Skip to main content

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 66))

Abstract

We show in this paper a general procedure to tackle the problem of designing anisotropic laminates corresponding to given criteria and optimizing a given objective function. The method is based, on one side, on the use of tensor invariants for the description of the anisotropic properties and, on the other side, on a free-material approach for the determination, first, of the optimal fields of anisotropic properties and, then, using numerical metaheuristics, of a suitable stacking sequence. Some general results concerning the method are introduced, along with a discussion of the influence of anisotropy on the optimal design of laminates. Some different problems are dealt with for showing the effectiveness of the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allaire, G., Kohn, R.V.: Optimal design for minimum weight and compliance in plane stress using external micro structures. Eur. J. Mech. A, Solids 12, 839–878 (1993)

    MathSciNet  MATH  Google Scholar 

  2. Cheng, G., Pedersen, P.: On sufficiency conditions for optimal design based on extremum principles of mechanics. J. Mech. Phys. Solids 45, 135–150 (1997)

    Article  MATH  Google Scholar 

  3. Gong, X.J., Vannucci, P., Verchery, G.: Effect of adjacent layer fiber orientation on the resistance of laminates to delamination fracture. In: Proc. of ICCM13—International Conference on Composite Materials 13, Beijing (2001)

    Google Scholar 

  4. Grédiac, M.: A procedure for designing laminated plates with required stiffness properties. Application to thin quasi-isotropic quasi-homogeneous uncoupled laminates. J. Compos. Mater. 33, 1939–1956 (1999)

    Article  Google Scholar 

  5. Hammer, V.B., Bendsoe, M., Lipton, R., Pedersen, P.: Parameterization in laminate design for optimal compliance. Int. J. Solids Struct. 34, 415–434 (1997)

    Article  MATH  Google Scholar 

  6. Hammer, V.B.: Optimal laminate design subject to single membrane loads. Struct. Multidiscip. Optim. 17, 65–73 (1999)

    Google Scholar 

  7. Jibawy, A., Julien, C., Desmorat, B., Vincenti, A., Léné, F.: Optimisation de plaques stratifiées en représentation polaire. In: Proceedings of the 9th Colloque National en Calcul des Structures, Giens, France, vol. 1, pp. 499–504 (2009)

    Google Scholar 

  8. Jibawy, A.: Optimisation structurale de coques minces composites stratifiées. PhD Thesis, Université Pierre et Marie Curie (2010)

    Google Scholar 

  9. Jones, R.M.: Mechanics of Composite Materials. McGraw-Hill, New York (1975)

    Google Scholar 

  10. Julien, C.: Conception optimale de l’anisotropie dans les structures stratifées à rigidité variable par la méthode polaire-génétique. PhD Thesis, Université Pierre et Marie Curie (2010)

    Google Scholar 

  11. Kandil, N., Verchery, G.: New methods of design for stacking sequences of laminates. In: Proc. of CADCOMP88–Computer Aided Design in Composite Materials 88. Southampton, UK (1988)

    Google Scholar 

  12. Tsai, S.W., Hahn, T.: Introduction to Composite Materials. Technomic, Lancaster (1980)

    Google Scholar 

  13. Valot, E., Vannucci, P.: Some exact solutions for fully orthotropic laminates. Compos. Struct. 69, 157–166 (2005)

    Article  Google Scholar 

  14. Vannucci, P.: Designing the elastic properties of laminates as an optimisation problem: A unified approach based on polar tensor invariants. Int. J. Struct. Multidiscip. Optim. 31, 378–387 (2006)

    Article  MathSciNet  Google Scholar 

  15. Vannucci, P.: The polar analysis of a third order piezoelectricity-like plane tensor. Int. J. Solids Struct. 44, 7803–7815 (2007)

    Article  MATH  Google Scholar 

  16. Vannucci, P.: ALE-PSO: an adaptive swarm algorithm to solve design problems of laminates. Algorithms 2, 710–734 (2009)

    Article  MathSciNet  Google Scholar 

  17. Vannucci, P.: Influence of invariant material parameters on the flexural optimal design of thin anisotropic laminates. Int. J. Mech. Sci. 51, 192–203 (2009)

    Article  Google Scholar 

  18. Vannucci, P.: On special orthotropy of paper. J. Elast. 99, 75–83 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Vannucci, P.: A new general approach for optimising the performances of smart laminates. Mech Adv. Math. Struct. 15, 558–568 (2012)

    Google Scholar 

  20. Vannucci, P., Gong, X.J., Verchery, G.: Determination des stratifies quasi-homogènes par l’approche polaire. In: Proc. of JNC11—11 èmes Journées Nationales sur les Composites, Arcachon, France (1998)

    Google Scholar 

  21. Vannucci, P., Pouget, J.: Laminates with given piezoelectric expansion coefficients. Mech. Adv. Mat. Struct. 13, 419–427 (2006)

    Article  Google Scholar 

  22. Vannucci, P., Verchery, G.: A special class of uncoupled and quasi-homogeneous laminates. Compos. Sci. Technol. 61, 1465–1473 (2001)

    Article  Google Scholar 

  23. Vannucci, P., Verchery, G.: Stiffness design of laminates using the polar method. Int. J. Solids Struct. 38, 9281–9294 (2001)

    Article  MATH  Google Scholar 

  24. Vannucci, P., Verchery, G.: A new method for generating fully isotropic laminates. Compos. Struct. 58, 75–82 (2002)

    Article  Google Scholar 

  25. Vannucci, P., Vincenti, A.: The design of laminates with given thermal/hygral expansion coefficients: A general approach based upon the polar-genetic method. Compos. Struct. 79, 454–466 (2007)

    Article  Google Scholar 

  26. Verchery, G.: Les invariants des tenseurs d’ordre 4 du type de l’élasticité. In: Proc. of Colloque Euromech 115, Editions du CNRS, Villard-de-Lans, France (1979)

    Google Scholar 

  27. Vincenti, A., Ahmadian, M.R., Vannucci, P.: BIANCA: A genetic algorithm to solve hard combinatorial optimisation problems in engineering. J. Glob. Optim. 48, 399–421 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Vincenti, A., Desmorat, B.: Optimal orthotropy for minimum elastic energy by the polar method. J. Elast. 102, 55–78 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Vincenti, A., Vannucci, P.: Optimal design of smart composite laminates by the polar method and the genetic algorithm BIANCA. In: Proc. of 3rd European Conference on Computational Mechanics—Solids, Structures and Coupled Problems in Engineering, Lisbon (2006)

    Google Scholar 

  30. Wu, K.M., Avery, B.L.: Fully isotropic laminates and quasi-homogeneous laminates. J. Compos. Mater. 26, 210–2117 (1992)

    Article  Google Scholar 

  31. York, C.B.: Characterization of nonsymmetric forms of fully orthotropic laminates. J. Aircr. 46, 1114–1125 (2009)

    Article  Google Scholar 

  32. York, C.B.: Unified approach to the characterization of coupled composite laminates: Benchmark configurations and special cases. J. Aerosp. Eng. 23, 219–242 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Vannucci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this paper

Cite this paper

Vannucci, P., Desmorat, B., Vincenti, A. (2012). Design Problems of Anisotropic Structures: Some Recent Results. In: Buttazzo, G., Frediani, A. (eds) Variational Analysis and Aerospace Engineering: Mathematical Challenges for Aerospace Design. Springer Optimization and Its Applications(), vol 66. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-2435-2_17

Download citation

Publish with us

Policies and ethics