Skip to main content

The Use of Genomics in Model in Vitro Systems

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 745))

Abstract

Traditional toxicological tests generally provide descriptive information regarding the potential toxicity of chemicals, drugs and physical agents and are limited in their ability to assess risk to humans because they use model systems that are nonhuman in origin. Upon completion of the sequencing of the human genome, new tools were established that identify early biomarkers of toxicity and disease not only in model organisms but also in man. Gene expression profiling led to the development of a new subdiscipline of toxicology termed toxicogenomics. This new subdiscipline combines the emerging technologies of genomics, proteomics and bioinformatics to identify and characterize mechanisms of action of known and suspected toxicants. This chapter describes some advances in the area of toxicogenomics and discusses several models to study chemical-induced liver injury.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Casciano DA, Woodcock J. Empowering microarrays in the regulatory setting. Nature Biotechnol 2006; 24:1103.

    Article  CAS  Google Scholar 

  2. Casciano DA, Fuscoe JC. Preface to mutation research special issue on toxicogenomics. Mut Res 2004; 549:1–3.

    Article  CAS  Google Scholar 

  3. Hu T, Gibson DP, Carr GJ et al. Identification of a gene expression profile that discriminates indirect-acting genotoxins from direct-acting genotoxins. Mut Res 2004;549:5–27.

    Article  CAS  Google Scholar 

  4. Ackerman GS, Rozenzweig BA, Domon OE et al. Gene expression profiles and genetic damage in benzo[a] pyrene diol epoxide-exposed TK6 cells. Mut Res 2004;549:43–64.

    Article  Google Scholar 

  5. Desai VG, Moland CL, Branham WS et al. Changes in gene expression as a function of time of day in the liver of rats. Mut Res 2004;549:115–129.

    Article  CAS  Google Scholar 

  6. Boorman GA, Blackshear PE, Parker JS et al. Hepatic gene expression changes throughout the day in the Fischer rat: Implications for toxicogenomic experiments. Toxicol Sci 2005;86:185–193.

    Article  PubMed  CAS  Google Scholar 

  7. Desai VG, Fuscoe JC. Transcriptional profiling for understanding the basis of mitochondrial involvement in disease and toxicity using the mitochondria-specific MitoChip. Mut Res 2007;616:210–212.

    Article  CAS  Google Scholar 

  8. Desai VG, Lee T, Delongchamp RR et al. Nucleoside reverse transcriptase (NRTIs)-induced expression profile of mitochondria related genes in the mouse liver. Mitochondrion 2008;8:181–195.

    Article  PubMed  CAS  Google Scholar 

  9. Poirier MC, Div RL, Al-Hari L et al. Long-term mitochondrial toxicity in HIV-infected infants born to HIV-infected mothers. J Acquired Immune Def Syndromes 2003;33:175–183.

    Article  Google Scholar 

  10. Cornwell PD, DeSouza AT, Ulrich RG. Profiling of hepatic gene expression in rats treated with fibric acid analogs. Mut Res 2004;549:131–145.

    Article  CAS  Google Scholar 

  11. Huang Q, Jin X, Gaillard ET et al. Gene expression profiling reveals multiple toxicity endpoints induced by hepatotoxicants. Mut Res 2004;549:147–168.

    Article  CAS  Google Scholar 

  12. Guillouzo A. Liver models in in vitro toxicology. Env Health Persp 1998;106:511–532.

    CAS  Google Scholar 

  13. Casciano DA. Development and utilization of primary hepatocyte culture systems to evaluate metabolism, DNA binding and repair of xenobiotics. Drug Metab Rev 2000;32:1–14.

    Article  PubMed  CAS  Google Scholar 

  14. Casciano DA. The potent hepatocarcinogens methapyrilene: A hypothesis regarding its hepatotoxicity. In: Sahu S, ed. Hepatotoxicity: From Genomics to In Vitro and In Vivo Models. Chichester: J Wiley and Sons, 2007:578–587.

    Google Scholar 

  15. Harris AJ, Shaddock JG, Manjanatha MG et al. Identification of differentially expressed genes in aflatoxin B1-treated cultured primary rat hepatocytes and Fischer 344 rats. Carcinogenesis 1998;19:101–109.

    Article  Google Scholar 

  16. Harris AJ, Dial SL, Casciano DA. Comparison of basal gene expression profiles and effects of hepatocarcinogens on gene expression in cultured primary human hepatocytes and HepG2 cells. Mut Res 2004;549:79–99.

    Article  CAS  Google Scholar 

  17. Harris AJ, Casciano DA. Use of DNA arrays in understanding hepatic test systems. In Sahu S, ed. Hepatotoxicity: From genomics to in vitro and in vivo models, Chichester: J Wiley and Sons Ltd, 2007:489–506.

    Google Scholar 

  18. Bonney RJ, Walker PR, Potter VR. Isozyme patterns in parenchymal and nonparenchymal cells isolated from regenerating and regenerated liver. Biochem J 1974;32:947–954.

    Google Scholar 

  19. Bonney RJ, Becker JE, Walker PR et al. Adult liver parenchymal cells in primary culture characteristics and standards. In Vitro 1974;10:130–142.

    Article  PubMed  CAS  Google Scholar 

  20. Seglen PO. Preparation of isolated rat liver cells. Methods Cell Biology 1976;13:29–83.

    Article  CAS  Google Scholar 

  21. McMillan JM, Shaddock JG, Casciano DA et al. Effects of dexamethasone on drug metabolizing enzyme activities in primary rat hepatocyte cultures. Mut Res 2001;249:81–92.

    Google Scholar 

  22. LeCluse E. Human hepatocyte culture systems for the in vitro evaluation of cytochrome P450 expression and regulation. Eur J Pharm Sci 2001;13:343–368.

    Article  Google Scholar 

  23. Davila JC, Rodrigues RJ, Melchert RB et al. Predictive value of in vitro model systems in toxicology. Ann Rev Pharmacol Toxicol 1998;38:63–96.

    Article  CAS  Google Scholar 

  24. Davila JC, Morris DL. Analysis of cytochrome P450 and phase II conjugating enzyme expression in adult male rat hepatocytes. In Vitro Cell Dev Biol 1999;35:120–130.

    Article  CAS  Google Scholar 

  25. Yanagimoto T, Susmu I, Sawada M et al. Molecular cloning and functional expression of a mouse cytochrome P-450 (Cyp3a-13): examination of Cyp3a-13 enzyme to activate aflatoxin B1 (AFB1). Biochem Biophys Acta 1994;1201:405–410.

    Article  PubMed  Google Scholar 

  26. Aoyama T, Yamano S, Guzelian PS et al. Five of 12 forms of vaccine virus-expressed human hepatic cytochrome P450 metabolically activate aflatoxin B1. Proc Natl Acad Sci USA 1990;87:4790–4793.

    Article  PubMed  CAS  Google Scholar 

  27. Shimada T, Guengerich FP. Evidence for cytochrome P-450NF, the nifedine oxidase, being the principal enzyme involved in the bioactivation of aflatoxin in human liver. Proc Natl Acad Sci USA 1989;86:462–465.

    Article  PubMed  CAS  Google Scholar 

  28. Metcalfe SA, Colley PJ, Neal GE. A comparison of the effects of pretreatment with Phenobarbital and 3-methylcholanthrene on the metabolism of aflatoxin B1 by liver rat microsomes and isolated hepatocytes in vitro. Chem Biol Interact 1981;35:145–157.

    Article  PubMed  CAS  Google Scholar 

  29. Chen L, Hardwick JP. Identification of a new P450 subfamily, CYP4F1, expressed in rat hepatic tumors. Arch Biochem Biophys 1993;300:18–23.

    Article  PubMed  CAS  Google Scholar 

  30. Knowles BB, Howe CC, Aden DP. Human hepatocellular carcinoma cell lines secrete the major plasma protein and hepatitis B surface antigen. Science 1980;209:497–499.

    Article  PubMed  CAS  Google Scholar 

  31. Wang K, Shindoh H, Inoue T et al. Advantages of in vitro cytotoxicity testing by using primary rat hepatocytes in comparison with established cell lines. J Toxicol Sci 2002;27;229–237.

    Article  PubMed  CAS  Google Scholar 

  32. Harris AJ. Modulation of gene expression in chemical carcinogenesis: Analysis of aflatoxin B1induced gene expression in primary human hepatocytes. Thesis. Little Rock: The University of Arkansas for Medical Sciences, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Casciano, D.A. (2012). The Use of Genomics in Model in Vitro Systems. In: Balls, M., Combes, R.D., Bhogal, N. (eds) New Technologies for Toxicity Testing. Advances in Experimental Medicine and Biology, vol 745. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3055-1_12

Download citation

Publish with us

Policies and ethics