Mathematical Physics

  • Ferdinand Verhulst


In this chapter, we will first look at new methods developed for partial differential equations, and in the following subsections, at a number of applications and physical theories. We aim at conveying the ideas while leaving technical details to the literature cited. We will leave out dynamical systems, since they were discussed in a separate chapter.


Solar System Lorentz Transformation Tidal Force Planetary Nebula Equipotential Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Appell 1921.
    Paul Appell. Traité de Mécanique Rationelle, 4 vols., Paris: Gauthier-Villars, 1921–1941.Google Scholar
  2. Brush 1996.
    Stephen G. Brush. Fruitful Encounters: The Origin of the Solar System and of the Moon from Chamberlin to Apollo. Cambridge: Cambridge University Press, 1996.Google Scholar
  3. Chebyshev 1907.
    P.L. Tchebychef (Chebyshev). Oeuvres vol. 2, edited by A. Markoff and N. Sonin. St. Petersburg, 1907.Google Scholar
  4. Counselman 1973.
    Charles C. Counselman III. “Outcomes of tidal evolution.” Ap. J. 180 (1973), 307–314.CrossRefGoogle Scholar
  5. Kirillov and Verhulst 2010.
    O.N. Kirillov and F. Verhulst. “Paradoxes of dissipation-induced destabilization or who opened Whitney’s umbrella.” ZAMM 90 (2010), 462–488.MathSciNetMATHCrossRefGoogle Scholar
  6. Le Bellac 2010.
    M. Le Bellac. “The Poincaré group.” In The Scientific Legacy of Poincaré, edited by E. Charpentier, E. Ghys and A. Lesne, History of Mathematics 36, pp. 329–350. Providence: AMS, 2010.Google Scholar
  7. Lebovitz 1998.
    N.R. Lebovitz. “The mathematical development of the classical ellipsoids.” Int. J. Eng. Science 36 (1998), 1407–1420.MathSciNetMATHCrossRefGoogle Scholar
  8. Lorentz 1904.
    H.A. Lorentz. “Electromagnetic phenomena in a system moving with any velocity smaller than that of light.” In Proc. Royal Academy of Sciences, Amsterdam, May 27, 1904. Reprinted in collected papers vol. 5, pp. 172–197. The Hague: Martinus Nijhoff, 1939.Google Scholar
  9. Mawhin 2010.
    J. Mawhin. “Henri Poincaré and the partial differential equations of mathematical physics.” In The Scientific Legacy of Poincaré, edited by E. Charpentier, E. Ghys, and A. Lesne, History of mathematics 36, pp. 373–391. Providence: AMS, 2010.Google Scholar
  10. Poincaré 1890a.
    Henri Poincaré. Lecture notes: 1 Google Scholar
  11. Poincaré 1890c.
    Henri Poincaré. “Sur les équations aux dérivées partielles de la physique mathématique.” American J. Math. 12 (1890), 211–294; also in [Poincaré 1916] vol. 9, pp. 28–113.Google Scholar
  12. Poincaré 1894a.
    Henri Poincaré. “Sur l’équation des vibrations d’une membrane.” C.R.A.S. Paris 118:12 (1894) 447–451; also in [Poincaré 1916] vol. 9, pp. 119–122.Google Scholar
  13. Poincaré 1894b.
    Henri Poincaré. “Sur les équations de la physique mathématique.” Rend. Circolo Mat. Palermo 8 (1894), 57–155; also in [Poincaré 1916] vol. 9, pp. 123–196.Google Scholar
  14. Poincaré 1895a.
    Henri Poincaré. “À propos de la théorie de M. Larmor.” L’Éclairage Électrique 3, 5 (1895); also in [Poincaré 1916], vol. 9, pp. 369–426.Google Scholar
  15. Poincaré 1895b.
    Henri Poincaré. “La théorie de Lorentz et la principe de réaction.” Archives Néerlandaises des Sciences Exactes et Naturelles, 2e Série 5 (1895), 252–278; also in [Poincaré 1916], vol. 9, pp. 464–488.Google Scholar
  16. Poincaré 1905a.
    Henri Poincaré. “Sur la dynamique de l’électron. Comptes Rendus de l’Académie des Sciences 140 (1905), 1504–1508; also in [Poincaré 1916], vol. 9, pp. 489–493.Google Scholar
  17. Poincaré 1906.
    Henri Poincaré. “Sur la dynamique de l’électron.” Rendiconti del Circolo Matematico di Palermo 21 (1906), 129–176; also in [Poincaré 1916], vol. 9, pp. 494–550.Google Scholar
  18. Poincaré 1908a.
    Henri Poincaré. Science et Méthode. Paris: Flammarion, 1908.Google Scholar
  19. Poincaré 1909.
    Henri Poincaré. Sechs Vorträge aus der reinen Mathematik und mathematischen Physik, Mathematische Vorlesungen an der Universität Göttingen: IV, auf Einladung der Wolfskehl-Kommission der Königlichen Gesellschaft der Wissenschaften gehalten zu Göttingen vom 22–28 April 1909. Leipzig and Berlin: B.G. Teubner, 1910.Google Scholar
  20. Poincaré 1912a.
    Henri Poincaré. “Les rapports de la matière et de l’éther.” J. de Physique théorique et appliquée 2 (1912), 347–360; lecture at a conference organized by the Société française de Physique, see also [Poincaré 1916] vol. 9, pp. 669–682.Google Scholar
  21. Poincaré 1916.
    Henri Poincaré, Oeuvres de Henri Poincaré publiées sous les auspices de l’Académie des Sciences, vols. 1–12, Gauthier-Villars, Paris, 1916–1954.Google Scholar
  22. Schwarzschild 1913.
    K. Schwarzschild. “Review of Poincaré’s ‘Leçons sur les hypothèses cosmogoniques.’ ” Ap. J. 37 (1913), 294–298.Google Scholar
  23. See 1912.
    T.J.J. See. “Review of Poincaré’s lectures on cosmogony.” Review of Popular Astronomy 20 (1912), 13–14.Google Scholar
  24. Thomson and Tait 1883.
    W. Thomson and P.G. Tait. Treatise on Natural Philosophy. Cambridge: Cambridge University Press, 1883.Google Scholar
  25. Verhulst 2000.
    Ferdinand Verhulst. Nonlinear Differential Equations and Dynamical Systems, second revised edition. New York: Springer, 2000.Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Ferdinand Verhulst
    • 1
  1. 1.Mathematisch InstituutUniversity of UtrechtUtrechtNetherlands

Personalised recommendations