Skip to main content

Optimum Column Layout Design of Reinforced Concrete Frames Under Wind Loading

  • Conference paper
  • First Online:
Topics on the Dynamics of Civil Structures, Volume 1

Abstract

The geometric layout optimization of a structure is a significant stage in a design process, and selecting an appropriate geometric layout can impact all the subsequent stages of the design procedure and the relevant costs. This study presents a heuristic approach for the optimum layout design of two-dimensional reinforced concrete frames in order to optimize the total cost and controls the application under wind loadings. The aim is to find the optimum column layout design for 2D frames under wind loadings considering the involved cost elements. A heuristic methodology is developed in order to achieve a new design space and an objective function for the cost and layout optimization problem. The proposed method has the capability to make use of action effects of the structure as alternative design variables in place of the commonly used cross-sectional ones. Such a feature provides the method the ability to be easily employed in large and realistic structural optimization problems, and helps the optimization algorithms to take less time, in an iterative optimization process. Then, an Ant System based algorithm is proposed to solve the presented optimization problem. Examples are included to illustrate the robustness of the methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adeli H, Sarama KC (1998) Cost optimization of concrete structures. J Struct Eng 124(5):570–578

    Article  Google Scholar 

  2. Balling RJ, Yao X (1997) Optimization of reinforced concrete frames. J Struct Eng 123(2):193–202

    Article  Google Scholar 

  3. Zou XK, Chan CM, Wang G, Li Q (2007) Multiobjective optimization for performance-based design of reinforced concrete frames. J Struct Eng 133(10):1462–1474

    Article  Google Scholar 

  4. Shaw D, Miles J, Gray A (2008) Determining the structural layout of orthogonal framed buildings. Comput Struct 86(19–20):1856–1864

    Article  Google Scholar 

  5. Nimtawat A, Nanakorn P (2010) A genetic algorithm for beam–slab layout design of rectilinear floors. Eng Struct 32(11):3488–3500

    Article  Google Scholar 

  6. Nimtawat A, Nanakorn P (2009) Automated layout design of beam-slab floors using a genetic algorithm. Comput Struct 87(21–22):1308–1330

    Article  Google Scholar 

  7. Zhu JH, Zhang WH (2010) Integrated layout design of supports and structures. Comput Methods Appl Mech Eng 199(9–12):557–569

    Article  MATH  Google Scholar 

  8. Sahab MG, Ashour AF, Toropov VV (2005) Cost optimisation of reinforced concrete flat slab buildings. Eng Struct 27(3):313–322

    Article  Google Scholar 

  9. Sahab MG, Ashour AF, Toropov VV (2005) A hybrid genetic algorithm for reinforced concrete flat slab buildings. Comput Struct 83(8–9):551–559

    Article  Google Scholar 

  10. Dorigo M, Stüzle T (2004) Ant colony optimization. MIT Press, Cambridge, MA

    Book  MATH  Google Scholar 

  11. Kaveh A, Hassani B, Shojaee S, Tavakkoli SM (2008) Structural topology optimization using Ant colony methodology. Eng Struct 30(9):2559–2565

    Article  Google Scholar 

  12. Camp CV, Barron JB, Scott PS (2005) Design of steel frames using Ant colony optimization. J Struct Eng 131(3):369–379

    Article  Google Scholar 

  13. AS3600: Standards Australia, Concrete structures. Sydney, 2009

    Google Scholar 

  14. AS/NZS1170.2: Structural design actions Part 2: Wind actions. Sydney, 2011

    Google Scholar 

  15. Kaveh A, Sharafi P (2008) Optimal priority functions for profile reduction using Ant colony optimization. Finite Elem Anal Des 44(3):131–138

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad N. S. Hadi .

Editor information

Editors and Affiliations

Appendices

Appendix

Mathematical Calculations for (33.5) and (33.9)

33.2.1 A.1. Beams: Calculations for (33.5)

Any changes in the longitudinal steel \( A_{{sl}}^{{(b)}} \) results in changes in the capacities of a beam section as follows:

$$ \left\{ \begin{array}{lllllll} \frac{{\Delta\, M_u^{{ - (b)}}}}{{\Delta\, A_{{sl}}^{{(b)}}}} \cong {{f}_{{yl}}}({{d}^{{(b)}}} - d_c^{{(b)}}) \to \Delta\, A_{{sl}}^{{(b)}} = {{(\,{{f}_{{yl}}}\,\,{{d}^{{(b)}}}(1 - 0.5\gamma \,{{k}_u}))}^{{ - 1}}}\Delta\, M_u^{{ - (b)}} = {{K}_1}\,\Delta\, M_u^{{ - (b)}} \hfill \\\frac{{\Delta\, M_u^{{ + (b)}}}}{{\Delta\, A_{{sl}}^{{(b)}}}} \cong {{f}_{{yl}}}({{d}^{{(b)}}} - d_c^{{(b)}}) \to \Delta\, A_{{sl}}^{{(b)}} = {{(\,{{f}_{{yl}}}\,\,{{d}^{{(b)}}}(1 - 0.5\gamma \,{{k}_u}))}^{{ - 1}}}\Delta\, M_u^{{ + (b)}} = {{K}_1}\,\Delta\, M_u^{{ + (b)}} \hfill \\\frac{{\Delta\, V_u^{{(b)}}}}{{\Delta\, A_{{sl}}^{{(b)}}}} \cong 0 \to \Delta\, V_u^{{(b)}}\,and\,\Delta\, {{{\rm A}}_{{sl}}}\,\,are\,\,independent\,\,of\,\,each\,\,other \end{array} \right. $$
(A.1)

If \( A_{{sv}}^{{(b)}}/s \) changes the variation of the beams bearing capacities are

$$ \left\{\begin{array}{llllllllll} \Delta\, M_u^{{ - (b)}}and\,\frac{{\Delta\, A_{{sv}}^{{(b)}}}}{s}are\,\,independent\,of\,each\,\,other \hfill \\ \Delta\, M_u^{{ + (b)}}\,\,and\,\frac{{\Delta\, A_{{sv}}^{{(b)}}}}{s}are\,\,independent\,of\,each\,other \hfill \\ \frac{{\Delta\, V_u^{{(b)}}}}{{\frac{{\Delta\, A_{{sv}}^{{(b)}}}}{s}}} \cong {{f}_{{yv}}}d \to \frac{{\Delta\, A_{{sv}}^{{(b)}}}}{s} \cong {{(\,{{f}_{{yv}}}\,d)}^{{ - 1}}}\,\Delta\, V_u^{{(b)}} = {{K}_2}\,\,\Delta\, V_u^{{(b)}} \end{array}\right. $$
(A.2)

If the effective area of the beam section \( \Delta\, A_c^{{(b)}} \), i.e. bd varies:

$$ \Delta\, A_c^{{(b)}} = \Delta\, (bd) = b \;\Delta\, d + d \;\Delta\, b + \Delta\, b \;\Delta\, d = b \;\Delta\, d $$
(A.3)

\( \Delta\, M_u^{{ - (b)}} \) is not a function of b, and based on the second assumption, the dependence of \( \Delta\, M_u^{{ + (b)}} \) on the changes of b is neglected. Moreover, the first term of \( V_u^{{(b)}} \) is not dependent on b as well. So, the variations of the section capacities due to variation of cross-section area are

$$ \frac{{\Delta\, M_u^{{(b)}}}}{{\Delta\, A_c^{{(b)}}}} = \frac{{\Delta\, M_u^{{(b)}}}}{{\Delta\, (bd)}} \cong \frac{{\Delta\, M_u^{{(b)}}}}{{b(\Delta\, d)}} $$
(A.4)
$$ \left\{\begin{array}{cccccccccccc} \frac{{\Delta\, M_u^{{ - (b)}}}}{{\Delta\, (b{{d}^{{(b)}}})}} \cong \frac{{{{f}_{{yl}}}A_{{sc}}^{{(b)}}}}{b}(1 - 0.5\gamma {{k}_u}) \to \Delta\, A_c^{{(b)}} = \Delta\, (b{{d}^{{(b)}}}) \cong {{\left[ {{{f}_{{yl}}}\frac{{A_{{sc}}^{{(b)}}}}{b}(1 - 0.5\gamma {{k}_u})} \right]}^{{ - 1}}}\Delta\, M_u^{{ - (b)}} = {{K}_3}\,\Delta\, M_u^{{ - (b)}} \hfill \\\frac{{\Delta\, M_u^{{ + (b)}}}}{{\Delta\, (b{{d}^{{(b)}}})}} \cong \frac{{{{f}_{{yl}}}A_{{st}}^{{(b)}}}}{b}(1 - 0.5\gamma {{k}_u}) \to \Delta\, A_c^{{(b)}} = \Delta\, (b{{d}^{{(b)}}}) \cong {{\left[ {{{f}_{{yl}}}\frac{{A_{{st}}^{{(b)}}}}{b}(1 - 0.5\gamma {{k}_u})} \right]}^{{ - 1}}}\Delta\, M_u^{{ + (b)}} = {{K}_4}\,\Delta\, M_u^{{ + (b)}} \hfill \\\frac{{\Delta\, V_u^{{(b)}}}}{{\Delta\, (b{{d}^{{(b)}}})}} \cong \frac{{{{f}_{{yv}}}A_{{sv}}^{{(b)}}}}{{bs}} + \beta {{(\,f{{\prime}_c})}^{{1/2}}} \to \Delta\, A_c^{{(b)}} = \Delta\, (b{{d}^{{(b)}}}) \cong {{\left[ {\frac{{{{f}_{{yv}}}A_{{sv}}^{{(b)}}}}{{bs}} + \beta {{{(\,f{{\prime}_c})}}^{{0.5}}}} \right]}^{{ - 1}}}\Delta\, V_u^{{(b)}} = {{K}_5}\,\Delta\, V_u^{{(b)}} \end{array} \right. $$
(A.5)

The variation of the perimeter of a rectangular beam section, which determines the variation of the beam formwork, affects the section capacity as follows:

$$ \Delta\, P_f^{{(b)}} = \Delta\, b + 2\Delta\, {{d}^{{(b)}}} $$
(A.6)
$$ \left\{\begin{array}{llllllll} \frac{{\Delta\, M_u^{{ - (b)}}}}{{\Delta\, b + 2\Delta\, {{d}^{{(b)}}}}} \cong {{f}_{{yl}}}A_{{sc}}^{{(b)}} \to \Delta\, P_f^{{(b)}} = \Delta\, b + 2\Delta\, {{d}^{{(b)}}} \cong 2{{\left[ {{{f}_{{yl}}}A_{{sc}}^{{(b)}}(1 - 0.5\gamma {{k}_u})} \right]}^{{ - 1}}}\Delta\, M_u^{ - } = {{K}_6}\,\Delta\, M_u^{ - } \hfill \\\frac{{\Delta\, M_u^{{ + (b)}}}}{{\Delta\, b + 2\Delta\, {{d}^{{(b)}}}}} \cong {{f}_{{yl}}}A_{{st}}^{{(b)}} \to \Delta\, P_f^{{(b)}} = \Delta\, b + 2\Delta\, {{d}^{{(b)}}} \cong 2{{\left[ {{{f}_{{yl}}}A_{{st}}^{{(b)}}(1 - 0.5\gamma {{k}_u})} \right]}^{{ - 1}}}\Delta\, M_u^{ + } = {{K}_7}\,\Delta\, M_u^{ + } \hfill \\\frac{{\Delta\, V_u^{{(b)}}}}{{\Delta\, b + 2\Delta\, {{d}^{{(b)}}}}} \cong \frac{1}{{\frac{{{{f}_{{yl}}}A_{{sv}}^{{(b)}}}}{s} + \beta b{{{(\,f{{\prime}_c})}}^{{1/2}}}}} + \frac{1}{{\beta d{{{(\,f{{\prime}_c})}}^{{1/2}}}}} \to \Delta\, P_f^{{(b)}} = \Delta\, b + 2\Delta\, {{d}^{{(b)}}} \cong \left[ {\frac{2}{{\frac{{{{f}_{{yv}}}A_{{sv}}^{{(b)}}}}{s} + \beta b{{{(\,f{{\prime}_c})}}^{{1/2}}}}} + \frac{1}{{\beta d{{{(\,f{{\prime}_c})}}^{{1/2}}}}}} \right]\Delta\, {{V}_u} = {{K}_8}\;\Delta\, {{V}_u} \end{array} \right. $$
(A.7)

Now, that the reciprocal relationships between the variations of cross-sectional variables and strength capacity parameters of a beam section are obtained, multiplying both sides of (A.1) by csl/2, (A.2) by csv, (A.5) by cc/3 and (A.7) by cf/3 and then adding them up result in:

$$ \begin{array}{lllllllll} {{c}_c}\Delta\, A_c^{{(b)}} + {{c}_{{sl}}}\,\Delta\, A_{{sl}}^{{(b)}} + {{c}_{{sv}}}A_{{sv}}^{{(b)}} + {{c}_f}\Delta\, P_f^{{(b)}} = \left( {\frac{1}{3}{{c}_c}{{K}_4} + \frac{1}{2}{{c}_{{sl}}}{{K}_1} + \frac{2}{3}{{c}_f}{{K}_7}} \right)\Delta\, M_u^{{ + (b)}} \hfill \\ + \left( {\frac{1}{3}{{c}_c}{{K}_3} + \frac{1}{2}{{c}_{{sl}}}{{K}_1} + \frac{2}{3}{{c}_f}{{K}_6}} \right)\Delta\, M_u^{{ - (b)}} \hfill \\ + \left( {\frac{1}{3}{{c}_c}{{K}_5} + {{c}_{{sv}}}{{K}_2} + \frac{2}{3}{{c}_f}{{K}_8}} \right)\Delta\, V_u^{{(b)}}\end{array} $$
(A.8)

33.2.2 A.2. Columns: Calculations for (33.9)

Any changes in the longitudinal steel \( A_{{sl}}^{{(c)}} \) results in changes in the capacities of a column section as follows:

$$ \left\{ \begin{array}{llllllllll} \frac{{\Delta\, N_u^{{(c)}}}}{{\Delta\, A_{{sl}}^{{(c)}}}}\, \cong \,\,{{E}_s}\sum\nolimits_i^n {{{\varepsilon }_i} \to } \,\Delta\, A_{{sl}}^{{(c)}} = {{\left( {{{E}_s}\sum\nolimits_i^n {{{\varepsilon }_i}} } \right)}^{{ - 1}}}\,\Delta\, N_u^{{(c)}} = {{K}_9}\,\,\Delta\, N_u^{{(c)}} \hfill \\\frac{{\Delta\, M_u^{{(c)}}}}{{\Delta\, A_{{sl}}^{{(c)}}}}\, \cong \,{{E}_s}\,\sum\nolimits_i^n {{{\varepsilon }_i}\,{{e}_i} \to } \Delta\, A_{{sl}}^{{(c)}} = {{\left( {{{E}_s}\sum\nolimits_i^n {{{\varepsilon }_i}} \,{{e}_i}} \right)}^{{ - 1}}}\Delta\, {\rm M}_u^{{(c)}} = {{K}_{{10}}}\,\,\Delta\, M_u^{{(c)}} \hfill \\\frac{{\Delta\, V_u^{{(c)}}}}{{\Delta\, A_{{sl}}^{{(c)}}}} \cong 0 \to \Delta\, V_u^{{(c)}}\,\,and\,\Delta\, A_{{sl}}^{{(c)}}\,are\,\,independent\,\,of\,each\,\,\,other\end{array}\right. $$
(A.9)

With respect to \( A_{{sv}}^{{(c)}}/s \), the variations of the column capacities are

$$ \left\{\begin{array}{llllllllll}\Delta\, N_u^{{(c)}}\,\,and\,\,\,\frac{{\Delta\, { A}_{{sv}}^{{(c)}}}}{s}\,\,\,are\,\,independent\,\,of\,\,each\,\,other \hfill \\ \Delta\, M_u^{{(c)}}\,and\,\,\,\frac{{\Delta\, { A}_{{sv}}^{{(c)}}}}{s}\,\,\,are\,\,independent\,\,of\,\,each\,\,other \hfill \\ \frac{{\Delta\, V_u^{{(c)}}}}{{\frac{{\Delta\, A_{{sv}}^{{(c)}}}}{s}}} \cong {{f}_{{yv}}}\,{{d}^{{(c)}}} \to \frac{{\Delta\, A_{{sv}}^{{(c)}}}}{s} \cong {{(\,{{f}_{{yv}}}\,{{d}^{{(c)}}})}^{{ - 1}}}\,\Delta\, V_u^{{(b)}} = {{K}_{{11}}}\,\,\Delta\, V_u^{{(b)}} \end{array} \right. $$
(A.10)

If the cross-section area of the column varies:

$$ \left\{ \eqalign{ \frac{{\Delta\, N_u^{{(c)}}}}{{\Delta\, A_c^{{(c)}}}} \cong 0.85\gamma {{k}_u}f{{\prime}_c} \to \Delta\, A_c^{{(c)}} \cong {{\left( {0.85\gamma {{k}_u}\,f{{\prime}_c}} \right)}^{{ - 1}}}\Delta\, N_u^{{(c)}} = {{K}_{{12}}}\,\,\Delta\, N_u^{{(c)}} \hfill \\\frac{{\Delta\, M_u^{{(c)}}}}{{\Delta\, A_c^{{(c)}}}} \cong 0.85\gamma {{k}_u}f{{\prime}_c}{{e}_c} \to \Delta\, A_c^{{(c)}} \cong {{\left( {0.85\gamma {{k}_u}f{{\prime}_c}{{e}_c}} \right)}^{{ - 1}}}\Delta\, M_u^{{(c)}} = {{K}_{{13}}}\,\,\Delta\, M_u^{{(c)}} \hfill \\\frac{{\Delta\, V_u^{{(c)}}}}{{\Delta\, A_c^{{(c)}}}} \cong \frac{{{{f}_{{yv}}}A_{{sv}}^{{(c)}}}}{{2hs}} + \beta {{{(}f_c^{\prime}{)}}^{{0.5}}} \to \Delta\, A_c^{{(b)}} = \Delta\, {(}{{h}^{{(c)}}}{{d}^{{(c)}}}{)} \cong {{\left( {\frac{{{{f}_{{yv}}}A_{{sv}}^{{(c)}}}}{{2hs}} + \beta {{{(\,f_c^{\prime})}}^{{0.5}}}} \right)}^{{ - 1}}}\Delta\, V_u^{{(c)}} = {{K}_{{14}}}\,\,\Delta\, V_u^{{(c)}} \hfill \\}<!endgathered> \right. $$
(A.11)

The variation of the perimeter of a square column section, which determines the variation of the column formwork, affects the section capacity as follows:

$$ \left\{ \begin{array}{llllllllll} \frac{{\Delta\, N_u^{{(c)}}}}{{\Delta\, P_f^{{(c)}}}} \cong 0.85\gamma {{k}_u}\;f{{\prime}_c}\frac{{{{h}^{{(c)}}}}}{2} \to \Delta\, P_f^{{(c)}} \cong {{\left( {0.85\gamma {{k}_u}\;f{{\prime}_c}\frac{{{{h}^{{(c)}}}}}{2}} \right)}^{{ - 1}}}\Delta\, N_u^{{(c)}} = {{K}_{{15}}}\,\,\Delta\, N_u^{{(c)}} \hfill \\\frac{{\Delta\, M_u^{{(c)}}}}{{\Delta\, P_f^{{(c)}}}} \cong 0.85\gamma {{k}_u}\;f{{\prime}_c}\frac{{{{h}^{{(c)}}}}}{2}{{e}_c} \to \Delta\, P_f^{{(b)}} \cong {{\left( {0.85\gamma {{k}_u}\;f{{\prime}_c}\frac{{{{h}^{{(c)}}}}}{2}{{e}_c}} \right)}^{{ - 1}}}\Delta\, M_u^{{(c)}} = {{K}_{{16}}}\,\,\Delta\, M_u^{{(c)}} \hfill \\\frac{{\Delta\, V_u^{{(c)}}}}{{\Delta\, P_f^{{(c)}}}} \cong \frac{{{{f}_{{yv}}}A_{{sv}}^{{(c)}}}}{{4s}} + \frac{1}{2}\beta {{h}^{{(c)}}}{ {(\,f_c^{\prime})}^{{0.5}}} \to \Delta\, P_f^{{(c)}} \cong {{\left( {\frac{{{{f}_{{yv}}}A_{{sv}}^{{(c)}}}}{{4s}} + \frac{1}{2}\beta {{h}^{{(c)}}}{{{(\,f_c^{\prime})}}^{{0.5}}}} \right)}^{{ - 1}}}\Delta\, V_u^{{(c)}} = {{K}_{{17}}}\,\,\Delta\, V_u^{{(c)}}\end{array}\right. $$
(A.12)

The reciprocal relationships between the variations of cross-sectional variables and those of strength capacity variables of a column section are obtained by multiplying both sides of (A.9) by csl/2, (A.10) by csv, (A.11) by cc/3 and (A.12) by cf/3 then adding them up :

$$ \begin{array}{lllllllll} {{c}_c}\,\,\Delta\, A_c^{{(c)}} + {{c}_{{sl}}}\,\,\,\Delta\, A_{{sl}}^{{(c)}} + {{c}_{{sv}}}\,\,A_{{sv}}^{{(c)}} + {{c}_f}\,\,\,\Delta\, P_f^{{(c)}} = \left( {\frac{1}{3}{{c}_c}{{K}_{{12}}} + \frac{1}{2}{{c}_{{sl}}}{{K}_9} + \frac{1}{3}{{c}_f}{{K}_{{15}}}} \right)\,\Delta\, N_u^{{(c)}} \hfill \\\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad + \left( {\frac{1}{3}{{c}_c}{{K}_{{13}}} + \frac{1}{2}{{c}_{{sl}}}{{K}_{{10}}} + \frac{2}{3}{{c}_f}{{K}_{{16}}}} \right)\Delta\, M_u^{{(c)}} \hfill \\\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad + \left( {\frac{1}{3}{{c}_c}{{K}_{{14}}} + {{c}_{{sv}}}{{K}_{{11}}} + \frac{2}{3}{{c}_f}{{K}_{{17}}}} \right)\Delta\, V_u^{{(c)}} \end{array} $$
(A.13)

Rights and permissions

Reprints and permissions

Copyright information

© 2012 The Society for Experimental Mechanics, Inc. 2012

About this paper

Cite this paper

Sharafi, P., Hadi, M.N.S., Teh, L.H. (2012). Optimum Column Layout Design of Reinforced Concrete Frames Under Wind Loading. In: Caicedo, J., Catbas, F., Cunha, A., Racic, V., Reynolds, P., Salyards, K. (eds) Topics on the Dynamics of Civil Structures, Volume 1. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-2413-0_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-2413-0_33

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-2412-3

  • Online ISBN: 978-1-4614-2413-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics