Skip to main content

Failure Modes and Failure Analysis

  • Chapter
  • First Online:
Solid State Lighting Reliability

Part of the book series: Solid State Lighting Technology and Application Series ((SSLTA,volume 1))

Abstract

Reliability is related to all levels of an application, from component or device level to system or environment level. Even though all these levels are linked and interact with each other, they are described separately in this chapter. For each level of the system, the dominant failure modes are summarized, and where possible related models describing the degradation are discussed. The chapter is illustrated with pictures of failure modes and an overview of appropriate failure analysis techniques is given. The approach is from an industrial point of view, rather than from academic point of view. Both catastrophic failures and degradation modes resulting in a decreasing light output are discussed. Amongst catastrophic failures, die cracking, electrical opens, electrical shorts, delamination, damage from ESD at the different levels, and driver failures are addressed. Phenomena causing decreasing lumen output are amongst others all mechanisms that affect the recombination of holes and electrons in the active area of the LED, degradation of the lens and of the encapsulant, yellowing of the lens and of the encapsulant, outgassing and deposition, increase of the contact resistance, and degradation of the phosphors. For most failure and degradation mechanisms, a good temperature control is a key. A major challenge is that the time to generate data to predict lumen depreciation is of the same order of magnitude as the life cycle of a LED.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

T j :

Junction temperature

L70:

Time to reach 70% of the initial lumen output

EOS:

Electrical overstress

ESD:

Electrostatic discharge

TVS:

Transient voltage suppression diode

LEE:

Light extraction efficiency

CTE:

Coefficient of thermal expansion

CME:

Coefficient of moisture expansion

IMC:

Intermetallic compound

MCPCB:

Metal-core printed circuit board

C-SAM:

C-mode scanning acoustic microscope

EDX:

Energy dispersive X-ray analysis

SAC:

Tin silver copper solder alloy (Sn–Ag–Cu)

AuSn:

Eutectic gold tin solder composition (AuSn)

SEM:

Scanning electron microscopy

TEM:

Transmission electron microscopy

TST:

Thermal shock testing

TCT:

Thermal cyclic testing

ESR:

Electron spin resonance

pcLED:

Phosphor converted LED

HAZ:

Heat affected zone

GGI:

Gold to gold interconnect

AF:

Acceleration factor

FIT:

Failures in 109 device hours

HTOL:

High temperature operating life test

MM:

Machine model (ESD)

CDM:

Charged device model (ESD)

HBM:

Human body model (ESD)

MD:

Misfit dislocations

TD:

Threaded dislocations

AFM:

Atomic force microscope

RI:

Refractive index

UBM:

Under bump metallization

VOC:

Volatile organic compounds

NCA:

Nonconductive adhesive

TIM:

Thermal interface materials

ECM:

Electrochemical migration

FT-IR:

Fourier-transform infra red analysis

FWHM:

Full-width half-maximum

References

  1. Horng R-H et al (2011) Failure modes and effects analysis for high-power GaN-based light-emitting diodes package technology. Microelectron Reliab 52:818–821. doi:10.1016/j.microrel.2011.02.021

    Google Scholar 

  2. Krames MR et al (2007) Status and future of high-power light-emitting diodes for solid-state lighting. J Display Technol 3(2):160–175

    Article  Google Scholar 

  3. DR04. Luxeon Rebel IES LM-80 Test Report

    Google Scholar 

  4. http://ics.nxp.com/quality/ifr/

  5. Cotterell B, Chen Z, Han J-B, Tan N-X (2003) The strength of the silicon die in flip-chip assemblies. J Electron Packag 125:115

    Article  Google Scholar 

  6. Dugnani R, Wu M (2009) Fracture mechanisms for silicon dice. In: Proceedings of the 35th ISTFA, San Jose, CA, pp 309–313

    Google Scholar 

  7. Amerasekera A, Duvvury C (2002) ESD in silicon integrated circuits, 2nd edn. Wiley, Baffins Lane

    Book  Google Scholar 

  8. Unger BA (1983) Electrostatic discharge failures of semiconductor devices. In: IEEE/PROC, IRPS, Las Vegas, NV, USA, pp 193–199

    Google Scholar 

  9. Xie R-J, Hirosaki N, Sakuma K, Kimura N (2008) White light-emitting diodes (LEDs) using (oxy)nitride phosphors. J Phys D: Appl Phys 41:1440131–1440135

    Google Scholar 

  10. Application Brief AB32 Lumileds, LUXEON® Rebel and LUXEON® Rebel ES, Assembly and Handling information

    Google Scholar 

  11. Meneghesso G, Meneghini M, Zanoni E (2010) Recent results on the degradation of white LEDs for lighting. J Phys D: Appl Phys 43:354007

    Article  Google Scholar 

  12. https://nepp.nasa.gov/index.cfm/6095

  13. Barton DL et al (1999) Degradation mechanisms in GaN/AIGaN/InGaN LEDs and LDs. IEEE 0-7803-4354-9/99/$10.00 0

    Google Scholar 

  14. Cree XLamp®. Long-term lumen maintenance. Technical Article CLD-AP28 REV.0

    Google Scholar 

  15. Evaluating the lifetime behavior of LED systems—the path to a sustainable luminaire business model. Lumileds White Paper WP15, 10 May 2004

    Google Scholar 

  16. Jiao J-Z (2011) TM-21 seeks methods for lumen-maintenance prediction. LEDs Magazine, February 2011, pp 37–39

    Google Scholar 

  17. Luxeon Reliability Data, Reliability Datasheet RD07, Lumileds website

    Google Scholar 

  18. Uddin A, Wei AC, Anderson TG (2005) Study of degradation mechanism of blue light emitting diodes. Thin Solid Films 483:378–381

    Article  Google Scholar 

  19. Ueda O (1999) Reliability issues in III–V compound semiconductor devices: optical devices and GaAs-based HBTs. Microelectron Reliab 39:1839–1855

    Article  Google Scholar 

  20. Liu XW, Hopgood AA, Usher BF, Wang H, Braithwaite NStJ (1999) Formation of misfit dislocations during growth of InxGa1 − xAs/GaAs strained-layer heterostructures. Semicond Sci Technol 14:1154–1160

    Article  Google Scholar 

  21. Misirlioglu IB, Vasiliev AL, Aindow M, Alpay SP (2004) AlpayFigures threading dislocation generation in epitaxial (Ba, Sr)TiO3 films grown on (001) LaAlO3 by pulsed laser deposition. Appl Phys Lett 84(10):1742–1744

    Article  Google Scholar 

  22. Ovid’ko IA (1999) Misfit dislocation walls in solid films. J Phys: Condens Matter 11:6521–6527

    Article  Google Scholar 

  23. Speck JS, Brewer MA, Beltzb G, Romanovc AE, Pompe W (1996) Scaling laws for the reduction of threading dislocation densities in homogeneous buffer layers. J Appl Phys 80(7):3808–3816

    Article  Google Scholar 

  24. Arnold J (2004) When the lights go out: LED failure modes and mechanisms, White paper. DfR Solutions, College Park, MD, USA

    Google Scholar 

  25. Bogdanov MV, Bulashevich KA, Khokhlev OV, Evstratov IY, Ramm MS, Karpov SY (2010) Current crowding effect on light extraction efficiency of thin-film LEDs. Phys Stat Sol (c) 7(7–8):2124–2126

    Article  Google Scholar 

  26. Wang P, Wei W, Cao B, Gan Z, Liu S (2010) Simulation of current spreading for GaN-based light-emitting diodes. Opt Laser Technol 42:737–740

    Article  Google Scholar 

  27. Meneghini M, Tazzoli A, Mura G, Meneghesso G, Zanoni E (2010) A review on the physical mechanisms that limit the reliability of GaN-based LEDs. IEEE Trans Electron Devices 57(1):108–118

    Article  Google Scholar 

  28. Meneghesso G et al (2002) Failure modes and mechanisms of DC-aged GaN LEDs. Phys Stat Sol (a) 194(2):389–392

    Article  Google Scholar 

  29. Meneghini M et al (2008) Reliability of deep-UV light-emitting diodes. IEEE Trans Device Mater Reliab 8(2):248

    Article  Google Scholar 

  30. Meneghini M et al (2008) A review on the reliability of GaN-based LEDs. IEEE Trans Device Mater Reliab 8(2):323

    Article  Google Scholar 

  31. Jang HW, Kim JK, Kim SY, Yu HK, Lee J-L (2004) Ohmic contacts for high power LEDs. Phys Stat Sol (a) 201(12):2831–2836

    Article  Google Scholar 

  32. Kim H, Yang H, Huh C, Kim S-W, Park S-J, Hwang H (2000) Electromigration-induced failure of GaN multi-quantum well light emitting diode. Electron Lett 36(10):908–910

    Article  Google Scholar 

  33. Behaviour of InGaN LEDs in parallel circuits. Application Note, 17 May 2002, Opto Semiconductors

    Google Scholar 

  34. Narendran N, Gu Y, Freyssinier JP, Yu H, Deng L (2004) Solid-state lighting: failure analysis of white LEDs. J Cryst Growth 268:449–456

    Article  Google Scholar 

  35. Application Note 409, Evans analytical group detection of threaded dislocations in strained Si using AFM 7th May 2007, Version 3.0

    Google Scholar 

  36. Novak M, Feinstein A. Bruker’s nano surfaces solutions provide complete LED surface metrology capability, Bruker website

    Google Scholar 

  37. Lin Y-C et al (2006) Materials challenges and solutions for the packaging of high power LED. In: International microsystems, packaging, assembly conference, Taiwan

    Google Scholar 

  38. Hsu Y-C et al (2008) Failure mechanisms associated with lens shape of high-power LED modules in aging test. IEEE Trans Electron Devices 55(2):689–694

    Article  Google Scholar 

  39. Down JL (1986) The yellowing of epoxy resin adhesives: report on high-intensity light aging. Stud Conserv 1:159–170

    Article  Google Scholar 

  40. Arik M, Setlur A, Weaver S, Haitko D, Petroski J (2007) Chip to system levels thermal needs and alternative thermal technologies for high brightness LEDS. J Electron Packag 129:328–338

    Article  Google Scholar 

  41. Torikai A et al (1999) Accelerated photodegradation of poly(vinyl chloride). Polym Degrad Stab 63:441–445

    Article  Google Scholar 

  42. Torikai A et al (1990) Photodegradation of polyethylene: factors affecting photostability. J Appl Polym Sci 40:1637–1646

    Article  Google Scholar 

  43. Torikai A et al (1993) Photodegradation of polymer materials containing flame-cut agents. J Appl Polym Sci 50:2185–2190

    Article  Google Scholar 

  44. Bera D et al (2010) Optimization of the yellow phosphor concentration and layer thickness for down-conversion of blue to white light. J Display Technol 6(12):645–651

    Article  Google Scholar 

  45. Luo H et al (2005) Analysis of high-power packages for phosphor-based white-light—mitting diodes. Appl Phys Lett 86:243505

    Article  Google Scholar 

  46. Allen SC et al (2007) ELiXIR—solid-state luminaire with enhanced light extraction by internal reflection. J Display Technol 3(2):155

    Article  Google Scholar 

  47. Sonoki H et al (2007) Study on deterioration mechanism and acceleration tests for optical transparent materials. In: IEEE polytronic conference, Warsaw, Poland, pp 189–192

    Google Scholar 

  48. Hu J, Yang L, Shin MW (2007) Mechanism and thermal effect of delamination in light-emitting diode packages. Microelectr J 38(2):157–163

    Article  Google Scholar 

  49. Hu J et al (2006) Thermal and mechanical analysis of delamination in GaN-based light-emitting diode packages. J Cryst Growth 288:157–161

    Article  Google Scholar 

  50. Wong EH, Chan KC, Rajoo R, Lim TB (2002) The mechanics and impact of hygroscopic swelling of polymeric materials in electronic packaging. ASME J Electron Pack 124:122–126

    Article  Google Scholar 

  51. Driel WDV, van Gils MAJ, Fan X, Zhang GQ, Ernst LJ (2008) Driving mechanisms of delamination related reliability problems in exposed pad packages. IEEE Trans Compon Pack Technol 31:260–268

    Article  Google Scholar 

  52. Driel WDV, Wisse G, Chang AYL, Jassen JHJ, Fan X, Zhang KGO et al (2004) Influence of material combinations on delamination failures in a cavity-down TBGA package. IEEE Trans Compononents Packag Technol 27:651–658

    Article  Google Scholar 

  53. Driel WDV et al (2005) Prediction of delamination related IC & packaging reliability problems. Microelectron Reliab 45:1633–1638

    Article  Google Scholar 

  54. Harman G (1997) Wire bonding in microelectronics materials, processes, reliability, and yield, 2nd edn. McGraw-Hill, New York, NY

    Google Scholar 

  55. Oldervoll F et al (2004) Wire-bond failure mechanisms in plastic encapsulated microcircuits and ceramic hybrids at high temperatures. Microelectron Reliab 44:1009–1015

    Article  Google Scholar 

  56. Buso S (2008) Performance degradation of high-brightness light emitting diodes under DC and pulsed bias. IEEE Trans Device Mater Reliab 8(2):312–322

    Article  Google Scholar 

  57. Arik M, Weaver S, Becker CA, Hsing M, Srivastava A (2003) Effects of localized heat generations due to the color conversion in phosphor particles and layers of high brightness light emitting diodes. In: International electronic packaging technical conference and exhibition, Maui, Hawaii

    Google Scholar 

  58. Chhajed S et al (2005) Influence of junction temperature on chromaticity and color-rendering properties of trichromatic white-light sources based on light-emitting diodes. J Appl Phys 97:011306

    Article  Google Scholar 

  59. Xie R-J, Hirosaki N, Kimura N, Sakuma K, Mitomo M (2007) 2-Phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors. Appl Phys Lett 90:1911011–1911013

    Google Scholar 

  60. Meneghesso G et al (2010) Recent results on the degradation of white LEDs for lighting. J Phys D: Appl Phys 43:354007 (11 pp)

    Article  Google Scholar 

  61. Xie R-J et al (2007) Silicon-based oxynitride and nitride phosphors for white LEDs—a review. Sci Technol Adv Mater 8:588–600

    Article  Google Scholar 

  62. Dudek R et al (2007) Low-cycle fatigue of Ag-based solders dependent on alloying composition and thermal cycle conditions. In: 57th ECTC, Reno, NV, pp 14–21

    Google Scholar 

  63. Hannach T et al (2009) Creep in microelectronic solder joints: finite element simulations versus semi-analytical methods. Appl Mech 79(6–7):605–617

    Google Scholar 

  64. Ma H (2009) Constitutive models of creep for lead-free solders. J Mater Sci

    Google Scholar 

  65. Darveaux R et al (1992) IEEE Trans Component Hybrids Manuf Technol 15(6):1013

    Article  Google Scholar 

  66. Clech J-P (2009) Lead-free solder joint reliability: acceleration factors. In: SMTAI, San Diego, CA, USA

    Google Scholar 

  67. Schubert A et al (2003) Fatigue life models for SnAgCu and SnPb solder joints evaluated by experiments and simulation. In: Proceedings of the ECTC 2003, May 2003, New Orleans, Louisiana, pp 603–610

    Google Scholar 

  68. Engelmaier W (2008) Creep fatigue model for SAC405/305 solder joint reliability estimation—a proposal. Global SMT & Packaging, December, pp 46–48

    Google Scholar 

  69. Vasudevan V et al (2008) An acceleration model for lead-free (SAC) solder joint reliability under thermal cycling. In: Proceedings of the 58th, ECTC, May 2008, pp 139–145

    Google Scholar 

  70. LI J et al (2010) Multiscale simulation of microstructural changes in solder interconnections during thermal cycling. J Electron Mater 39(1)

    Google Scholar 

  71. Klein Wassink RJ (1989) Soldering in electronics, 2nd edn. Electrochemical Publications, Port Erin, Isle of Man, British Isles

    Google Scholar 

  72. Liu J, Lai Z, Kristiansen H, Khoo C (1998) Overview of conductive adhesive joining technology in electronics packaging applications. In: Proceedings of the 3rd IEEE international conference on adhesive joining and coating technology in electronics manufacturing, pp 1–18

    Google Scholar 

  73. Lefebvre DR, Takahashi KM, Muller AJ, Raju VR (1991) Degradation of epoxy coatings in humid environment: The critical relative humidity for adhesion loss. J Adhesive Sci Technol 5:201–227

    Article  Google Scholar 

  74. Caers JFJ et al (2004) Towards a predictive behavior of non-conductive adhesive interconnects. In: Proceedings of the 54th ECTC conference, June 2004, Las Vegas, NV, pp 106–112

    Google Scholar 

  75. Lasance C (2003) The urgent need for widely accepted test methods for thermal interface materials. In: Proceedings SEMITHERM XIX, March 2003, San Jose, CA, pp 123–128

    Google Scholar 

  76. Viswanath R et al (2002) Thermal performance challenges from silicon to systems. Intel Technol J Q3(2):16

    Google Scholar 

  77. Gowda A et al (2005) Reliability testing of silicone-based thermal grease. In: Proceedings of SEMITHERM XXI, March 2005, San Jose, CA, pp 64–71

    Google Scholar 

  78. Laird Technologies. T-grease 2500 reliability testing report, Laird website

    Google Scholar 

  79. Samson E et al (2005) Interface material selection and a thermal management technique in second-generation platforms built on Intel® Centrino™ Mobile Technology. Intel Tech J (1):75–86

    Google Scholar 

  80. Chiu C-P et al (2001) An accelerated reliability test method to predict thermal grease pump-out in flip-chip applications. In: Electronic components and technology conference

    Google Scholar 

  81. IEC 61347-1, Lamp controlgear—Part 1. General and safety requirements

    Google Scholar 

  82. UL 840 (2007) Insulation coordination including clearances and creepage distances for electrical equipment

    Google Scholar 

  83. Rogers K, Van Den Driessche P, Hillman C, Pecht M (1999) Do you know that your laminates may contain hollow fibers? Printed Circuit Fabric 22(4):34–38

    Google Scholar 

  84. Gagne JJP (1982) Silver migration model for Ag–Au–Pd conductors. IEEE Trans Components Hybrids Manuf Technol CHMT-5(4):402–407

    Article  Google Scholar 

  85. Howard RT (1981) Electrochemical model for corrosion of conductors on ceramic substrates. IEEE Trans CHMT 4(4):520–525

    Google Scholar 

  86. Rudra B, Pecht M, Jennings D (1994) Assessing time-to-failure due to conductive filament formation in multi-layer organic laminates. IEEE Trans Components Packag Manuf Tech: Part B 17(3):269–276

    Article  Google Scholar 

  87. Turbini LF (2006) Conductive anodic filament (CAF) formation, an historic perspective. Circuit World 32(3):19–24

    Article  Google Scholar 

  88. Concoat Systems, Auto-SIR test guidelines, concoat systems website

    Google Scholar 

  89. Jachim J, Freeman G, Turbini L (1997) Use of surface insulation resistance and contact angle measurements to characterize the interactions of three water soluble flexes with FR-4 substrates. IEEE CPMT: Part B 20(4)

    Google Scholar 

  90. Zamanzadeh M, Meilink SL, Warren GW, Wynblatt P, Yan B (1990) Electrochemical examination of dendritic growth on electronic devices in HCl electrolytes. Corrosion 46(8):665–671

    Article  Google Scholar 

  91. Bumiller E, Hillman C. A review of models for time-to-failure due to metallic migration mechanisms, White Paper. DfR Solutions

    Google Scholar 

  92. Chiu C-P, Chandran B, Mello M, Kelley K (2001) An accelerated reliability test method to predict thermal grease pump-out in flip-chip applications. In: Proceedings of the 51st ECTC, 29 May–1 Jun 2001, Orlando, FL

    Google Scholar 

  93. Lahyani A, Venet P, Grellet G, Viverge PJ (1998) Failure prediction of electrolytic capacitors during operation of a switchmode power supply. IEEE Trans Power Electron 13:1199–1207

    Article  Google Scholar 

  94. Guidelines for the installation, inspection, maintenance and repair of structural supports for highway signs, luminaries, and traffic signals, US department of Transportation, Report No. FHWA NHI 05-036, March 2005

    Google Scholar 

  95. Medina MM (2006) Development of design specifications, details and design criteria for traffic light poles, Department of Transportation, Kansas, Report No. K-TRAN: KU-98-6, September 2006

    Google Scholar 

  96. Ingress Protection Rating Code according to international standard IEC 60529-2004

    Google Scholar 

  97. Pinnes EL (1979) Time constants for moisture diffusion through a permeable barrier into an airspace. Polym Eng Sci 19(7):525–529

    Article  Google Scholar 

  98. Goswami A, Han B (2006) On ultra-fine leak detection of hermetic wafer level packages. In: 56th ECTC, San Diego, CA, pp 126–564

    Google Scholar 

  99. IEC 60598-1, Luminaires—Part 1. General requirements and tests

    Google Scholar 

  100. Grossman DM (2006) The right choice—UV fluorescent testing or xenon arc testing? Paint and Coatings Industry Magazine, March

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. F. J. M. Caers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Caers, J.F.J.M., Zhao, X.J. (2013). Failure Modes and Failure Analysis. In: van Driel, W., Fan, X. (eds) Solid State Lighting Reliability. Solid State Lighting Technology and Application Series, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3067-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3067-4_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3066-7

  • Online ISBN: 978-1-4614-3067-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics