Skip to main content

Free-Pendulum Vibration Absorber Experiment Using Digital Image Processing

  • Conference paper
  • First Online:
Topics in Nonlinear Dynamics, Volume 3
  • 1398 Accesses

Abstract

Using image processing and analysis, the dynamic behavior of the beam-free-pendulum system under low and high sinusoidal excitation was investigated. The system responses were investigated experimentally in the neighborhood of primary resonance condition. The results exhibited autoparametric interaction between the beam and the free pendulum when the primary resonance condition was satisfied. Experiments were conducted for two different pendulum weights under two different shaker forcing amplitudes, and the results were compared. Experimental data were obtained by sweeping between the frequencies that contain the resonance condition under investigation. The results of experiments for different beam-tip mass and pendulum mass ratios indicate that more powerful absorption action can be achieved when the smaller mass ratios are used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Salam FMA, Sastry SS (1985) Dynamics of the forced Josephson junction circuit – the regions of chaos. IEEE Trans Circuit Syst 32(8):784–796

    Article  MathSciNet  MATH  Google Scholar 

  2. Nayfeh A, Mook D, Marshall L (1973) Nonlinear coupling of pitch and roll modes in ship motions. J Hydrodyn 7(4):145–152

    Google Scholar 

  3. Mustafa G (1987) Three-dimensional rocking and topping of block-like structures on rigid foundation. Master Thesis, Texas Tech University

    Google Scholar 

  4. Sun JQ, Jolly MR, Norris MA (1995) Passive, adaptive and active tuned vibration absorbers – a survey. J Mech Des 117:234–242

    Article  Google Scholar 

  5. Jordanov IN, Cheshankov BI (1988) Optimal-design of linear and non-linear dynamic vibration absorbers. J Sound Vib 123(1):157–170

    Article  MATH  Google Scholar 

  6. Lowenstern M (1932) The stabilization effect of imposed oscillations on a dynamical system. Phil Mag 13:458–486

    Google Scholar 

  7. Hemp G, Sethna P (1964) The effect of high frequency on the motion of a spherical pendulum. J Appl Mech 31:351–354

    Article  Google Scholar 

  8. Moran T (1970) Transient motions in dynamical systems with high frequency parametric excitation. Int J Nonlinear Mech 5:633–644

    Article  MATH  Google Scholar 

  9. Ertas A, Garza S (2009) Experimental investigation of dynamics and bifurcations of an impacting spherical pendulum. Exp Mech 49(5):653–662

    Article  Google Scholar 

  10. Miwa M, Nakata S, Kiriyama S, Tamura Y, Yoshida A (2004) Active-mass-damper control of traffic vibration of a four-story steel-framed building. In: IMAC-XXII: conference and exposition on structural dynamics

    Google Scholar 

  11. Muller T, Hurlebaus S, Stobener U, Halcyonics GmbH, Gaul L (2005) Modelling and control techniques of an active vibration isolation system. In: IMAC-XXIII: conference and exposition on structural dynamics

    Google Scholar 

  12. Holt DA, Singh KV (2009) Active/passive vibration control of continuous systems by zero assignment. In: IMAC-XXVII: conference and exposition on structural dynamics

    Google Scholar 

  13. Viguié R, Kerschen G (2009) Design procedure of a nonlinear vibration absorber using bifurcation analysis. In: IMAC- XXVII: conference and exposition on structural dynamics

    Google Scholar 

  14. Haxton RS, Barr ADS (1972) The autoparametric vibration absorber. Trans ASME J Eng Ind 94:119–125

    Article  Google Scholar 

  15. Ibrahim RA (1985) Parametric random vibration. Mechanical engineering research studies, vol 4, Research studies. Wiley, New York

    Google Scholar 

  16. Nayfeh AH, Balachandran B (1989) Modal interactions in dynamical and structural systems. Appl Mech Rev 42:175–201

    Article  MathSciNet  Google Scholar 

  17. Nayfeh AH (2000) Nonlinear interactions: analytical, computational, and experimental methods, Wiley series in nonlinear science. Wiley, New York

    MATH  Google Scholar 

  18. Tondl A (2000) Autoparametric resonance in mechanical systems. Cambridge University Press, Cambridge/New York

    MATH  Google Scholar 

  19. Struble RA, Heinbockel JH (1962) Energy transfer in a beam-pendulum system. Trans ASME J Appl Mech 29:590–592

    Article  MATH  Google Scholar 

  20. Sevin E (1961) On the parametric excitation of pendulum-type vibration absorber. J Appl Mech 28:330–334

    Article  MATH  Google Scholar 

  21. Struble RA (1963) Oscillation of a pendulum under parametric excitation. Appl Math 21(2):121–159

    MathSciNet  Google Scholar 

  22. Hatwal H (1982) Notes on an autoparametric vibration absorber. J Sound Vib 83(3):440–443

    Article  MathSciNet  Google Scholar 

  23. Cuvalci O, Ertas A (1996) Pendulum as vibration absorber for flexible structures: experiments and theory. J Vib Acoust Trans ASME 118(4):558–566

    Article  Google Scholar 

  24. Bajaj AK, Chang SI, Johnson JM (1994) Amplitude-modulated dynamics of a resonantly excited autoparametric 2-degree-of-freedom system. Nonlinear Dyn 5(4):433–457

    Article  Google Scholar 

  25. Vyas A, Bajaj AK (2001) Dynamics of autoparametric vibration absorbers using multiple pendulums. J Sound Vib 246(1):115–135

    Article  MathSciNet  MATH  Google Scholar 

  26. Ashour ON, Nayfeh AH (2002) Adaptive control of flexible structures using a nonlinear vibration absorber. Nonlinear Dyn 28(3):309–322

    Article  MATH  Google Scholar 

  27. Mustafa G, Ertas A (1995) Experimental evidence of quasi- periodicity and its breakdown in the column-pendulum oscillator. J Dyn Syst Meas Control 1172:218–225

    Article  Google Scholar 

  28. Mustafa G, Ertas A (1995) Dynamics and bifurcations of coupled column-pendulum oscillator. J Sound Vib 1823:393–413, 475

    Article  MathSciNet  Google Scholar 

  29. Ekwaro-Osire S, Ertas A (1995) Response statistics of a beam- mass oscillator under combined harmonic and random excitation. J Vib Control 12:225–247

    Article  Google Scholar 

  30. Cuvalci O, Ertas A (1996) Pendulum as vibration absorber for flexible structures: experiments and theory. J Vib Acoust 118:1–9, 481

    Article  Google Scholar 

  31. Cuvalci O, Ertas A, Cicek I, Ekwaro-Osire S (2002) Nonlinear vibration absorber for a system under sinusoidal and random excitation: experiments. J Sound Vib 2944:701–718

    Article  Google Scholar 

  32. Cicek I, Ertas A (2002) Experimental investigation of beam-tip mass and pendulum system under random excitation. Mech Syst Signal Process 166:1059–1072

    Article  Google Scholar 

  33. Ertas A, Mustafa G (1992) Real-time response of the simple pendulum: an experimental technique. Exp Tech 16(4):33–35

    Article  Google Scholar 

  34. Nayeri RD, Masri SF, Caffrey JP (2007) Studies of the performance of multi-unit impact damp-ers under stochastic excitation. J Vib Acoust Trans ASME 129:239–251

    Article  Google Scholar 

  35. Ekwaro-Osire S, Desen IC (2001) Experimental study on an impact vibration absorber. J Vib Control 7:475–493

    Article  Google Scholar 

  36. Duncan MR, Wassgren CR, Krousgrill CM (2005) The damping performance of a single particle impact damper. J Sound Vib 286:123–144

    Article  Google Scholar 

  37. Li K, Darby AP (2006) Experiments on the effect of an impact damper on a multiple-degree-of-freedom system. J Vib Control 12:445–464

    Article  Google Scholar 

  38. Bapat CN, Sankar S (1985) Single unit impact damper in free and forced vibration. J Sound Vib 99:85–94

    Article  Google Scholar 

  39. Ekwaro-Osire S, Ozerdim C, Khandaker MPH (2006) Effect of attachment configuration on im-pact vibration absorbers. Exp Mech 46:669–681

    Article  Google Scholar 

  40. Popplewell N, Liao M (1991) A simple design procedure for optimum impact dampers. J Sound Vib 146:519–526

    Article  Google Scholar 

Download references

Acknowledgment

We wish to thank Dr. Murat M. Tanik for his assistance and help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atila Ertas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 The Society for Experimental Mechanics, Inc. 2012

About this paper

Cite this paper

Landis, R., Ertas, A., Gumus, E., Gungor, F. (2012). Free-Pendulum Vibration Absorber Experiment Using Digital Image Processing. In: Adams, D., Kerschen, G., Carrella, A. (eds) Topics in Nonlinear Dynamics, Volume 3. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-2416-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-2416-1_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-2415-4

  • Online ISBN: 978-1-4614-2416-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics