Impressive Results in Vesoul and Caen

  • Ferdinand Verhulst


In examining the lives of creative people, including scientists and artists, one frequently observes an initial period of acquisition of knowledge and practical skills followed by a burst of activity with occasional interruptions. For Henri Poincaré, this watershed came around 1878. In his case, however, the enormous flow of significant results continued uninterrupted throughout his life.


Linear Differential Equation Mining Engineer Mathematical Discussion Automorphic Function Creative People 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Bellivier 1956.
    André Bellivier, Henri Poincaré, ou la vocation souveraine. Paris: Gallimard, 1956.Google Scholar
  2. Darboux 1913.
    Gaston Darboux. “Éloge historique d’Henri Poincaré.” In [Poincaré 1916], vol. 2, pp. VII–LXXI, presented as a lecture on December 5, 1913.Google Scholar
  3. Poincaré 1881.
    Henri Poincaré. “Mémoire sur les courbes définies par une équation différentielle.” J. de Mathématiques, 3e série vol. 7 (1881), 375–422, vol. 8 (1882), pp. 251–296.Google Scholar
  4. Poincaré 1985.
    Henri Poincaré, Papers on Fuchsian Functions, translated and introduced by John Stillwell, Springer, 1985.Google Scholar
  5. Fuchs 1880.
    L.I. Fuchs. “Über eine Klasse von Functionen meherer Variabeln, welche durch Umkehrung der Integrale von Lösungen der linearen Differentialgeleichungen mit rationalen Coefficienten entstehen.” J. Reine Angew. Math. 89 (1880), 151–169.Google Scholar
  6. Gray and Walters 1997.
    Jeremy J. Gray and Scott A. Walters, editors. Henri Poincaré, Three Supplementary Essays on the Discovery of Fuchsian Functions. Berlin: Akademie Verlag, and Paris: Albert Blanchard, 1997.Google Scholar
  7. Poincaré 2012.
    Henri Poincaré. Correspondence Archives Henri Poincaré, Université de Nancy.Google Scholar
  8. Poincaré 1916.
    Henri Poincaré, Oeuvres de Henri Poincaré publiées sous les auspices de l’Académie des Sciences, vols. 1–12, Gauthier-Villars, Paris, 1916–1954.Google Scholar
  9. Poincaré 1882.
    Henri Poincaré. “Sur les fonctions uniformes qui se reproduisent par des substitutions linéaires.” Math. Annalen 19 (1882), 553–564; also in [Poincaré 1916] vol. 2, pp. 92–105.Google Scholar
  10. Klein 1924.
    F. Klein. “Correspondence d’Henri Poincaré et de Felix Klein,” edited by N.E. Nörlund. Acta Mathematica 39 (1924), 94–132.Google Scholar
  11. Poincaré 1999.
    Henri Poincaré and Gösta Mittag-Leffler. La correspondance entre Henri Poincaré et Gösta Mittag-Leffler, avec en annexes les lettres échangées par Poincaré avec Fredholm, Gyldén et Phragmén; presentée et annotée par Philippe Nabonnand. Basel: Birkhäuser, 1999.Google Scholar
  12. Freudenthal 1954.
    H. Freudenthal. “Poincaré et les fonctions automorphes.” in [Poincaré 1916] vol. 11, pp. 212–219, 1954.Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Ferdinand Verhulst
    • 1
  1. 1.Mathematisch InstituutUniversity of UtrechtUtrechtNetherlands

Personalised recommendations