Advertisement

Time-Frequency Domain Modal Parameter Estimation of Time-Varying Structures Using a Two-Step Least Square Estimator

Conference paper
Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)

Abstract

Under natural stochastic excitations, responses of time-varying structures are always nonstationary stochastic signals, of which spectra change with time. This paper studies the time-dependent power spectrum density based on time-frequency analysis. Based on the time-dependent power spectrum density, a mathematical model of the time-frequency-domain two-step least square modal parameter estimator for time-varying structures is presented. In the first-step estimation, the modal parameters at each time instant are estimated using the least square complex frequency-domain method. Furthermore, the estimated modal parameters are sifted and sorted. Based on the sifted and sorted modal parameters, the time-varying resonance frequency, damping ratio and operational mode shapes are estimated in the second-step estimation. A numerical simulation example and a group of experiments validate this two-step least square modal parameter estimator for time-varying structures.

Keywords

Time-varying structure Time-frequency analysis Modal parameter estimation Two-step least square 

Notes

Acknowledgement

The authors acknowledge the support for the work presented in this paper from the China Scholarship Council and Katholieke Universiteit Leuven.

References

  1. 1.
    Poulimenos AG, Fassois SD (2009) Output-only stochastic identification of a time-varying structure via functional series TARMA models. Mech Syst Signal Process 23:1180–1204CrossRefGoogle Scholar
  2. 2.
    Verboven P, Cauberghe B, Guillaume P, Vanlanduit S, Parloo E (2004) Modal parameter estimation and monitoring for on-line flight flutter analysis. Mech Syst Signal Process 18:587–610CrossRefGoogle Scholar
  3. 3.
    Xu XZ (2003) Theoretic and experimental study of modal parameter identification of time-varying linear structures. Shanghai Jiaotong University, Shanghai, ChinaGoogle Scholar
  4. 4.
    Spiridonakos MD, Fassois SD (2009) Parametric identification of a time-varying structure based on vector vibration response measurements. Mech Syst Signal Process 23:2029–2048CrossRefGoogle Scholar
  5. 5.
    Bosse A, Tasker F, Fisher S (1998) Real-time modal parameter estimation using subspace methods: applications. Mech Syst Signal Process 12:809–823CrossRefGoogle Scholar
  6. 6.
    Tasker F, Bosse A, Fisher S (1998) Real-time modal parameter estimation using subspace methods: theory. Mech Syst Signal Process 12:797–808CrossRefGoogle Scholar
  7. 7.
    Ghanem R, Romeo F (2000) A wavelet-based approach for the identification of linear time-varying dynamical systems. J Sound Vib 234:555–576MATHCrossRefGoogle Scholar
  8. 8.
    Roshan-Ghias A, Shamsollahi MB, Mobed M, Behzad M (2007) Estimation of modal parameters using bilinear joint time-frequency distributions. Mech Syst Signal Process 21:2125–2136CrossRefGoogle Scholar
  9. 9.
    Xu X, Zhang Z, Hua H, Chen Z (2003) Identification of time-varying modal parameters using linear time-frequency representation. Chinese J Mech Eng 16:445–448Google Scholar
  10. 10.
    Shi ZY, Law SS, Xu X (2009) Identification of linear time-varying mdof dynamic systems from forced excitation using Hilbert transform and EMD method. J Sound Vib 321:572–589CrossRefGoogle Scholar
  11. 11.
    Verboven P (2002) Frequency-domain system identification for modal analysis. Vrije Universiteit Brussel, BrusselsGoogle Scholar
  12. 12.
    Guillaume P, Hermans L, Van der Auweraer H (1999) Maximum likelihood identification of modal parameters from operational data. In: Proceedings of the 17th international modal analysis conference (IMAC17), Kissimmee, pp 1887–1893Google Scholar
  13. 13.
    Brincker R, Zhang LM, Anderson P (2000) Modal identification from ambient response using frequency domain decomposition. In: Proceedings of the 18th IMAC, San AntonioGoogle Scholar
  14. 14.
    Guillaume P, Verboven P, Vanlanduit S, Van der auweraer H, Peeters B (2003) A poly-reference implementation of the least-squares complex frequency-domain estimator. In: Proceedings of the international modal analysis conference, IMAC 21, KissimmeeGoogle Scholar
  15. 15.
    Van Overschee P, De Moor B (1996) Continuous-time frequency domain subspace system identification. Signal Process 52:179–194MATHCrossRefGoogle Scholar
  16. 16.
    Sejdic E, Djurovic I, Jiang J (2009) Time-frequency feature representation using energy concentration: an overview of recent advances. Digit Signal Process 19:153–183CrossRefGoogle Scholar
  17. 17.
    Cohen L (1995) Time-frequency analysis. Prentice Hall, New JerseyGoogle Scholar
  18. 18.
    Oppenheim AV, Schafer RW (1975) Digital signal processing. Prentice-Hall, Englewood CliffsGoogle Scholar
  19. 19.
    Van Huffel S, Vandewalle J (1991) The total least squares problem: computational aspects and analysis. Society for Industrial Mathematics, PhiladelphiaMATHCrossRefGoogle Scholar
  20. 20.
    Gautschi W (2004) Orthogonal polynomials: computation and approximation. Oxford University Press, OxfordMATHGoogle Scholar

Copyright information

© The Society for Experimental Mechanics, Inc. 2012 2012

Authors and Affiliations

  1. 1.School of Aerospace EngineeringBeijing Institute of TechnologyBeijingChina
  2. 2.Department of Mechanical EngineeringKatholieke Universiteit LeuvenLeuvenBelgium

Personalised recommendations