Skip to main content

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 66))

Abstract

The numerical simulation of free-surface flows around sailing boats is a complex topic that addresses multiple mathematical tasks: the correct study of the flow field around a rigid hull, the numerical simulation of the hull dynamics, the deformation of the sails and appendages under transient external conditions like gusts of wind or wave patterns and, overall, the coupling among all these components. In this paper, we present some recent advances that have been achieved in different research topics related to yacht design and performance prediction. In particular, we describe the numerical algorithms that have been developped in the framework of open-source libraries for the simulation of free-surface hydrodynamics and boat dynamics, as well as for the analysis of the fluid-structure interaction between wind and sails. Moreover, an algorithm for shape optimization, based on the solution of the adjoint problem and combined with the Free Form Deformation (FFD) method for the shape parameterization and mesh motion, is presented and discussed. Theoretical and methodological aspects are described, and the first preliminary results are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alessandrini, B., Delhommeau, G.: A fully coupled Navier–Stokes solver for calculation of turbulent incompressible free surface flow past a ship hull. Int. J. Numer. Methods Fluids 2, 125–142 (1999)

    Article  Google Scholar 

  2. Alin, N., Bensow, R.E., Fureby, C., Huuva, T., Svennberg, U.: Current capabilities of DES and LES for submarines at straight course. J. Ship Res. 54, 184–196 (2010)

    Google Scholar 

  3. Andreoli, M., Janka, A., Désidéri, J.A.: Free-form-deformation parameterization for multilevel 3D shape optimization in aerodynamics. INRIA, Rapp. de rech. No. 5019 (2003)

    Google Scholar 

  4. Azcueta, R.: Computation of Turbulent Free-Surface Flows around Ships and Floating Bodies. PhD thesis, Technical University of Hamburg, Hamburg (2001)

    Google Scholar 

  5. Azcueta, R.: Computation of turbulent free-surface flows around ships and floating bodies. In: Ship Technology Research, vol. 49 (2002)

    Google Scholar 

  6. Belytschko, T., Liu, W.K., Moran, B.: Nonlinear Finite Elements for Continua and Structures. Wiley, New York (2000)

    MATH  Google Scholar 

  7. Braibant, V., Fleury, C.: Shape optimal design using b-splines. Comput. Methods Appl. Mech. Eng. 44(3), 246–267 (1984)

    Article  Google Scholar 

  8. Campana, E.F., Peri, D., Tahara, Y., Stern, F.: Shape optimization in ship hydrodynamics using computational fluid dynamics. Comput. Methods Appl. Mech. Eng. 196, 634–651 (2006)

    Article  MATH  Google Scholar 

  9. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics. Scientific Computation. Springer, Berlin (2007)

    MATH  Google Scholar 

  10. Causin, P., Gerbeau, J.F., Nobile, F.: Added-mass effect in the design of partitioned algorithms for fluid-structure problems. Comput. Methods Appl. Mech. Eng. 194, 4506–4527 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chapelle, D., Bathe, K.J.: The Finite Element Analysis of Shells—Fundamentals. Springer, Berlin (2003)

    MATH  Google Scholar 

  12. Crosetto, P., Reymond, P., Deparis, S., Kontaxakis, D., Stergiopulos, N., Quarteroni, A.: Fluid structure interaction simulations of physiological blood flow in the aorta. Technical report, MATHICSE, EPFL (2010)

    Google Scholar 

  13. Deparis, S.: Numerical analysis of axisymmetric flows and methods for fluid-structure interaction arising in blood flow simulation. PhD thesis, EPFL (2004)

    Google Scholar 

  14. Rhino: 3D design software for CAD, CAE, and CAM designers

    Google Scholar 

  15. Detomi, D.: Mesh modifications for finite element methods in complex three-dimensional domains. PhD thesis, Politecnico di Milano (2004)

    Google Scholar 

  16. Detomi, D., Parolini, N., Quarteroni, A.: Numerical models and simulations in sailing yacht design. In: Peters, M. (ed.) Computational Fluid Dynamics for Sport Simulation, pp. 1–31. Springer, Berlin (2009)

    Chapter  Google Scholar 

  17. Donea, J., Giuliania, S., Halleuxa, J.P.: An arbitrary Lagrangian–Eulerian finite element method for transient dynamic fluid-structure interactions. Comput. Methods Appl. Mech. Eng. 33, 689–723 (1982)

    Article  MATH  Google Scholar 

  18. Duvigneau, R., Visonneau, M.: Hybrid genetic algorithms and neural networks for fast CFD-based design. In: 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization (2002)

    Google Scholar 

  19. Dvorkin, E.N., Pantuso, D., Repetto, E.A.: A formulation of the MITC4 shell element for finite strain elasto-plastic analysis. Comput. Methods Appl. Mech. Eng. 125, 17–40 (1995)

    Article  Google Scholar 

  20. Burns Fallow, J.: America’s Cup sail design. J. Wind Eng. Ind. Aerodyn. 63, 183–192 (1996)

    Article  Google Scholar 

  21. Farhat, C., Degand, C., Koobus, B., Lesoinne, M.: Torsional springs for two-dimensional dynamic unstructured fluid meshes. Comput. Methods Appl. Mech. Eng. 163, 231–245 (1998)

    Article  MATH  Google Scholar 

  22. Farmer, J.R., Martinelli, L., Jameson, A.: A fast multigrid method for solving incompressible hydrodynamic problems with free surfaces. AIAA J. 32(6), 1175–1182 (1993)

    Article  Google Scholar 

  23. Fenton, J.D.: A fifth-order Stokes theory for steadywaves. J. Waterw. Port Coast. Ocean Eng. 111, 216–234 (1985)

    Article  Google Scholar 

  24. Ferziger, J.H., Peric, M.: Computational Methods for Fluid Dynamics, 2nd edn. Springer, Berlin (1999)

    MATH  Google Scholar 

  25. LifeV: finite element library

    Google Scholar 

  26. AutoCad: 3D Design & Engineering Software for Architecture

    Google Scholar 

  27. ANSYS CFX CFD Software for Fluid Flow Modeling

    Google Scholar 

  28. Formaggia, L., Nobile, F.: Stability analysis of second-order time accurate schemes for ALE–FEM. Comput. Methods Appl. Mech. Eng. 193, 4097–4116 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Formaggia, L., Quarteroni, A., Veneziani, A.: Cardiovascular Mathematics: Modeling and Simulation of the Circulatory System. MS&A. Springer, Berlin (2009)

    MATH  Google Scholar 

  30. Gara, A., Blumrich, M.A., Chen, D., Chiu, G.L.T., Coteus, P., Giampapa, M.E., Haring, R.A., Heidelberger, P., Hoenicke, D., Kopcsay, G.V., Liebsch, T.A., Ohmacht, M., Steinmacher-Burow, B.D., Takken, T., Vranas, P.: Overview of the BlueGene/L system architecture. IBM J. Res. Develop. (2010). doi:10.1147/rd.492.0195

    MATH  Google Scholar 

  31. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  32. Hess, J.L., Smith, A.M.O.: Calculation of potential flow about arbitrary bodies. Prog. Aerosp. Sci. 8, 1–138 (1967)

    Article  MATH  Google Scholar 

  33. Hino, T.: Computation of viscous flows with free surface around an advancing ship. In: Proc. of the 2nd Osaka International Colloquium on Viscous Fluid Dynamics in Ship and Ocean Technology (Osaka) (1992)

    Google Scholar 

  34. Hirt, C.W., Nichols, B.D.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39, 201–225 (1981)

    Article  MATH  Google Scholar 

  35. Hughes, T.J.R., Liu, W.K., Zimmermann, T.K.: Lagrangian–Eulerian finite element formulation for incompressible viscous flows. Comput. Methods Appl. Mech. Eng. 29(3), 329–349 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  36. Idelsohn, S.R., Onate, E., Sacco, C.: Finite element solution of free-surface ship-wave problems. Int. J. Numer. Methods Eng. 45, 503–528 (1999)

    Article  MATH  Google Scholar 

  37. Jameson, A., Martinelli, L.: Aerodynamic shape optimization techniques based on control theory. In: Computational Mathematics Driven by Industrial Problems, pp. 151–221. Springer, Berlin (2000)

    Chapter  Google Scholar 

  38. Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College (London) (1995)

    Google Scholar 

  39. Johnson, S.G.: The nlopt nonlinear-optimization package

    Google Scholar 

  40. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20, 359–392 (1998)

    Article  MathSciNet  Google Scholar 

  41. Kim, M.H., Celebi, M.S., Kim, D.J.: Fully nonlinear interactions of waves with a three-dimensional body in uniform currents. Appl. Ocean Res. 20, 309–321 (1998)

    Article  Google Scholar 

  42. Lassila, T., Quarteroni, A., Rozza, G.: A reduced basis model with parametric coupling for fluid-structure interactions problems. SIAM J. Sci. Comput. (2012) accepted

    Google Scholar 

  43. Lassila, T., Rozza, G.: Reduced formulation of a steady-fluid structure interaction problem with parametric coupling. In: Makinen, R.A.E., Valpe, K., Neittaanmaki, P., Tuovinen, T. (eds.) Proc. of the 10th Finnish Mechanical days, December 2009

    Google Scholar 

  44. Lassila, T., Rozza, G.: Parametric free-form shape design with PDE models and reduced basis method. Comput. Methods Appl. Mech. Eng. 199, 435–465 (2010)

    Article  MathSciNet  Google Scholar 

  45. Deal II: A Finite Element Differential Equations Analysis Library

    Google Scholar 

  46. Lombardi, M.: Simulazione numerica della dinamica di uno scafo. Master’s thesis, Politecnico di Milano (2006)

    Google Scholar 

  47. Manzoni, A., Quarteroni, A., Rozza, G.: Shape optimization for viscous flows by reduced basis methods and free-form deformation. Submitted (2010)

    Google Scholar 

  48. Martinelli, L., Jameson, A.: An adjoint method for design optimization of ship hulls. In: Proc. of the 9th International Conference on Numerical Ship Hydrodynamics, Ann Arbor, Michigan, 2007

    Google Scholar 

  49. Le Méhauté, B.: An Introduction to Hydrodynamics and Water Waves. Springer, Berlin (1976)

    MATH  Google Scholar 

  50. Menter, F.R.: Improved two-equation k-omega turbulence models for aerodynamic flows. NASA STI/Recon Technical Report N (1992)

    Google Scholar 

  51. Menter, F.R., Kuntz, M., Langtry, R.: Ten years of industrial experience with the SST turbulence model. Heat Mass Transf. 4, 625–632 (2003)

    Google Scholar 

  52. ANSYS ICEM CFD meshing software

    Google Scholar 

  53. Michell, J.H.: The wave resistance of a ship. Philos. Mag. 45, 106–123 (1898)

    Google Scholar 

  54. Mohammadi, B., Pironneau, O.: Analysis of the K-Epsilon Turbulence Model. Wiley, New York (1993)

    Google Scholar 

  55. Mohammadi, B., Pironneau, O.: Mesh adaption and automatic differentiation in a CAD-free framework for optimal shape design. Int. J. Numer. Methods Fluids 30, 127–136 (1999)

    Article  MATH  Google Scholar 

  56. Mohammadi, B., Pironneau, O.: Applied Shape Optimization for Fluids. Oxford University Press, Oxford (2009)

    Book  MATH  Google Scholar 

  57. Newman, J.C., Taylor, A.C., Newman, P.A., Hou, W.: Overview of sensitivity analysis and shape optimization for complex aerodynamic configurations. J. Aircr. 36(1), 87–96 (1999)

    Article  Google Scholar 

  58. Nobile, F.: Numerical approximation of fluid-structure interaction problems with application to haemodynamics. PhD thesis, EPFL (2001)

    Google Scholar 

  59. OpenFOAM: Open Field Operation and Manipulation

    Google Scholar 

  60. Osher, S., Fedkiw, R.: The Level Set Method and Dynamic Implicit Surfaces. Springer, Berlin (2002)

    Google Scholar 

  61. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: Algorithm based on Hamilton–Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  62. Othmer, C.: A continuous adjoint formulation for the computation of topological and surface sensitivities of ducted flows. In: International Journal for Numerical Methods in Fluids, pp. 861–877 (2008)

    Google Scholar 

  63. Othmer, C., de Villiers, E., Weller, H.: Implementation of a continuous adjoint for topology optimization of ducted flows. In: 18th AIAA Computational Fluid Dynamics Conference, Miami, Florida (2007)

    Google Scholar 

  64. Parolini, N.: Computational fluid dynamics for naval engineering problems. PhD thesis, EPFL (2004)

    Google Scholar 

  65. Parolini, N., Quarteroni, A.: Mathematical models and numerical simulations for the America’s cup. Comput. Methods Appl. Mech. Eng. 194, 1001–1026 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  66. Piazza, S.: Simulazioni numeriche della dinamica di uno scafo in mare ondoso. Master’s thesis, Politecnico di Milano (2007)

    Google Scholar 

  67. Piegl, L., Tiller, W.: The NURBS Book. Springer, Berlin (1997)

    Book  Google Scholar 

  68. Pironneau, O., Hecht, F., Le Hyaric, A., Morice, J.: FreeFem++: Free finite element method

    Google Scholar 

  69. Powell, M.J.D.: A Direct Search Optimization Method that Models the Objective and Constraint Functions by Linear Interpolation (1994)

    Google Scholar 

  70. Powell, M.J.D.: The BOBYQA algorithm for bound constrained optimization without derivatives. Technical report, Department of Applied Mathematics and Theoretical Physics, Cambridge (2009)

    Google Scholar 

  71. Quaini, A., Quarteroni, A.: A semi-implicit approach for fluid-structure interaction based on an algebraic fractional step method. Math. Models Methods Appl. Sci. 17(6), 957–983 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  72. Quarteroni, A.: Numerical Models for Differential Problems. MS&A. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  73. Renzsch, H., Müller, O., Graf, K.: Flexsail—a fluid structure interaction program for the investigation of spinnakers. In: 21st International HISWA Symposium, Amsterdam (2010)

    Google Scholar 

  74. Rodrigues, J.F., Renaud, J.E., Watsen, L.T.: Convergence of trust region augmented Lagrangian methods using variable fidelity approximation data. Struct. Multidiscip. Optim. 15, 141–156 (1998)

    Google Scholar 

  75. Rosen, B.S., Laiosa, J.P., Davis, W.H., Stavetski, D.: Splash free-surface code methodology for hydrodynamic design and analysis of IACC yachts. In: Proc. of 11th Chesapeake Sailing Yacht Symposium, Annapolis (1993)

    Google Scholar 

  76. Rozza, G., Huynh, D.B.P., Patera, A.T.: Reduced basis approximation and a posteriori error estimation for affinely parameterized elliptic coercive partial differential equations. Arch. Comput. Methods Eng. 15, 229–275 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  77. Rozza, G., Lassila, T., Manzoni, A.: Reduced basis approximation for shape optimization in thermal flows with a parameterized polynomial geometric map. In: Hesthaven, J., Ronquist, E. (eds.) Selected papers from the ICOSAHOM 09 Conference, NTU Trondheim, Norway, 22–26 June 2009. Lecture Notes in Computational Science and Engineering, vol. 76. Springer, Berlin (2010)

    Google Scholar 

  78. Rusche, H.: Computational fluid dynamics of dispersed two-phase flows at high phase fractions. PhD thesis, Imperial College (London) (2002)

    Google Scholar 

  79. Sagaut, P.: Large Eddy Simulation for Incompressible Flows. Springer, Berlin (2009)

    Google Scholar 

  80. Sederberg, T.W., Parry, S.R.: Free-form deformation of solid geometric models. Comput. Graph. 20(4), 151–160 (1986)

    Article  Google Scholar 

  81. The COMSOL Multiphysics simulation software

    Google Scholar 

  82. SolidWorks: 3D CAD Design Software

    Google Scholar 

  83. Soto, O., Loehner, R.: On the computation of flow sensitivities from boundary integrals (2004)

    Google Scholar 

  84. Spalart, P.R.: Detached-eddy simulation. Annu. Rev. Fluid Mech. 41, 181–202 (2009)

    Article  Google Scholar 

  85. Tahara, Y., Stern, F., Himeno, Y.: Computational fluid dynamics-based optimization of a surface combatant. J. Ship Res. 48, 273–287 (2004)

    Google Scholar 

  86. Toda, Y., Stern, F., Longo, J.: Mean-flow measurement in the boundary layer and wake and wave field of a series 60 cb = 0.6 ship model. Part 1: Froude numbers 0.16 and 0.36. J. Ship Res. 36(4), 360–377 (1992)

    Google Scholar 

  87. Trimarchi, D., Turnock, S.R., Taunton, D.J., Chapelle, D.: The use of shell elements to capture sail wrinkles, and their influence on aerodynamic loads. In: The Second International Conference on Innovation in High Performance Sailing Yachts, Lorient, France (2010)

    Google Scholar 

  88. Wilcox, D.: Turbulence Modeling for CFD. DCW Industries, La Canada (1998)

    Google Scholar 

  89. Wright, A.M., Claughton, A.R., Paton, J., Lewis, R.: Off-wind sail performance prediction and optimisation. Technical report, The Royal Institution of Naval Architects (2010)

    Google Scholar 

  90. Yang, J., Michael, T., Bhushan, S., Hanaoka, A., Wang, Z., Stern, F.: Motion prediction using wall-resolved and wall-modeled approaches on a Cartesian grid. In: Proc. of the 28th Symposium on Naval Hydrodynamics, USA, Pasadena (2010)

    Google Scholar 

  91. Zwart, P.J., Godin, P.G., Penrose, J., Rhee, S.H.: Simulation of unsteady free-surface flow around a ship hull using a fully coupled multi-phase flow method. J. Mar. Sci. Technol. 13, 346–355 (2008)

    Article  Google Scholar 

  92. Zymaris, A.S., Papadimitriou, D.I., Giannakoglou, K.C., Othmer, C.: Continuous adjoint approach to the Spalart–Allmaras turbulence model for incompressible flows. Comput. Fluids 38, 1528–1538 (2009)

    Article  Google Scholar 

  93. Zymaris, A.S., Papadimitriou, D.I., Giannakoglou, K.C., Othmer, C.: Adjoint wall functions: A new concept for use in aerodynamic shape optimization. J. Comput. Phys. 229(13), 5228–5245 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the EPFL University and the Alinghi Design Team for providing the financial support and the technical expertise necessary to accomplish this work.

We are also grateful to Prof. A. Frangi, Dr. M. Cremonesi and Dr. A. Giampieri from the Structural Engineering Department (DIS) of Politecnico di Milano for sharing their structural code and the collaboration undergone for the sail simulations.

The financial support for CADMOS and the Blue Gene/P system is provided by the Canton of Geneva, Canton of Vaud, Hans Wilsdorf Foundation, Louis-Jeantet Foundation, University of Geneva, University of Lausanne, and École Polytechnique Fédérale de Lausanne.

This work has been partially supported by Regione Lombardia and CILEA Consortium through a LISA Initiative (Laboratory for Interdisciplinary Advanced Simulation) 2010 grant assigned to the second author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Lombardi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this paper

Cite this paper

Lombardi, M., Parolini, N., Quarteroni, A., Rozza, G. (2012). Numerical Simulation of Sailing Boats: Dynamics, FSI, and Shape Optimization. In: Buttazzo, G., Frediani, A. (eds) Variational Analysis and Aerospace Engineering: Mathematical Challenges for Aerospace Design. Springer Optimization and Its Applications(), vol 66. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-2435-2_15

Download citation

Publish with us

Policies and ethics