken RE, A’Hearn MF (2009) Temporal and spatial variability of Lunar hydration as observed by the deep impact spacecraft. Science 326:565–568. doi:10.1126/science.1179788

    ADS  Google Scholar 

  • Takato N, Bus SJ, Terada H, Pyo T-S, Kobayashi N (2004) Detection of a deep 3-ÎĽm absorption feature in the spectrum of Amalthea (JV). Science 306:2224–2227. doi:10.1126/science.1105427

    ADS  Google Scholar 

  • Teanby NA, Irwin PGJ, de Kok R, Jolly A, Bezard B, Nixon CA, Calcutt SB (2009) Titan’s stratospheric C2N2, C3H4, and C4H2 abundances from Cassini/CIRS far-infrared spectra. Icarus 202:620–631

    ADS  Google Scholar 

  • Tomasko MG, Archinal B, Becker T, Bezard B, Bushroe M, Combes M, Cook D, Coustenis A, de Bergh C, Dafoe L, Doose L, Doute S, Eibl A, Engel S, Gliem F, Grieger B, Holso K, Howington-Kraus E, Karkoschka E, Keller HU, Kirk R, Kramm R, Kuppers M, Lanagan P, Lellouch E, Lemmon M, Lunine J, McFarlane E, Moores J, Prout GM, Rizk B, Rosiek M, Rueffer P, Schroder SE, Schmitt B, See C, Smith P, Soderblom L, Thomas N, West R (2005) Rain, wind and haze during the Huygens probe’s descent to Titan’s surface. Nature 438:765–778

    ADS  Google Scholar 

  • Trujillo CA, Brown ME, Barkume KM, Schaller EL, Rabinowitz DL (2007) The surface of 2003 EL61 in the near-infrared. Astrophys J 655:1172–1178

    ADS  Google Scholar 

  • Tryka KA, Brown RH, Anicich V, Cruikshank DP, Owen TC (1993) Spectroscopic determination of the phase composition and temperature of nitrogen ice on Triton. Science 261:751–754

    ADS  Google Scholar 

  • Tryka KA, Brown RH, Cruikshank DP, Owen TC, Geballe TR, de Bergh C (1994) Temperature of nitrogen ice on Pluto and its implications for flux measurements. Icarus 112:513–527

    ADS  Google Scholar 

  • Tryka KA, Brown RH, Anicich V (1995) Near-infrared absorption coefficients of solid nitrogen as a function of temperature. Icarus 116:409–414

    ADS  Google Scholar 

  • Vilas F, Larson SM, Stockstill KR, Gaffey J (1996) Unraveling the zebra: clues to the Iapetus dark material composition. Icarus 124:262–267

    ADS  Google Scholar 

  • Vilas F, Jarvis KS, Barker ES, Lederer SM, Kelley MS, Owen TC (2004) Iapetus dark and bright material: giving compositional interpretation some latitude. Icarus 170:125–130

    ADS  Google Scholar 

  • Vuitton V, Yelle RV, Cui J (2008) Formation and distribution of benzene on Titan. J Geophys Res 113:E05007. doi:10.1029/2007JE002997

    Google Scholar 

  • Wade LG (2005) Organic chemistry, 5th edn. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Waite H, Young D, Cravens T, Coates A, Crary F, Magee B, Westlake J (2007) The process of Tholin formation in Titan’s upper atmosphere. Science 316:870–875

    ADS  Google Scholar 

  • Wong MC, Johnson RE (1996) A three-dimensional azimuthally symmetric model atmosphere for Io.2. Plasma effect on the surface. J Geophys Res 101:23255–23259

    ADS  Google Scholar 

  • Yung YL, DeMore WB (1999) Photochemistry of planetary atmospheres. Oxford University Press, New York, pp 201–234

    Google Scholar 

  • Zahnle K, Schenk P, Levison H, Dones L (2003) Cratering rates in the outer solar system. Icarus 163:263–289

    ADS  Google Scholar 

  • Zellner B (1972) On the nature of Iapetus. Astrophys J Lett 174:L107–L109

    ADS  Google Scholar 

  • Zolotov MY, Fegley B (1998) Volcanic production of sulfur monoxide (SO) on Io. Icarus 132:431–434

    ADS  Google Scholar 

  • Zolotov MY, Fegley B Jr (1999) Oxidation state of volcanic gases and the interior of Io. Icarus 141:40–52

    ADS  Google Scholar 

  • Zolotov MY, Fegley B (2000) Eruption condition of Pele volcano on Io inferred from chemistry of its volcanic plume. Geophys Res Lett 27:2789–2792

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger N. Clark .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Clark, R.N., Carlson, R., Grundy, W., Noll, K. (2013). Observed Ices in the Solar System. In: Gudipati, M., Castillo-Rogez, J. (eds) The Science of Solar System Ices. Astrophysics and Space Science Library, vol 356. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3076-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3076-6_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3075-9

  • Online ISBN: 978-1-4614-3076-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics