Skip to main content

Failure Mechanisms and Reliability Issues in LEDs

  • Chapter
  • First Online:
Solid State Lighting Reliability

Part of the book series: Solid State Lighting Technology and Application Series ((SSLTA,volume 1))

Abstract

The construction of LEDs is somewhat similar to microelectronics, but there are unique functional requirements, materials, and interfaces in LEDs that make their failure modes and mechanisms different. This chapter presents a definite, comprehensive and up-to-date guide to industry and academic research on LED failure mechanisms and reliability. It will help readers focus resources in an effective manner to assess and improve LED reliability for various current and future applications. In this review, we focus on the reliability of LEDs at the die and package levels. The reliability information provided by the LED manufacturers is not at a mature enough stage to be useful for the users of LEDs. This chapter provides groundwork for understanding of the reliability issues of LEDs. First, we present introduction about LED reliability and Physics of Failure (PoF) approach. We then categorize LED failures into 13 different groups related to semiconductor, interconnect, and package reliability issues. We close by identifying relationship between failure causes and associated mechanisms, issues in thermal standardization on LED reliability, critical areas of investigation, and development in LED technology and reliability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Krames MR, Shchekin OB, Mueller-Mach R, Mueller GO, Zhou L, Harbers G, Craford MG (2007) Status and future of high-power light-emitting diodes for solid-state lighting. J Display Technol 3(2):160–175

    Google Scholar 

  2. Steigerwald DA, Bhat JC, Collins D, Fletcher RM, Holcomb MO, Ludowise MJ, Martin PS, Rudaz SL (2002) Illumination with solid state lighting technology. IEEE J Select Top Quant Electron 2:310–320

    Google Scholar 

  3. Steranka FM, Bhat J, Collins D, Cook L, Craford MG, Fletcher R, Gardner N, Grillot P, Goetz W, Keuper M, Khare R, Kim A, Krames M, Harbers G, Ludowise M, Martin PS, Misra M, Mueller G, Mueller-Mach R, Rudaz S, Shen YC, Steigerwald D, Stockman S, Subramanya S, Trottier T, Wierer JJ (2002) High power LEDs—technology status and market applications. Phys Stat Sol (a) 194:380–388

    Google Scholar 

  4. Schubert EF, Kim JK, Luo H, Xi J-Q (2006) Solid-state lighting—a benevolent technology. Rep Prog Phys 69:3069–3099

    Google Scholar 

  5. Aoyama Y, Yachi T (2008) An LED module array system designed for streetlight use. In: IEEE Energy 2030 Conference, Energy 2008, Atlanta, GA, pp 1–5

    Google Scholar 

  6. Vittori R, Scaburri A (2009) New solid state technologies and light emission diodes as a mean of control and lighting source applicable to explosion proof equipment, with the scope to reduce maintenance, to limit the risk of bad maintenance and to expand the plants’ life. In: PCIC Europe, 2009 Conference Record, Europe, pp 193–198

    Google Scholar 

  7. King M (2010) Characteristics of high brightness LEDs. In: Electronic design online conference series, session 5, 22 Jun 2010, pp 1–16

    Google Scholar 

  8. Schubert EF (2006) Light-emitting diodes, 2nd edn. Cambridge University Press, Cambridge, pp 308–309 (Chapter 18)

    Google Scholar 

  9. Huang M-S, Hung C-C, Fang Y-C, Lai W-C, Chen Y-L (2010) Optical design and optimization of light emitting diode automotive head light with digital micromirror device light emitting diode. Optik Int J Light Electron Opt 1–9, vol 121, issue 10, pp. 942–952 1

    Google Scholar 

  10. Lee SWR, Lau CH, Chan SP, Ma KY, NG MH, NG YW, LEE KH, Lo JCC (2006) Development and prototyping of a HB-LED array module for indoor solid state lighting. In: High density microsystem design and packaging and component failure analysis, HDP´06 Conference, Shanghai, China, pp 141–145

    Google Scholar 

  11. Peon R, Doluweera G, Platonova I, Irvine-Halliday D, Irvine-Halliday G (2005) Solid state lighting for the developing world—the only solution. Opt Photon Proc SPIE 5941:109–123***

    Google Scholar 

  12. Pinto RA, Cosetin MR, da Silva MF, Denardin GW, Fraytag J, Campos A, do Prado RN (2009) Compact emergency lamp using power LEDs. In: Industrial electronics, IECON´09. 35th annual conference of IEEE, Porto, Portugal, pp 3494–3499

    Google Scholar 

  13. Shibata S-I, Oyabu T, Kimura H (2009) Bioelectric potential characteristic of pothos under light emitting diode. In: ICCAS-SICE, Fukuoka, Japan, pp 4663–4668

    Google Scholar 

  14. Wipiejewski T, Moriarty T, Hung V, Doyle P, Duggan G, Barrow D, McGarvey B, O’Gorman M, Calvert T, Maute M, Gerhardt V, Lambkin JD (2008) Gigabits in the home with plugless Plastic Optical Fiber (POF) interconnects. In: 2nd Electronics system-integration technology conference, 2008 (ESTC 2008), Greenwich, London, UK, pp 1263–1266

    Google Scholar 

  15. Lumileds P (2006) Luxeon reliability. Reliability Datasheet RD25

    Google Scholar 

  16. Chang YN, Hung CC, Tung SC (2009) Auto mixed light for RGB LED backlight module. In: Industrial electronics, 2009, ISIE 2009, IEEE international symposium, Lisbon, Portugal, pp 864–869

    Google Scholar 

  17. Chang SW (2008) LED lighting: high efficiency and environmental benefit, vol 206. Samsung Economic Research Institute Economic Focus, Seoul, South Korea, pp 1–10

    Google Scholar 

  18. Narendran N, Deng L, Pysar RM, Gu Y, Yu H (2004) Performance characteristics of high-power light-emitting diodes. In: Third international conference on solid state lighting, proceedings of SPIE, Troy, New York, vol 5187, issue 267, pp 267–275

    Google Scholar 

  19. IES (Illuminating Engineering Society) (2008) Standard IES LM-80-08, approved method: measuring lumen maintenance of LED light sources, New York, NY

    Google Scholar 

  20. Deshayes Y, Bechou L, Verdier F, Danto Y (2005) Long-term reliability prediction of 935 nm LEDs using failure laws and low acceleration factor ageing tests. Qual Reliab Eng Int 21:571–594

    Google Scholar 

  21. Trevisanello L, Meneghini M, Mura G, Vanzi M, Pavesi M, Meneghesso G, Zanoni E (2008) Accelerated life test of high brightness light emitting diodes. IEEE Trans Device Mater Reliab 8(2):304–311

    Google Scholar 

  22. Deshayes Y, Bord I, Barreau G, Aiche M, Moretto PH, Bechou L, Roehrig AC, Ousten Y (2008) Selective activation of failure mechanisms in packaged double-heterostructure light emitting diodes using controlled neutron energy irradiation. Microelectron Reliab 48:1354–1360

    Google Scholar 

  23. Cree (2009) Cree Xlamp XR family LED reliability. CLD-AP06 Rev. 7. Cree, Inc., pp 1–5

    Google Scholar 

  24. Nichia (2009) Specifications for Nichia chip type white LED model: NCSW119T-H3”, Nichia STS-DA1-0990A. Nichia Corporation

    Google Scholar 

  25. Jeong J-S, Jung J-K, Park S-D (2008) Reliability improvement of InGaN LED backlight module by accelerated life test (ALT) and screen policy of potential leakage LED. Microelectron Reliab 48:1216–1220

    Google Scholar 

  26. Polavarapu I, Okogbaa G (2005) An interval estimate of mean-time-to-failure for a product with reciprocal Weibull degradation failure rate. In: Proceedings: Annual reliability and maintainability symposium, 2005, Alexandria, Virginia, pp 261–265

    Google Scholar 

  27. Peng C-Y, Tseng S-T (2009) Mis-specification analysis of linear degradation models. IEEE Trans Reliab 58(3):444–455

    Google Scholar 

  28. Vazquez M, Nunez N, Nogueira E, Borreguero A (2010) Degradation of AlInGaP red LEDs under drive current and temperature accelerated life tests. Microelectron Reliab 50:1559–1562

    Google Scholar 

  29. Lasance CJM (2003) Recent progress in compact thermal models. In: 19th IEEE SEMI-THERM symposium, San Jose, California, pp 290–299

    Google Scholar 

  30. Hwang N (2008) Failure analysis matrix of light emitting diodes for general lighting applications. In: Physical and failure analysis of integrated circuits, 2008. IPFA 2008. 15th international symposium, Singapore, pp 1–4

    Google Scholar 

  31. Hu Q, Zane R (2009) LED drive circuit with series input connected converter cells operating in continuous conduction mode. In: Applied power electronics conference and exposition, 2009. APEC 2009. 24th annual IEEE, Washington, DC, pp 1511–1517

    Google Scholar 

  32. Christensen A, Graham S (2009) Thermal effects in packaging high power light emitting diode arrays. Appl Therm Eng 29:364–371

    Google Scholar 

  33. Li Q, Kececioglu DB (2006) Design of an optimal plan for an accelerated degradation test: a case study. Int J Qual Reliab Manage 23(4):426–440

    Google Scholar 

  34. Nogueira E, Vazquez M, Nunez N (2009) Evaluation of AlGaInP LEDs reliability based on accelerated tests. Microelectron Reliab 49:1240–1243

    Google Scholar 

  35. Kang J-M, Kim J-W, Choi J-H, Kim D-H, Kwon H-K (2009) Life-time estimation of high-power blue light-emitting diode chips. Microelectron Reliab 49:1231–1235

    Google Scholar 

  36. Cheng T, Luo X, Huang S, Liu S (2010) Thermal analysis and optimization of multiple LED packaging based on a general analytical solution. Int J Therm Sci 49:196–201

    Google Scholar 

  37. Molnar G, Nagy G, Szucs Z (Sept 2008) A novel procedure and device to allow comprehensive characterization of power LEDs over a wide range of temperature. In: TERMINIC 2008, Rome, Italy, pp 89–92

    Google Scholar 

  38. Szekely V, Somlay G, Szabo PG, Rencz M (Sept 2008) Design of a static TIM tester. In: THERMINIC 2008, Rome, Italy, pp 132–136

    Google Scholar 

  39. Linderman R, Brunschwiler T, Smith B, Michel B (Sept 2007) High-performance thermal interface technology overviews. In: 13th international workshop on THERMINIC 2007, Budapest, Hungary, pp 129–134

    Google Scholar 

  40. Horng R-H, Hsiao H-Y, Chiang C-C, Wuu D-S, Tsai Y-L, Lin H-I (2009) Novel device design for high-power InGaN/Sapphire LEDs using copper heat spreader with reflector. IEEE J Select Top Quant Electron 15(4):1281

    Google Scholar 

  41. Yu JH, Oepts W, Konijn H (2008) PC board thermal management of high power LEDs. In: Semiconductor thermal measurement and management symposium, 2008. Semi-Therm 2008. 24th annual IEEE, San Jose, California, pp 63–67

    Google Scholar 

  42. Chang H, Lai Y-S (2007) Novel AC driver and protection circuits with dimming control for light emitting diodes. In: Industry applications conference, 2007. 42nd IAS annual meeting. Conference record of the 2007 IEEE, New Orleans, Louisiana, pp 696–700

    Google Scholar 

  43. Cassanelli G, Mura G, Fantini F, Vanzi M (2008) Failure analysis of high power white LEDs. In: Microelectronics, 2008. MIEL 2008. 26th international conference, Nis, Serbia, pp 255–257

    Google Scholar 

  44. Doshi M, Zane R (2008) Reconfigurable and fault tolerant digital phase shifted modulator for luminance control of LED light sources. In: IEEE power electronics specialists conference PESC 2008, Rhodes, Greece, pp 4185–4191

    Google Scholar 

  45. Hu Q, Zane R (2009) LED drive circuit with series input connected converter cells operating in continuous conduction mode. In: 24th annual IEEE applied power electronics conference and exposition 2009, Washington, DC, pp 1511–1517

    Google Scholar 

  46. Patterson J, Zane R (2008) Series input modular architecture for driving multiple LEDs. In: IEEE power electronics specialists conference 2008, Rhodes, Greece, pp 2650–2656

    Google Scholar 

  47. Subramanian K (2010) LED color-temperature control. In: Electronic design online conference series, session 2, 22nd Jun 2010, pp 1–19

    Google Scholar 

  48. Ice C (2010) Digitally controlled LED lighting systems. In: Electronic design online conference series, session 3, 22nd Jun 2010, pp 1–28

    Google Scholar 

  49. Denicholas J (2010) Using analog semiconductor technologies in solid state lighting applications. In: Electronic design online conference series, session 4, 22nd Jun 2010, pp 1–46

    Google Scholar 

  50. Bauernschub R, Lall P (1994) A PoF approach to addressing defect-related reliability. In: IEEE/CPMT international manufacturing technology symposium, Austin, Texas, pp 38–49

    Google Scholar 

  51. Pecht M, Dasgupta A (1995) Physics-of-Failure: an approach to reliable product development. J Inst Environ Sci 38:30–34

    Google Scholar 

  52. Pecht MG (2008) Prognostics and health management of electronics. Wiley, Hoboken, NJ (Chapter 1)

    Google Scholar 

  53. Bowles JB (2003) Fundamentals of failure modes and effects analysis. In: Tutorial notes annual reliability and maintainability symposium, Tampa Bay, Florida

    Google Scholar 

  54. MIL-STD-1629A: procedures for performing a failure mode, effects, and criticality analysis, military standard, Nov 1974

    Google Scholar 

  55. Mathew S, Das D, Rossenberger R, Pecht M (2008) Failure mechanisms based prognostics. In: 2008 international conference on prognostics and health management, Denver, Colorado, pp 1–6

    Google Scholar 

  56. Ganesan S, Eveloy V, Das D, Pecht M (2005) Identification and utilization of failure mechanisms to enhance FMEA and FMECA. In: Proceedings of the IEEE workshop on accelerated stress testing & reliability (ASTR), Austin, Texas, 2–5 Oct 2005

    Google Scholar 

  57. JESD659-A: failure-mechanism-driven reliability monitoring, EIA/JEDEC standard, Sept 1999

    Google Scholar 

  58. JEP143A: solid-state reliability assessment and qualification methodologies, JEDEC Publication, May 2004

    Google Scholar 

  59. JEP150: stress-test-driven qualification of and failure mechanisms associated with assembled solid state surface-mount components, JEDEC Publication, May 2005

    Google Scholar 

  60. JESD74: early life failure rate calculation procedure for electronic components, JEDEC Standard, Apr 2000

    Google Scholar 

  61. JESD94: application specific qualification using knowledge based test methodology, JEDEC Standard, Jan 2004

    Google Scholar 

  62. JESD91A: method for developing acceleration models for electronic component failure mechanisms, JEDEC Standard, Aug 2003

    Google Scholar 

  63. SEMATECH, #00053955A-XFR: semiconductor device reliability failure models, SEMATECH Publication, May 2000

    Google Scholar 

  64. SEMATECH, #99083810A-XFR: use condition based reliability evaluation of new semiconductor technologies, SEMATECH Publication, Aug 1999

    Google Scholar 

  65. SEMATECH, #00053958A-XFR: knowledge-based reliability qualification testing of silicon devices, SEMATECH Publication, May 2000

    Google Scholar 

  66. Lindon RL (1961) Risk register. Cereb Palsy Bull 3(5):481–487

    Google Scholar 

  67. Department of Defense (2006) Office of the under secretary of defense for acquisition technology and logistics. In: Risk management guide for DOD acquisition, 6th edn. (Version 1.0). OUSD(AT&L) Systems and Software Engineering/Enterprise Development, Washington, DC, pp 1–34

    Google Scholar 

  68. Patterson FD, Neailey K (2002) A risk register database system to aid the management of project risk. Int J Project Manage 20:365–374

    Google Scholar 

  69. Eskesen SD, Tengborg P, Kampmann J, Veicherts TH (2004) Guidelines for tunnelling risk management: international tunnelling association, Working Group No. 2. Tunnell Underground Space Technol 19:217–237

    Google Scholar 

  70. Williams TM (1994) Using a risk register to integrate risk management in project definition. Int J Project Manage 12:17–22

    Google Scholar 

  71. Carter R, Hancock T, Morin JM, Robins N (1995) Introducing RIKSKMAN methodology, 1st edn. NNC Blackwell Ltd., UK

    Google Scholar 

  72. Ward S (1999) Assessing and managing important risks. Int J Project Manage 17:331–336

    Google Scholar 

  73. Yanagisawa T (1998) The degradation of GaAlAs red light-emitting diodes under continuous and low-speed pulse operations. Microelectron Reliab 38:1627–1630

    Google Scholar 

  74. Hoang T, LeMinh P, Holleman J, Schmitz J (2005) The effect of dislocation loops on the light emission of silicon LEDs. In: 35th European solid-state device research conference 2005, Grenoble, France, pp 359–362

    Google Scholar 

  75. Lu G, Yang S, Huang Y (2009) Analysis on failure modes and mechanisms of LED. In: Reliability, maintainability and safety, 2009. ICRMS 2009. 8th international conference, Chengdu, China, pp 1237–1241

    Google Scholar 

  76. Tharian J (2007) Degradation and failure mode analysis of III–V nitride devices. In: Physical and failure analysis of integrated circuits, 2007. IPFA 2007. 14th international symposium, Bangalore, India, pp 284–287

    Google Scholar 

  77. Uddin A, Wei AC, Andersson TG (2005) Study of degradation mechanism of blue light emitting diodes. Thin Solid Films 483:378–381

    Google Scholar 

  78. Yanagisawa T, Kojima T (2005) Long-term accelerated current operation of white light-emitting diodes. J Lumin 114:39–42

    Google Scholar 

  79. Meneghesso G, Levada S, Zanoni E, Podda S, Mura G, Vanzi M, Cavallini A, Castaldini A, Du S, Eliashevich I (2002) Failure modes and mechanisms of DC-aged GaN LEDs. Phys Stat Sol (a) 194(2):389–392

    Google Scholar 

  80. Meneghesso G, Levada S, Pierobon R, Rampazzo F, Zanoni E, Cavallini A, Castaldini A, Scamarcio G, Du S, Eliashevich I (2002) Degradation mechanisms of GaN-based LEDs after accelerated DC current aging. In: International electron devices meeting, 2002. IEDM ´02 Digest, San Francisco, California, pp 103–106

    Google Scholar 

  81. Pavesi M, Rossi F, Zanoni E (2006) Effects of extreme DC-ageing and electron-beam irradiation in InGaN/AlGaN/GaN light-emitting diodes. Semicond Sci Technol 21:138–143

    Google Scholar 

  82. Ott M (1996) Capabilities and reliability of LEDs and laser diodes. In: What's new in electronics, 20(6):1–7

    Google Scholar 

  83. Chuang S, Ishibashi A, Kijima S, Nakayama N, Ukita M, Taniguchi S (1997) Kinetic model for degradation of light-emitting diodes. IEEE J Quant Electron 33(6):970–979

    Google Scholar 

  84. Shah JM, Li Y-L, Gessmann T, Schubert EF (2003) Experimental analysis and theoretical model for anomalously high ideal factors (n » 2.0) in AlGaN/GaN p–n junction diodes. J Appl Phys 94(4):2627–2630

    Google Scholar 

  85. Sugiura L (1997) Comparison of degradation caused by dislocation motion in compound semiconductor light-emitting devices. Appl Phys Lett 70(10):1317–1319

    Google Scholar 

  86. Sugiura L (1997) Dislocation motion in GaN light-emitting devices and its effect on device lifetime. J Appl Phys 81(4):1633–1638

    Google Scholar 

  87. Ueda O (1999) Reliability issues in III–V compound semiconductor devices: optical devices and GaAs-based HBTs. Microelectron Reliab 39:1839–1855

    Google Scholar 

  88. Fukuda M (1988) Laser and LED reliability update. J Lightwave Technol 6(10):1488–1495

    Google Scholar 

  89. Wang WK, Wuu DS, Lin SH, Huang SY, Wen KS, Horng RH (2008) Growth and characterization of InGaN-based light-emitting diodes on patterned sapphire substrates. J Phys Chem Solids 69:714–718

    Google Scholar 

  90. Ferenczi G (1982) Reliability of LED’s; are the accelerated ageing tests reliable? Electrocomponent Sci Technol 9:239–242

    Google Scholar 

  91. Rossi F, Pavesi M, Meneghini M, Salviati G, Manfredi M, Meneghesso G, Castaldini A, Cavallini A, Rigutti L, Stress U, Zehnder U, Zanoni E (2006) Influence of short-term low current DC aging on the electrical and optical properties of InGaN blue light-emitting diodes. J Appl Phys 99:053104-1–053104-7

    Google Scholar 

  92. Arnold J (2004) When the light go out: LED failure mode and mechanisms. DfR Solutions, College Park, MD, pp 1–4

    Google Scholar 

  93. Khan A, Hwang S, Lowder J (2009) Reliability issues in AlGaN based deep ultraviolet light emitting diodes. In: IEEE 47th annual international reliability physics symposium, Montreal, pp 89–93

    Google Scholar 

  94. Pan C, Lee C, Liu J, Chen G, Chyi J (2004) Luminescence efficiency of InGaN multiple-quantum-well ultraviolet light-emitting diodes. Appl Phys Lett 84(25):5249–5251

    Google Scholar 

  95. Pavesi M, Manfredi M, Salviati G, Armani N, Rossi F, Meneghesso G, Levada S, Zanoni E, Du S, Eliashevich I (2004) Optical evidence of an electrothermal degradation of InGaN-based light-emitting diodes during electrical stress. Appl Phys Lett 84(17):3403–3405

    Google Scholar 

  96. Pavesi M, Manfredi M, Rossi F, Meneghini M, Zanoni E, Zehnder U, Strauss U (2006) Temperature dependence of the electrical activity of localized defects in InGaN-based light emitting diodes. Appl Phys Lett 89:041917-1–041917-3

    Google Scholar 

  97. Cao XA, Sandvik PM, LeBoeuf SF, Arthur SD (2003) Defect generation in InGaN/GaN light-emitting diodes under forward and reverse electrical stresses. Microelectron Reliab 43:1987–1991

    Google Scholar 

  98. Barton DL, Osinski M, Perlin P, Helms CJ, Berg NH (1997) Life tests and failure mechanisms of GaN/AlGaN/InGaN light emitting diodes. In: Reliability physics symposium, IEEE 35th annual proceedings, Denver, Colorado, pp 276–281

    Google Scholar 

  99. Wu JD, Huang CY, Liao CC (2003) Fracture strength characterization and failure analysis of silicon dies. Microelectron Reliab 43:269–277

    Google Scholar 

  100. Iksan H, Lin K-L, Hsieh J (2001) Fracture analysis on die crack failure. In: IMAPS, Taiwan, 2001, pp 35–43

    Google Scholar 

  101. Chen CH, Tsai MY, Tang JY, Tsai WL, Chen TJ (2007) Determination of LED die strength. In: Electronic materials and packaging, 2007. EMAP 2007. International conference, Daejeon, South Korea, pp 1–6

    Google Scholar 

  102. Nakamura S, Mukai T, Senoh M, Iwasa N (1992) Thermal annealing effects on p-type Mg-doped GaN films. Jpn J Appl Phys 31:L139–L142

    Google Scholar 

  103. Hull BA, Mohney SE, Venugopalan HS, Ramer JC (2000) Influence of oxygen on the activation of p-type GaN. Appl Phys Lett 76:2271–2273

    Google Scholar 

  104. Brandt O, Yang H, Kostial H, Ploog KH (1996) High P-type conductivity in cubic GaN/GaAs (113)A by using Be as the acceptor and O as the codopant. Appl Phys Lett 69:2707–2709

    Google Scholar 

  105. Kim KS, Han MS, Yang GM, Youn CJ, Lee HJ, Cho HK, Lee JY (2000) Codoping characteristics of Zn with Mg in GaN. Appl Phys Lett 77:1123–1125

    Google Scholar 

  106. Zhang X, Chua S-J, Li P, Chong K-B, Wang W (2000) Improved Mg-doped GaN films grown over a multilayered buffer. Appl Phys Lett 73:1772–1774

    Google Scholar 

  107. Kim D-J, Kim H-M, Han M-G, Moon Y-T, Lee S, Park S-J (2003) Effects of KrF (248 nm) excimer laser irradiation on electrical and optical properties of GaN:Mg. J Vac Sci Technol B 21:641–644

    Google Scholar 

  108. Jang J-S, Park S-J, Seong T-Y (2000) Metallization scheme for highly low-resistance, transparent, and thermally stable Ohmic contacts to P-GaN. Appl Phys Lett 76:2898–2900

    Google Scholar 

  109. Khanna R, Stafford L, Voss LF, Pearton SJ, Wang HT, Anderson T, Hung S-C, Ren F (2008) Aging and stability of GaN high electron mobility transistors and light-emitting diodes with TiB2- and Ir-based contacts. IEEE Trans Device Mater Reliab 8(2):272–276

    Google Scholar 

  110. Zhu Q-S, Nagai H, Kawaguchi Y, Hiramatsu K, Sawaki N (2000) Effect of thermal annealing on hole trap levels in Mg-doped GaN grown by metalorganic vapor phase epitaxy. J Vac Sci Technol A: Vac Surf Films 18(1):261–267

    Google Scholar 

  111. Kohler K, Stephan T, Perona A, Wiegert J, Maier M, Kunzer M, Wagner J (2005) Control of the Mg doping profile in III-N light-emitting diodes and its effect on the electroluminescence efficiency. J Appl Phys 97:104914-1–104914-4

    Google Scholar 

  112. Kwon M-K, Park I-K, Kim J-Y, Kim J-O, Kim B, Park S-J (2007) Gradient doping of Mg in p-type GaN for high efficiency InGaN-GaN ultraviolet light-emitting diode. IEEE Photon Technol Lett 19(23):1880–1882

    Google Scholar 

  113. Altieri-Weimar P, Jaeger A, Lutz T, Stauss P, Streubel K, Thonke K, Sauer R (2008) Influence of doping on the reliability of AlGaInP LEDs. J Mater Sci: Mater Electron 19:S338–S341

    Google Scholar 

  114. Meneghesso G, Levada S, Zanoni E (2004) Failure mechanisms of GaN-based LEDs related with instabilities in doping profile and deep levels. In: IEEE 42nd annual international reliability physics symposium, Phoenix, Arizona, pp 474–478

    Google Scholar 

  115. Kozodoy P, DenBaars SP, Mishra UK (2000) Depletion region effects in Mg-doped GaN. J Appl Phys 87(2):770–775

    Google Scholar 

  116. Meneghini M, Trevisanello L-R, Levada S, Meneghesso G, Tamiazzo G, Zanoni E, Zahner T, Zehnder U, Härle V, Strauβ U (2005) Failure mechanisms of gallium nitride LEDs related with passivation. In: Electron devices meeting, 2005. IEDM Technical Digest. IEEE International, Washington, DC, pp 1009–1012

    Google Scholar 

  117. Hwang N, Naidu PSR, Trigg A (2003) Failure analysis of plastic packaged optocoupler light emitting diodes. In: Electronics packaging technology, 2003, 5th conference (EPTC 2003), Singapore, pp 346–349

    Google Scholar 

  118. Kim H, Yang H, Huh C, Kim S-W, Park S-J, Hwang H (2000) Electromigration-induced failure of GaN multi-quantum well light emitting diode. Electron Lett 36:908–910

    Google Scholar 

  119. Haque S, Steigerwald D, Rudaz S, Steward B, Bhat J, Collins D, Wall F, Subramanya S, Elpedes C, Elizondo P, Martin PS (2003) Packaging challenges of high power LEDs for solid state lighting. In: IMAPS, Boston, MA, pp 1–5

    Google Scholar 

  120. Barton DL, Zeller J, Phillips BS, Chiu P-C, Askar S, Lee D-S, Osinski M, Malloy KJ (1995) Degradation of blue AlGaN/InGaN/GaN LEDs subjected to high current pulses. In: Reliability physics symposium, 1995. 33rd annual proceedings, IEEE international, Las Vegas, Nevada, pp 191–199

    Google Scholar 

  121. Barton DL, Osinski M, Perlin P, Eliseev PG, Lee J (1999) Single-quantum well InGaN green light emitting diode degradation under high electrical stress. Microelectron Reliab 39:1219–1227

    Google Scholar 

  122. Song BM, Han B (2008) Reliability guidelines of high power LED. In: 2008 CALCE EPS Consortium Report, project no. C08-26, pp 1–11

    Google Scholar 

  123. Hewlett Packard (1997) Reliability of precision optical performance AlInGaP LED lamps in traffic signals and variable message sings. Application Brief I-004

    Google Scholar 

  124. Wu F, Zhao W, Yang S, Zhang C (2009) Failure modes and failure analysis of white LEDs. In: Electronic measurement & instruments, 2009. ICEMI’09. 9th international conference, Beijing, China, pp 4-978–4-981

    Google Scholar 

  125. Shammas NYA (2003) Present problems of power module packaging technology. Microelectron Reliab 43:519–527

    Google Scholar 

  126. Damann M, Leuther A, Benkhelifa F, Feltgen T, Jantz W (2003) Reliability and degradation mechanism of AlGaAs/InGaAs and InAlAs/InGaAs HEMTs. Phys Stat Sol (a) 195(1):81–86

    Google Scholar 

  127. Meneghesso G, Crosato C, Garat F, Martines G, Paccagnella A, Zanoni E (1998) Failure mechanisms of Schottky gate contact degradation and deep traps creations in AlGaAs/InGaAs PM-HEMTs submitted to accelerated life tests. Microelectron Reliab 38:1227–1232

    Google Scholar 

  128. Mizuishi K, Kurano H, Sato H, Kodera H (1979) Degradation mechanisms of GaAs MESFETs. IEEE Trans Electron Devices ED-26(7):1008–1014

    Google Scholar 

  129. Meneghini M, Trevisanello L-R, Zehnder U, Meneghesso G, Zanoni E (2007) Reversible degradation of Ohmic contacts on p-GaN for application in high-brightness LEDs. IEEE Trans Electron Devices 54(12):3245–3251

    Google Scholar 

  130. Jacob P, Kunz A, Nicoletti G (2006) Reliability and wearout characterisation of LEDs. Microelectron Reliab 46:1711–1714

    Google Scholar 

  131. Chang SJ, Chen CH, Su YK, Sheu JK, Lai WC, Tsai JM, Liu CH, Chen SC (2003) Improved ESD protection by combining InGaN-GaN MQW LEDs with GaN Schottky diodes. IEEE Electron Device Lett 24(3):129–131

    Google Scholar 

  132. O’Mahony D, Zimmerman W, Steffen S, Hilgarth J, Maaskant P, Ginige R, Lewis L, Lambert B, Corbett B (2009) Free-standing gallium nitride Schottky diode characteristics and stability in a high-temperature environment. Semicond Sci Technol 24:1–8

    Google Scholar 

  133. Shei S-C, Sheu J-K, Shen C-F (2007) Improved reliability and ESD characteristics of flip-chip GaN-based LEDs with internal inverse-parallel protection diodes. IEEE Electron Device Lett 28(5):346–349

    Google Scholar 

  134. Su YK, Chang SJ, Wei SC, Chen S-M, Li W-L (2005) ESD engineering of nitride-based LEDs. IEEE Trans Device Mater Reliab 5(2):277–281

    Google Scholar 

  135. Tsai CM, Sheu JK, Wang PT, Lai WC, Shei SC, Chang SJ, Kuo CH, Kuo CW, Su YK (2006) High efficiency and improved ESD characteristics of GaN-based LEDs with naturally textured surface grown by MOCVD. IEEE Photon Technol Lett 18(11):1213–1215

    Google Scholar 

  136. Zhang J-M, Zou D-S, Xu C, Zhu Y-X, Liang T, Da X-L, Shen G-D (2007) High power and high reliability GaN/InGaN flip-chip light-emitting diodes. Chin Phys 16(4):1135–1139

    Google Scholar 

  137. Meneghesso G, Chini A, Maschietto A, Zanoni E, Malberti P, Ciappa M (2001) Electrostatic discharge and electrical overstress on GaN/InGaN light emitting diodes. In: Electrical overstress/electrostatic discharge symposium, Portland, Oregon, pp 247–252

    Google Scholar 

  138. Wen TC, Chang SJ, Su YK, Wu LW, Kuo CH, Hsu YP, Lai WC, Sheu JK (2003) Improved ESD reliability by using a modulation doped Al0.12Ga0.88N/GaN superlattice in nitride-based LED. In: Semiconductor device research symposium, 2003 international, Washington, DC, pp 77–78

    Google Scholar 

  139. McCluskey P, Mensah K, O’Connor C, Lilie F, Gallo A, Pink J (1999) Reliability of commercial plastic encapsulated microelectronics at temperatures from 125°C to 300°C. In: Proceedings of the third European conference on high temperature electronics, Proc. HITEN 1999, Oxford, UK, pp 155–162

    Google Scholar 

  140. McCluskey P, Mensah K, O’Connor C, Gallo A (2000) Reliable use of commercial technology in high temperature environments. Microelectron Reliab 40:1671–1678

    Google Scholar 

  141. Meneghesso G, Leveda S, Zanoni E, Scamarcio G, Mura G, Podda S, Vanzi M, Du S, Eliashevich I (2003) Reliability of visible GaN LEDs in plastic package. Microelectron Reliab 43:1737–1742

    Google Scholar 

  142. Meneghini M, Trevisanello L, Sanna C, Mura G, Vanzi M, Meneghesso G, Zanoni E (2007) High temperature electro-optical degradation of InGaN/GaN HBLEDs. Microelectron Reliab 47:1625–1629

    Google Scholar 

  143. Wu F, Wu Y, An B, Wu F (2006) Analysis of dark stain on chip surface of high-power LED. In: Electronic packaging technology, 2006. ICEPT’06. 7th international conference, Shanghai, China, pp 1–4

    Google Scholar 

  144. Zhou L, An B, Wu Y, liu S (2009) Analysis of delamination and darkening in high power LED packaging. In: Physical and failure analysis of integrated circuits, 2009. IPFA 2009. 16th IEEE international symposium on the digital object, Suzhou, China, pp 656–660

    Google Scholar 

  145. Luo X, Wu B, Liu S (2010) Effects of moist environments on LED module reliability. IEEE Trans Device Mater Reliab 10(2):182–186

    MathSciNet  Google Scholar 

  146. Gladkov A, Bar-Cohen A (1999) Parametric dependence of fatigue of electronic adhesives. IEEE Trans Components Packag Technol 22:200–208

    Google Scholar 

  147. Kim H-H, Choi S-H, Shin S-H, Lee Y-K, Choi S-M, Yi S (2008) Thermal transient characteristics of die attach in high power LED PKG. Microelectron Reliab 48:445–454

    Google Scholar 

  148. Hu J, Yang L, Shin MW (2007) Mechanisms and thermal effect of delamination in light-emitting diode packages. Microelectron J 38:157–163

    Google Scholar 

  149. Mura G, Cassanelli G, Fantini F, Vanzi M (2008) Sulfur-contamination of high power white LED. Microelectron Reliab 48:1208–1211

    Google Scholar 

  150. Wong EH, Chan KC, Rajoo R, Lim TB (2002) The mechanics and impact of hygroscopic swelling of polymeric materials in electronic packaging. ASME J Electron Packag 124(2):122–126

    Google Scholar 

  151. Wang L, Feng S, Guo C, Zhang G (2009) Analysis of degradation of GaN-based light-emitting diodes. In: Physical and failure analysis of integrated circuits, 2009. IPFA 2009. 16th IEEE international symposium, Suzhou, China, pp 472–475

    Google Scholar 

  152. Rencz M, Szekely V, Morelli A, Villa C (2002) Determining partial resistances with transient measurements, and using the method to detect die attach discontinuities. In: Semiconductor thermal measurement, 2002. Eighteenth annual IEEE symposium, San Jose, California, pp 15–20

    Google Scholar 

  153. Hu J, Yang L, Shin MW (2008) Thermal and mechanical analysis of high-power LEDs with ceramic packages. IEEE Trans Device Mater Reliab 8(2):297–303

    Google Scholar 

  154. Rencz M, Szekely V (2004) Structure function evaluation of stacked dies. In: Semiconductor thermal measurement and management symposium, 2004. Twentieth annual IEEE, San Jose, California, pp 50–54

    Google Scholar 

  155. Hu J, Yang L, Shin MW (2008) Electrical, optical, and thermal degradation of high power GaN/InGaN light-emitting diodes. J Phys D: Appl Phys 41:1–4

    Google Scholar 

  156. Molnar G, Nagy G, Szücs Z (2008) A novel procedure and device to allow comprehensive characterization of power LEDs over a wide range of temperature. In: THERMINIC 2008, Rome, Italy, pp 89–92

    Google Scholar 

  157. Tan L, Li J, Wang K, Liu S (2009) Effects of defects on the thermal and optical performance of high-brightness light-emitting diodes. IEEE Trans Electron Packag Manuf 32(4):233–240

    Google Scholar 

  158. Yu JH, Farkas G, Vader QV (Sept 2005) Transient thermal analysis of power LEDs at package & board level. In: THERMINIC 2005, Belgirate, Italy, pp 244–248

    Google Scholar 

  159. Arik M, Weaver S (2005) Effect of chip and bonding defects on the junction temperatures of high-brightness light-emitting diodes. Opt Eng 44(11):11305-1–11305-8

    Google Scholar 

  160. Driel WDV, Wisse G, Chang AYL, Jassen JHJ, Fan X, Zhang KGO, Ernst LJ (2004) Influence of material combinations on delamination failures in a cavity-down TBGA package. IEEE Trans Components Packag Technol 27(4):651–658

    Google Scholar 

  161. Driel WDV, Gils MAJV, Fan X, Zhang GQ, Ernst LJ (2008) Driving mechanisms of delamination related reliability problems in exposed pad packages. IEEE Trans Components Packag Technol 31(2):260–268

    Google Scholar 

  162. Lin Y, Tran N, Zhou Y, He Y, Shi F (2006) Materials challenges and solutions for the packaging of high power LEDs. In: 2006 international microsystems, packaging, assembly conference, IMPACT 2006, Taiwan, pp 1–4

    Google Scholar 

  163. Noor YM, Tam SC, Lim LEN, Jana S (1994) A review of the Nd:YAG laser marking of plastic and ceramic IC packages. J Mater Process Technol 42(1):95–133

    Google Scholar 

  164. Vandevelde B, Degryse D, Beyne E, Roose E, Corlatan D, Swaelen G, Willems G, Christiaens F, Bell A, Vandepitte D, Baelmans M (2003) Modified micro-macro thermo-mechanical modeling of ceramic ball grid array packages. Microelectron Reliab 43(2):307–318

    Google Scholar 

  165. Li H-T, Hsu C-W, Chen K-C (2007) The study of thermal properties and thermal resistant behaviors of siloxane-modified LED transparent encapsulant. In: International microsystems, packaging, assembly and circuits technology, 2007. IMPACT 2007, Taipei, Taiwan, pp 246–249

    Google Scholar 

  166. Torikai A, Hasegawa H (1999) Accelerated photodegradation of poly(vinyl chloride). Polym Degrad Stab 63:441–445

    Google Scholar 

  167. Narendran N, Gu Y, Freyssinier JP, Yu H, Deng L (2004) Solid-state lighting: failure analysis of white LEDs. J Cryst Growth 268:449–456

    Google Scholar 

  168. Down JL (1986) The yellowing of epoxy resin adhesives: report on high-intensity light aging. Stud Conserv 31:159–170

    Google Scholar 

  169. Zhang Q, Mu X, Wang K, Gan Z, Luo X, Liu S (2008) Dynamic mechanical properties of the transient silicone resin for high power LED packaging. In: International conference electronic packaging technology & high density packaging, 2008. ICEPT-HDP 2008, Shanghai, China, pp 1–4

    Google Scholar 

  170. Meneghini M, Trevisanello L-R, Meneghesso G, Zanoni E (2008) A review on the reliability of GaN-based LEDs. IEEE Trans Device Mater Reliab 8(2):323–331

    Google Scholar 

  171. Baillot R, Deshayes Y, Bechou L, Buffeteau T, Pianet I, Armand C, Voillot F, Sorieul S, Ousten Y (2010) Effects of silicone coating degradation on GaN MQW LEDs performances using physical and chemical analysis. Microelectron Reliab 50:1568–1573

    Google Scholar 

  172. Barton DL, Osinski M (1998) Degradation mechanisms in GaN/AlGaN/InGaN LEDs and LDs. In: Proceedings of the 10th conference on semiconducting and insulating materials (SIMC-X), Berkeley, California, pp 259–262

    Google Scholar 

  173. Down JL (1984) The yellowing of epoxy resin adhesives: report on natural dark aging. Stud Conserv 29(2):63–76

    Google Scholar 

  174. Allen SC, Steckl AJ (2008) A nearly ideal phosphor-converted white light-emitting diode. Appl Phys Lett 92:143309-1–143309-3

    Google Scholar 

  175. Tran NT, Shi FG (2007) Simulation and experimental studies of phosphor concentration and thickness for phosphor-based white light-emitting diodes. In: International microsystems, packaging, assembly and circuits technology, 2007, IMPACT, Taipei, Taiwan, pp 255–257

    Google Scholar 

  176. Arik M, Weaver S, Becker CA, Hsing M, Srivastava A (2003) Effects of localized heat generations due to the color conversion in phosphor conversion in phosphor particles and layers of high brightness light emitting diodes. In: International electronic packaging technical conference and exhibition, ASME, Maui, Hawaii, pp 1–9

    Google Scholar 

  177. Narendran N, Gu Y, Freyssinier-Nova JP, Zhu Y (2005) Extracting phosphor-scattered photons to improve white LED efficiency. Phys Stat Sol (a) 202(6):R60–R62

    Google Scholar 

  178. Kim JK, Luo H, Schubert EF, Cho J, Sone C, Park Y (2005) Strongly enhanced phosphor efficiency in GaInN white light-emitting diodes using remote phosphor configuration and diffuse reflector cup. Jpn J Appl Phys 44(21):L649–L651

    Google Scholar 

  179. Luo H, Kim JK, Schubert EF, Cho J, Sone C, Park Y (2005) Analysis of high-power packages for phosphor-based white-light-emitting diodes. Appl Phys Lett 86:243505-1–243505-3

    Google Scholar 

  180. Li Y-Q, Fu S-Y, Mai Y-W (2006) Preparation and characterization of transparent ZnO/epoxy nanocomposites with high-UV shielding efficiency. Polymer 47:2127–2132

    Google Scholar 

  181. Schubert EF (2006) Light-emitting diodes, 2nd edn. Cambridge University Press, Cambridge, pp 192–193 (Chapter 11)

    Google Scholar 

  182. Hsu Y-C, Lin Y-K, Chen M-H, Tsai C-C, Kuang J-H, Huang S-B, Hu H-L, Su Y, Cheng W-H (2008) Failure mechanisms associated with lens shape of high-power LED modules in aging test. IEEE Trans Electron Devices 55(2):689–694

    Google Scholar 

  183. Arik M, Setlur A, Weaver S, Haitko D, Petroski J (2007) Chip to system levels thermal needs and alternative thermal technologies for high brightness LEDs. J Electron Packag 129:328–338

    Google Scholar 

  184. Xie R-J, Hirosaki N (2007) Silicon-based oxynitride and nitride phosphors for white LEDs—a review. Sci Technol Adv Mater 8:588–600

    Google Scholar 

  185. Xie R-J, Hirosaki N, Kimura N, Sakuma K, Mitomo M (2007) 2-Phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors. Appl Phys Lett 90:191101-1–191101-3

    Google Scholar 

  186. Jia D, Jia W, Jia Y (2007) Long persistent alkali-earth silicate phosphors doped with Eu2+, ND3+. J Appl Phys 101:023520-1–023520-6

    Google Scholar 

  187. Xie R-J, Hirosaki N, Mitomo M, Takahashi K, Sakuma K (2006) Highly efficient white-light-emitting diodes fabricated with short-wavelength yellow oxynitride phosphors. Appl Phys Lett 88:101104-1–101104-3

    Google Scholar 

  188. Nakamura S (1997) Present performance of InGaN-based blue/green/yellow LEDs. Proc SPIE 3002(26):26–35

    Google Scholar 

  189. Tsai C-C, Wang J, Chen M-H, Hsu Y-C, Lin Y-J, Lee C-W, Huang S-B, Hu H-L, Cheng W-H (2009) Investigation of Ce:YAG doping effect on thermal aging for high-power phosphor-converted white-light-emitting diodes. IEEE Trans Device Mater Reliab 9(3):367–371

    Google Scholar 

  190. Tang Y-S, Hu S-F, Lin CC, Bagkar NC, Liu R-S (2007) Thermally stable luminescence of KSrPO4:Eu2+ phosphor for white light UV light-emitting diodes. Appl Phys Lett 90:151108-1–151108-3

    Google Scholar 

  191. Mueller-Mach R, Mueller GO, Krames MR (2003) Phosphor materials and combinations for illumination grade white pcLED. Proc SPIE 5187:115–122

    Google Scholar 

  192. Mueller-Mach R, Mueller GO, Krames MR, Trottier T (2002) High-power phosphor-converted light-emitting diodes based on III-nitrides. IEEE J Select Top Quant Electron 8(2):339–345

    Google Scholar 

  193. Mueller GO, Mueller-Mach R (2000) White-light-emitting diodes for illumination. Proc SPIE 3938(30):30–41

    Google Scholar 

  194. Mueller-Mach R, Mueller G, Krames MR, Hoppe HA, Stadler F, Schnick W, Juestel T, Schmidt P (2005) Highly efficient all-nitride phosphors-converted white light emitting diode. Phys Stat Sol (a) 202(9):1727–1732

    Google Scholar 

  195. Uheda T, Hirosaki N, Yamamoto Y, Naito A, Nakajima T, Yamamoto H (2006) Luminescence properties of a red phosphor, CaAlSiN3:Eu2+, for white light-emitting diodes. Electrochem Solid-State Lett 9(4):H22–H25

    Google Scholar 

  196. Li YQ, van Steen JEJ, van Krevel JWH, Botty G, Delsing ACA, Disalvo FJ, de With G, Hintzen HT (2006) Luminescence properties of red-emitting M2Si5N8:Eu2+ (M = Ca, Sr, Ba) LED conversion phosphors. J Alloys Compd 417:273–279

    Google Scholar 

  197. Xie R-J, Hirosaki N, Sakuma K, Kimura N (2008) White light-emitting diodes (LEDs) using (oxy)nitride phosphors. J Phys D: Appl Phys 41:144013-1–144013-5

    Google Scholar 

  198. Xie R-J, Hirosaki N, Suehiro T, Xu F-F, Mitomo M (2006) A simple, efficient synthetic route to Sr2Si5N8:Eu2+ based red phosphors for white light-emitting diodes. Chem Mater 18(23):5578–5583

    Google Scholar 

  199. Zeng Q, Tanno H, Egoshi K, Tanamachi N, Zhang S (2006) Ba5SiO4Cl6:Eu2+: an intense blue emission phosphor under vacuum ultraviolet and near-ultraviolet excitation. Appl Phys Lett 88:051906-1–051906-3

    Google Scholar 

  200. Misra S, Kolbe J (2010) Reliability of thermal management substrates for LEDs. In: Electronic design online conference series, session 1, 22nd Jun 2010, pp 1–27

    Google Scholar 

  201. Hong E, Narendran N (2004) A method for projecting useful life of LED lighting systems. In: Third international conference on solid state lighting, proceedings of SPIE 5187, pp 93–99

    Google Scholar 

  202. Qi H, Vichare NM, Azarian MH, Pecht M (2008) Analysis of solder joint failure criteria and measurement techniques in the qualification of electronic products. IEEE Trans Components Packag Technol 31(2):469–477

    Google Scholar 

  203. IPC-SM-785 (1992) Guidelines for accelerated reliability testing of surface mounting solder attachments. Institute for Interconnecting and Packaging Electronic Circuits, Northbrook, IL

    Google Scholar 

  204. Chang M-H, Das D, Lee SW, Pecht M (2010) Concerns with interconnect reliability assessment of high power light emitting diodes (LEDs). In: SMTA China south technical conference 2010, Shenzhen, China, 31st Aug–2nd Sept 2010, pp 63–69

    Google Scholar 

  205. Choubey A, Yu H, Osterman M, Pecht M, Yun F, Yonghong L, Ming X (2008) Intermetallics characterization of lead-free solder joints under isothermal aging. J Electron Mater 37(8):1130–1138

    Google Scholar 

  206. Li GY, Chen BL (2003) Formation and growth kinetics of interfacial intermetallics in Pb-free solder joint. IEEE Trans Components Packag Technol 26:651–658

    Google Scholar 

  207. Osterman M, Pecht M (2007) Strain range fatigue life assessment of lead-free solder interconnects subject to temperature cycle loading. Solder Surf Mount Technol 19(2):12–17

    Google Scholar 

  208. Chauhan P, Osterman M, Pecht M (2009) Critical review of the Engelmaier model for solder joint creep fatigue reliability. IEEE Trans Components Packag Technol 32(3):693–700

    Google Scholar 

  209. George E, Das D, Osterman M, Pecht M, Otte C (2009) Physics of failure based virtual testing of communications hardware. In: ASME international mechanical engineering congress and exposition (IMECE2009), Buena Vista, FL, USA, 13–19 Nov 2009, pp 12181-1–12181-8

    Google Scholar 

  210. Ralston JM, Mann JW (1979) Temperature and current dependence of degradation in red-emitting GaP LED’s. J Appl Phys 50:3630–3637

    Google Scholar 

  211. Bergh AA (1971) Bulk degradation of GaP Red LEDs. IEEE Trans Electron Devices 18(3):166–170

    Google Scholar 

  212. Meneghini M, Podda S, Morelli A, Pintus R, Trevisanello L, Meneghesso G, Vanzi M, Zanoni E (2006) High brightness GaN LEDs degradation during DC and pulsed stress. Microelectron Reliab 46:1720–1724

    Google Scholar 

  213. Tan CM, Eric Chen BK, Foo YY, Chan RY, Xu G, Liu YJ (2008) Humidity effect on the degradation of packaged ultra-bright white LEDs. In: 2008 10th electronics packaging technology conference, Singapore, pp 1–6

    Google Scholar 

  214. Tan CM, Chen BKE, Xu G, Liu Y (2009) Analysis of humidity effects on the degradation of high-power white LEDs. Microelectron Reliab 49:1226–1230

    Google Scholar 

  215. Narendran N, Gu Y (2005) Life of LED-based white light sources. IEEE/OSA J Display Technol 1(1):167–171

    Google Scholar 

  216. Trevisanello L, Zuani FD, Meneghini M, Trivellin N, Zanoni E, Meneghesso G (2009) Thermally activated degradation and package instabilities of low flux LEDs. In: 2009 I.E. international reliability physics symposium, Montreal, Canada, pp 98–103

    Google Scholar 

  217. Bar-Cohen A, Kraus AD (1998) Advances in thermal modeling of electronic components and systems, vol 4. ASME Press, New York, NY

    Google Scholar 

  218. Gao S, Hong J, Shin S, Lee Y, Choi S, Yi S (2008) Design optimization on the heat transfer and mechanical reliability of high brightness light emitting diodes (HBLED) package. In: 58th electronic components and technology conference, 2008. ECTC 2008, Lake Buena Vista, Florida, pp 798–803

    Google Scholar 

  219. Jayasinghe L, Gu Y, Narendran N (2006) Characterization of thermal resistance coefficient of high-power LEDs. In: 6th international conference on solid state lighting, proceedings of SPIE, pp 1–10

    Google Scholar 

  220. Gu Y, Narendran N (2004) A non-contact method for determining junction temperature of phosphor-converted white LEDs. In: Third international conference on solid state lighting, proceedings of SPIE 5187, pp 107–114

    Google Scholar 

  221. Sanawiratne J, Zhao W, Detchprohm T, Chatterjee A, Li Y, Zhu M, Xia Y, Plawsky JL (2008) Junction temperature analysis in green light emitting diode dies on sapphire and GaN substrates. Phys Stat Sol (c) 5(6):2247–2249

    Google Scholar 

  222. Chhajed S, Xi Y, Li Y-L, Gessmann Th, Schubert EF (2005) Influence of junction temperature on chromaticity and color-rendering properties of trichromatic white-light sources based on light-emitting diodes. J Appl Phys 97:054506-1–054506-8

    Google Scholar 

  223. Chen ZZ, Liu P, Qi SL, Lin L, Pan HP, Qin ZX, Yu TJ, He ZK, Zhang GY (2007) Junction temperature and reliability of high-power flip-chip light emitting diodes. Mater Sci Semicond Process 10:206–210

    Google Scholar 

  224. Liu J, Tam WS, Wong H, Filip V (2009) Temperature-dependent light-emitting characteristics of InGaN/GaN diodes. Microelectron Reliab 49:38–41

    Google Scholar 

  225. Peng L-H, Chuang C-W, Lou L-H (1999) Piezoelectric effects in the optical properties of strained InGaN quantum wells. Appl Phys Lett 74(6):795–797

    Google Scholar 

  226. Casey HC Jr, Muth J, Krishnankutty S, Zavada JM (1996) Dominance of tunneling current and band filling in InGaN/AlGaN double heterostructure blue light-emitting diodes. Appl Phys Lett 68(20):2867–2869

    Google Scholar 

  227. Lasance CJM, Poppe A (2009) Challenges in LED thermal characterisation. In: 10th international conference on thermal, mechanical and multi-physics simulation and experiments in microelectronics and microsystems, EuroSimE 2009, Delft, pp 1–11

    Google Scholar 

  228. Poppe A, Lasance CJM (2009) On the standardization of thermal characterization of LEDs. In: 25th IEEE SEMI-THERM symposium, San Jose, California, pp 1–8

    Google Scholar 

  229. Poppe A, Lasance CJM (2008) On the standardisation of thermal characterisation of LEDs. Part II: Problem definition and potential solutions. In: THERMINIC 2008, Rome, Italy, pp 213–219

    Google Scholar 

  230. Poppe A, Lasance CJM (2009) Hot topic for LEDs: standardization issues of thermal characterization. In: Light and lighting conference with special emphasis on LEDs and solid state lighting, May 2009, Budapest, Hungary, CIE, pp 1–4

    Google Scholar 

  231. Poppe A, Molnár G, Temesvölgyi T (2010) Temperature dependent thermal resistance in power LED assemblies and a way to cope with it. In: 26th IEEE SEMI-THERM symposium, Santa Clara, California, pp 1–6

    Google Scholar 

  232. Lasance CJM (2003) Thermally driven reliability issues in microelectronic systems: status-quo and challenges. Microelectron Reliab 43:1969–1974

    Google Scholar 

  233. Joshi Y, Azar K, Blackburn D, Lasance CJM, Mahajan R, Rantala J (2003) How well can we assess thermally driven reliability issues in electronic systems today? Summary of panel held at the Therminic 2002. Microelectron J 34:1195–1201

    Google Scholar 

  234. Lasance CJM (2008) Ten years of boundary-condition-independent compact thermal modeling of electronic parts: a review. Heat Transf Eng 29:149–168

    Google Scholar 

  235. Lasance CJM (2002) The conceivable accuracy of experimental and numerical thermal analyzes of electronic systems’. In: IEEE Trans Comp Packag Technol, 25:366–382

    Google Scholar 

  236. Lasance CJM (2001) The European project PROFIT: prediction of temperature gradients influencing the quality of electronic products. In: Proceedings of the 17th SEMI-THERM, San Jose, California, pp 120–125

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Pecht .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Pecht, M.G., Chang, MH. (2013). Failure Mechanisms and Reliability Issues in LEDs. In: van Driel, W., Fan, X. (eds) Solid State Lighting Reliability. Solid State Lighting Technology and Application Series, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3067-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3067-4_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3066-7

  • Online ISBN: 978-1-4614-3067-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics