Skip to main content

Structural Health Monitoring of Wind Turbine Blades Under Fatigue Loads

  • Conference paper
  • First Online:
Topics in Experimental Dynamics Substructuring and Wind Turbine Dynamics, Volume 2

Abstract

This paper presents the results of dynamic characterization and preparation of a full-scale fatigue test of a 9 m CX-100 blade. Sensors and actuators utilized include accelerometers and piezoelectric sensors. To dynamically characterize a 9 m CX-100 blade, full scale modal analyses were completed with varying boundary conditions and blade orientations. Also, multi-scale sensing damage detection techniques were explored; high frequency active-sensing was used in identifying fatigue damage initiation, while low frequency passive-sensing was used in assessing damage progression. Ultimately, high and low frequency response functions, wave propagations, and sensor diagnostic methods were utilized to monitor and analyze the condition of the wind turbine blade under fatigue loading.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. U.S. Department of Energy 20% wind energy by 2030. July 2030

    Google Scholar 

  2. TPI Composites, Inc. (2003) Innovative design approaches for large wind turbine blades. Project report for SNL, SAND2003-0723

    Google Scholar 

  3. TPI Composites (2004) Innovative design approaches for large wind turbine blades; final report, SAND2004-0074, Sandia National Laboratories, Albuquerque

    Google Scholar 

  4. Ashwill TD (2006) Some recent trends & activities in turbines and blades. Sandia National Labortories 2nd Wind Turbine Blade Workshop, Albuquerque

    Google Scholar 

  5. Ciang Chia Chen, Jung-Ryul Lee, Hyung-Joon Bang (2008) Structural health monitoring for a wind turbine system: a review of damage detection methods. Meas Sci Technol 19:1–20

    Article  Google Scholar 

  6. TPI Composites, Inc (2007) Design of 9-meter carbon-fiberglass prototype blades: CX-100 and TX-100 final project report, SAND2007-0201

    Google Scholar 

  7. White JR, Adams DE, Rumsey MA (2010) Modal analysis of CX-100 rotor blade and micon 65/13 wind turbine. In: proceedings of the IMAC-XXVII, Jacksonville, 1–4 Feb 2010

    Google Scholar 

  8. Deines K, Marinone T, Schultz R, Farinholt K, Park G (2011) Modal analysis and SHM investigation of CX-100 wind turbine blade. Rotating Machinery Struct Health Monitor Shock Vib 5:413–438

    Article  Google Scholar 

  9. Griffith DT, Hunter PS, Kelton DW, Carne TG, Paquette JA (2009) Boundary condition considerations for validation of wind turbine blade structural models. In: Proceedings of the SEM annual conference, Albuquerque, 1–4 Jun 2009

    Google Scholar 

  10. Carne TG, Griffith DT, Casias ME (2007) Support conditions for experimental modal analysis. Sound Vib Mag 41:10–15

    Google Scholar 

  11. Griffith DT, Carne TG (2007) Experimental uncertainty quantification of modal test data. In: 25th international modal analysis conference, Orlando

    Google Scholar 

  12. Kessler SS, Spearing SM, Atalla MJ, Cesnik CE, Soutis C (2002) Damage detection in composite materials using frequency response methods. Compos Pt B: Eng 33(1):87–95

    Article  Google Scholar 

  13. Amraoui MY, Lieven NAJ (2004) Laser vibrometry based detection of delaminations in glass/epoxy composites. ASME J Vib Acoust 126(3):430–437

    Article  Google Scholar 

  14. Sundaresan MJ, Schulz MJ, Ghoshal A (2002) Structural health monitoring static test of a wind turbine blade. NREL/SR-500-28719, North Carolina A&T State University report for NREL, Golden

    Google Scholar 

  15. Ghoshal A, Sundaresan MJ, Schulz MJ, Pai PF (2000) Structural health monitoring techniques for wind turbine blades. J Wind Eng Ind Aerodyn 85:309–324

    Article  Google Scholar 

  16. Park G, Rutherford AC, Wait JR, Nadler B, Farrar CR, Clayton TN (2005) High-frequency response functions for composite plate monitoring with ultrasonic validation. AIAA J 43(11):2431–2437

    Article  Google Scholar 

  17. Rumsey MA, Paquette JA Structural health monitoring of wind turbine blades. Sandia National Laboratories, Albuquerque

    Google Scholar 

  18. Park G, Inman DJ (2005) Impedance-based structural health monitoring. In: Inman DJ et al (eds) Damage prognosis – for aerospace, civil and mechanical system. Wiley, Chichester, pp 275–292, Chap 18

    Chapter  Google Scholar 

  19. Park G, Sohn H, Farrar CR, Inman DJ (2003) Overview of piezoelectric impedance-based health monitoring and path forward. Shock Vibr Dig 35(6):451–463

    Article  Google Scholar 

  20. Sutherland HJ, Beattie A, Hansche B, Musial W, Alread J, Johnson J, Summers M (1994) The application of non-destructive techniques to the testing of a wind turbine blade. SAND93-1380, Sandia National Laboratories, Albuquerque

    Google Scholar 

  21. Sorensen BF, Lading L, Sendrup P, McGugan M, Debel P, Kristensen OJD, Larsen G, Hansen AM, Rheinlander J, Rusborg J, Vestergaard JD (2002) Fundamentals for remote structural health monitoring of wind turbine blades – a Preproject. Annex B – sensors and non-destructive testing methods for damage detection in wind turbine blades, Riso National laboratory, Roskilde

    Google Scholar 

  22. Light-Marquez A, Sobin A, Park G, Farinholt K (2010) Structural damage identification in wind turbine blades using piezoelectric active-sensing. In: proceedings of the IMAC XXVII, Jacksonville, 1–4 Feb 2010

    Google Scholar 

  23. Overly TG, Park G, Farinholt KM, Farrar CR (2009) Piezoelectric active-sensor diagnostics and validation using instantaneous baseline data. IEEE Sens J 9(11):1414–1421

    Article  Google Scholar 

  24. Park G, Farrar CR, Rutherford CA, Robertson AN (2006) Piezoelectric active sensor self-diagnostics using electrical admittance measurements. ASME J Vib Acoust 128(4):469–476

    Article  Google Scholar 

  25. Park G, Farrar CR, di Scalea FL, Coccia S (2006) Performance assessment and validation of piezoelectric active sensors in structural health monitoring. Smart Mater Struct 16(6):1673–1683

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gyuhae Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Buisness Media, LLC

About this paper

Cite this paper

Dyas, S.J., Scheidler, J., Taylor, S.G., Farinholt, K., Park, G. (2012). Structural Health Monitoring of Wind Turbine Blades Under Fatigue Loads. In: Mayes, R., et al. Topics in Experimental Dynamics Substructuring and Wind Turbine Dynamics, Volume 2. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-2422-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-2422-2_22

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-2421-5

  • Online ISBN: 978-1-4614-2422-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics