Skip to main content

Tracking the Evolution of Modal Properties of a Solid Propellant Launcher During Static Firing Test

  • Conference paper
  • First Online:
Topics in Modal Analysis I, Volume 5

Abstract

During actual operating conditions, mechanical systems, such as aerospace structures, may exhibit variations in their dynamic properties. Those variations need to be carefully tracked and identified to avoid interaction with excitation sources, leading to unstable behavior or even structural failures. In this paper, signals acquired during a static firing test on a Solid Rocket Motor will be analyzed and processed using Operational modal Analysis. To analyze the evolution of natural frequencies and modal damping as the propellant is burnt, time-histories are cut into shorter segments, which are then analyzed separately. Operational PolyMAX method is applied to identify structural properties of the system and correlation techniques are implemented to track the evolution of the modes. Finally, comparison and correlation with a numerical Finite Element model is also performed to evaluate the analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heylen W, Lammens S, Sas P (1997) Modal analysis theory and testing. Department Werktuigkunde, Katholieke Universiteit Leuven, Leuven

    Google Scholar 

  2. Ewins DJ (2000) Modal testing: theory, practice and applications. Research Studies, England

    Google Scholar 

  3. Marchesiello S, Bedaoui S, Garibaldi L, Argoul P (2009) Time-dependant identification of bridge-like structures with crossing loads. Mech Syst Signal Process 23(6):2019–2028

    Article  Google Scholar 

  4. Peeters B, Dammekens F, Magalhães F, Van der Auweraer H, Caetano E, Cunha A (2006) Multi-run operational modal analysis of the guadiana cable-stayed bridge. In: Proceedings of IMAC XXIV, St. Louis

    Google Scholar 

  5. Peeters B, Van der Auweraer H, Vanhollebeke F, Guillaume P (2007) Operational modal analysis for estimating the dynamic properties of a stadium structure during a football game. Shock Vib 14(4):283–303

    Google Scholar 

  6. Oliver-Escandell M-A, Leroy S, Peeters B, Roubertier J, Cordeau A, Laslots J (2009) In-flight testing of a very large aircraft: a discussion on excitation and data analysis techniques. In: Proceedings of IFASD 2009, Seattle

    Google Scholar 

  7. James GH, Cao TT, Fogt VA, Wilson RL, Bartkowicz TJ (2011) Extraction of modal parameters from spacecraft flight data. In: Proceedings of IMAC XXIX, Jacksonville

    Google Scholar 

  8. Hermans L, Van der Auweraer H, Benveniste A, Goursat M, Haerens D, Mourey P (1998) Estimation of in-flight structural dynamics models of a spacecraft launcher. In: Proceedings of ISMA23, Leuven

    Google Scholar 

  9. Fransen S, Rixen D, Henriksen T, Bonnet M (2010) On the operational modal analysis of solid rocket motors. In: Proceedings of IMAC XXVIII, Jacksonville

    Google Scholar 

  10. Goursat M, Döhler M, Mevel L, Andersen P (2010) Crystal clear SSI for operational modal analysis of aerospace vehicles. In: Proceedings of IMAC XXVIII, Jacksonville

    Google Scholar 

  11. Engelhart CW, Hunt DL, Chang CF, Mason D (1989) Evaluation of dynamic responses of the space shuttle rocket motor static firing. In: Proceedings of IMAC VII, Las Vegas

    Google Scholar 

  12. Peeters B, Van der Auweraer H, Guillaume P, Leuridan J (2004) The PolyMAX frequency domain method: a new standard for modal parameter estimation? Shock Vib 11:395–409

    Google Scholar 

  13. Peeters B, Guillaume P, Van der Auweraer H, Cauberghe B, Verboven P, Leuridan J (2004) Automotive and aerospace applications of the PolyMAX modal parameters estimation method. In: Proceedings of IMAC XXII, Dearborn

    Google Scholar 

  14. Peeters B (2000) System identification and damage detection in civil engineering. Ph.D. thesis, Department of Civil Engineering, K.U. Leuven, Belgium

    Google Scholar 

  15. Bendat JS, Piersol AJ (1993) Engineering applications of correlation and spectral analysis. Wiley, New York

    MATH  Google Scholar 

  16. Oppenheim AV, Schafer RW (1975) Digital signal processing. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Manzato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 The Society for Experimental Mechanics, Inc. 2012

About this paper

Cite this paper

Manzato, S., Peeters, B., Debille, J. (2012). Tracking the Evolution of Modal Properties of a Solid Propellant Launcher During Static Firing Test. In: Allemang, R., De Clerck, J., Niezrecki, C., Blough, J. (eds) Topics in Modal Analysis I, Volume 5. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-2425-3_52

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-2425-3_52

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-2424-6

  • Online ISBN: 978-1-4614-2425-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics