Skip to main content

HIF Biology in RCC: Implications for Signaling, Disease Progression, and Treatment

  • Chapter
  • First Online:
  • 780 Accesses

Abstract

The discovery of a close connection between clear cell renal cell carcinoma and hypoxia-inducible factor (HIF) stabilization has paved the way for our understanding of tumor biology, greater understanding of tumor metabolism, and new therapies for this cancer. The constitutive deregulation of this family of transcription factors drives a multifaceted cancer program, promoting the transcription of genes involved in angiogenesis, cellular metabolic processes, cell migration, and cell survival. However, this transcriptional program is highly dependent on the spectrum of HIF family members that are active (HIF-1α and HIF-2α) and the levels of HIF stabilization. In this chapter, we overview HIF biology and activity and examine the regulation of HIF production, stability, and activity with an eye toward future therapeutic opportunities to target opportunistic drivers deregulated as a part of the HIF response, or mechanisms to target HIF factors themselves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Burk JR et al (1977) Renal cell carcinoma with erythrocytosis and elevated erythropoietic stimulatory activity. South Med J 70(8):955–958

    Article  PubMed  CAS  Google Scholar 

  2. Iliopoulos O et al (1996) Negative regulation of hypoxia-inducible genes by the von Hippel-Lindau protein. Proc Natl Acad Sci USA 93(20):10595–10599

    Article  PubMed  CAS  Google Scholar 

  3. Pugh CW et al (1991) Functional analysis of an oxygen-regulated transcriptional enhancer lying 3′ to the mouse erythropoietin gene. Proc Natl Acad Sci USA 88(23):10553–10557

    Article  PubMed  CAS  Google Scholar 

  4. Krieg M et al (2000) Up-regulation of hypoxia-inducible factors HIF-1alpha and HIF-2alpha under normoxic conditions in renal carcinoma cells by von Hippel-Lindau tumor suppressor gene loss of function. Oncogene 19(48):5435–5443

    Article  PubMed  CAS  Google Scholar 

  5. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    Article  PubMed  CAS  Google Scholar 

  6. Maynard MA et al (2003) Multiple splice variants of the human HIF-3 alpha locus are targets of the von Hippel-Lindau E3 ubiquitin ligase complex. J Biol Chem 278(13):11032–11040

    Article  PubMed  CAS  Google Scholar 

  7. Maynard MA et al (2007) Dominant-negative HIF-3 alpha 4 suppresses VHL-null renal cell carcinoma progression. Cell Cycle 6(22):2810–2816

    Article  PubMed  CAS  Google Scholar 

  8. Wang GL, Semenza GL (1993) General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc Natl Acad Sci USA 90(9):4304–4308

    Article  PubMed  CAS  Google Scholar 

  9. Ivan M et al (2001) HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: Implications for O2 sensing. Science 292(5516):464–468

    Article  PubMed  CAS  Google Scholar 

  10. Ivan M et al (2002) Biochemical purification and pharmacological inhibition of a mammalian prolyl hydroxylase acting on hypoxia-inducible factor. Proc Natl Acad Sci USA 99(21): 13459–13464

    Article  PubMed  CAS  Google Scholar 

  11. Jaakkola P et al (2001) Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292(5516):468–472

    Article  PubMed  CAS  Google Scholar 

  12. Wang GL, Semenza GL (1993) Characterization of hypoxia-inducible factor 1 and regulation of DNA binding activity by hypoxia. J Biol Chem 268(29):21513–21518

    PubMed  CAS  Google Scholar 

  13. Wiesener MS et al (2003) Widespread hypoxia-inducible expression of HIF-2alpha in distinct cell populations of different organs. FASEB J 17(2):271–273

    PubMed  CAS  Google Scholar 

  14. Hu CJ et al (2006) Differential regulation of the transcriptional activities of hypoxia-inducible factor 1 alpha (HIF-1alpha) and HIF-2alpha in stem cells. Mol Cell Biol 26(9):3514–3526

    Article  PubMed  CAS  Google Scholar 

  15. Adelman DM, Maltepe E, Simon MC (2000) HIF-1 is essential for multilineage hematopoiesis in the embryo. Adv Exp Med Biol 475:275–284

    Article  PubMed  CAS  Google Scholar 

  16. Compernolle V et al (2002) Loss of HIF-2alpha and inhibition of VEGF impair fetal lung maturation, whereas treatment with VEGF prevents fatal respiratory distress in premature mice. Nat Med 8(7):702–710

    PubMed  CAS  Google Scholar 

  17. Kline DD et al (2002) Defective carotid body function and impaired ventilatory responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1 alpha. Proc Natl Acad Sci USA 99(2):821–826

    Article  PubMed  CAS  Google Scholar 

  18. Kotch LE et al (1999) Defective vascularization of HIF-1alpha-null embryos is not associated with VEGF deficiency but with mesenchymal cell death. Dev Biol 209(2):254–267

    Article  PubMed  CAS  Google Scholar 

  19. Scortegagna M et al (2003) The HIF family member EPAS1/HIF-2alpha is required for normal hematopoiesis in mice. Blood 102(5):1634–1640

    Article  PubMed  CAS  Google Scholar 

  20. Covello KL et al (2006) HIF-2alpha regulates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth. Genes Dev 20(5):557–570

    Article  PubMed  CAS  Google Scholar 

  21. Covello KL, Simon MC, Keith B (2005) Targeted replacement of hypoxia-inducible factor-1alpha by a hypoxia-inducible factor-2alpha knock-in allele promotes tumor growth. Cancer Res 65(6):2277–2286

    Article  PubMed  CAS  Google Scholar 

  22. Kondo K et al (2003) Inhibition of HIF2alpha is sufficient to suppress pVHL-defective tumor growth. PLoS Biol 1(3):E83

    Article  PubMed  Google Scholar 

  23. Zimmer M et al (2004) Inhibition of hypoxia-inducible factor is sufficient for growth suppression of VHL−/− tumors. Mol Cancer Res 2(2):89–95

    PubMed  CAS  Google Scholar 

  24. Hu CJ et al (2003) Differential roles of hypoxia-inducible factor 1alpha (HIF-1alpha) and ­HIF-2alpha in hypoxic gene regulation. Mol Cell Biol 23(24):9361–9374

    Article  PubMed  CAS  Google Scholar 

  25. Shen C, Beroukhim R, Schumacher SE, Zhou J, Chang M, Signoretti S, Kaelin WG Jr. Genetic and Functional Studies Implicate HIF1a as a 14q Kidney Cancer Suppressor Gene. Cancer Discov. 2011 Aug;1(3):222–235

    Article  PubMed  CAS  Google Scholar 

  26. Gordan JD et al (2008) HIF-alpha effects on c-Myc distinguish two subtypes of sporadic ­VHL-deficient clear cell renal carcinoma. Cancer Cell 14(6):435–446

    Article  PubMed  CAS  Google Scholar 

  27. Gordan JD et al (2007) HIF-2alpha promotes hypoxic cell proliferation by enhancing c-myc transcriptional activity. Cancer Cell 11(4):335–347

    Article  PubMed  CAS  Google Scholar 

  28. Gordan JD, Thompson CB, Simon MC (2007) HIF and c-Myc: sibling rivals for control of cancer cell metabolism and proliferation. Cancer Cell 12(2):108–113

    Article  PubMed  CAS  Google Scholar 

  29. Dang CV (2007) The interplay between MYC and HIF in the Warburg effect. Ernst Schering Found Symp Proc 4:35–53

    Article  PubMed  Google Scholar 

  30. Kim JW et al (2007) Hypoxia-inducible factor 1 and dysregulated c-Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1. Mol Cell Biol 27(21):7381–7393

    Article  PubMed  CAS  Google Scholar 

  31. Qing G et al (2010) Combinatorial regulation of neuroblastoma tumor progression by N-Myc and hypoxia inducible factor HIF-1alpha. Cancer Res 70(24):10351–10361

    Article  PubMed  CAS  Google Scholar 

  32. Yoo YG, Christensen J, Huang LE (2011) HIF-1alpha confers aggressive malignant traits on human tumor cells independent of its canonical transcriptional function. Cancer Res 71(4): 1244–1252

    Article  PubMed  CAS  Google Scholar 

  33. Sudarshan S et al (2009) Fumarate hydratase deficiency in renal cancer induces glycolytic addiction and hypoxia-inducible transcription factor 1alpha stabilization by glucose-dependent generation of reactive oxygen species. Mol Cell Biol 29(15):4080–4090

    Article  PubMed  CAS  Google Scholar 

  34. Linehan WM, Srinivasan R, Schmidt LS (2010) The genetic basis of kidney cancer: a metabolic disease. Nat Rev Urol 7(5):277–285

    Article  PubMed  CAS  Google Scholar 

  35. Brugarolas J, Kaelin WG Jr (2004) Dysregulation of HIF and VEGF is a unifying feature of the familial hamartoma syndromes. Cancer Cell 6(1):7–10

    Article  PubMed  CAS  Google Scholar 

  36. van Slegtenhorst M et al (2007) The Birt-Hogg-Dube and tuberous sclerosis complex homologs have opposing roles in amino acid homeostasis in Schizosaccharomyces pombe. J Biol Chem 282(34):24583–24590

    Article  PubMed  Google Scholar 

  37. Hudon V et al (2010) Renal tumour suppressor function of the Birt-Hogg-Dube syndrome gene product folliculin. J Med Genet 47(3):182–189

    Article  PubMed  CAS  Google Scholar 

  38. Schmidt L et al (1997) Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat Genet 16(1):68–73

    Article  PubMed  CAS  Google Scholar 

  39. Hartman TR et al (2009) The role of the Birt-Hogg-Dube protein in mTOR activation and renal tumorigenesis. Oncogene 28(13):1594–1604

    Article  PubMed  CAS  Google Scholar 

  40. Kaelin WG Jr (2002) Molecular basis of the VHL hereditary cancer syndrome. Nat Rev Cancer 2(9):673–682

    Article  PubMed  CAS  Google Scholar 

  41. Kaelin WG Jr (2003) The von Hippel-Lindau gene, kidney cancer, and oxygen sensing. J Am Soc Nephrol 14(11):2703–2711

    Article  PubMed  Google Scholar 

  42. Clifford SC et al (2001) The pVHL-associated SCF ubiquitin ligase complex: molecular genetic analysis of elongin B and C, Rbx1 and HIF-1alpha in renal cell carcinoma. Oncogene 20(36):5067–5074

    Article  PubMed  CAS  Google Scholar 

  43. Clifford SC et al (2001) Contrasting effects on HIF-1alpha regulation by disease-causing pVHL mutations correlate with patterns of tumourigenesis in von Hippel-Lindau disease. Hum Mol Genet 10(10):1029–1038

    Article  PubMed  CAS  Google Scholar 

  44. Young AC et al (2009) Analysis of VHL gene alterations and their relationship to clinical parameters in sporadic conventional renal cell carcinoma. Clin Cancer Res 15(24):7582–7592

    Article  PubMed  CAS  Google Scholar 

  45. Hickey MM et al (2007) von Hippel-Lindau mutation in mice recapitulates Chuvash polycythemia via hypoxia-inducible factor-2alpha signaling and splenic erythropoiesis. J Clin Invest 117(12):3879–3889

    PubMed  CAS  Google Scholar 

  46. Hickey MM et al (2010) The von Hippel-Lindau Chuvash mutation promotes pulmonary hypertension and fibrosis in mice. J Clin Invest 120(3):827–839

    Article  PubMed  CAS  Google Scholar 

  47. Lee CM et al (2009) VHL type 2B gene mutation moderates HIF dosage in vitro and in vivo. Oncogene 28(14):1694–1705

    Article  PubMed  CAS  Google Scholar 

  48. Hacker KE, Lee CM, Rathmell WK (2008) VHL type 2B mutations retain VBC complex form and function. PLoS One 3(11):e3801

    Article  PubMed  Google Scholar 

  49. Masson N, Ratcliffe PJ (2003) HIF prolyl and asparaginyl hydroxylases in the biological response to intracellular O(2) levels. J Cell Sci 116(Pt 15):3041–3049

    Article  PubMed  CAS  Google Scholar 

  50. Semenza GL (2009) Involvement of oxygen-sensing pathways in physiologic and pathologic erythropoiesis. Blood 114(10):2015–2019

    Article  PubMed  CAS  Google Scholar 

  51. Caron E et al (2010) A comprehensive map of the mTOR signaling network. Mol Syst Biol 6:453

    Article  PubMed  Google Scholar 

  52. Wouters BG, Koritzinsky M (2008) Hypoxia signalling through mTOR and the unfolded protein response in cancer. Nat Rev Cancer 8(11):851–864

    Article  PubMed  CAS  Google Scholar 

  53. Wysocki PJ (2009) mTOR in renal cell cancer: modulator of tumor biology and therapeutic target. Expert Rev Mol Diagn 9(3):231–241

    Article  PubMed  CAS  Google Scholar 

  54. Zimmer M et al (2008) Small-molecule inhibitors of HIF-2a translation link its 5′UTR iron-responsive element to oxygen sensing. Mol Cell 32(6):838–848

    Article  PubMed  CAS  Google Scholar 

  55. Xia X, Kung AL (2009) Preferential binding of HIF-1 to transcriptionally active loci determines cell-type specific response to hypoxia. Genome Biol 10(10):R113

    Article  PubMed  Google Scholar 

  56. Varela I et al (2011) Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature 469(7331):539–542

    Article  PubMed  CAS  Google Scholar 

  57. Dalgliesh GL et al (2010) Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature 463(7279):360–363

    Article  PubMed  CAS  Google Scholar 

  58. Partch CL, Gardner KH (2011) Coactivators necessary for transcriptional output of the hypoxia inducible factor, HIF, are directly recruited by ARNT PAS-B. Proc Natl Acad Sci USA 108(19):7739–7744

    Article  PubMed  CAS  Google Scholar 

  59. Greenberger LM et al (2008) A RNA antagonist of hypoxia-inducible factor-1alpha, EZN-2968, inhibits tumor cell growth. Mol Cancer Ther 7(11):3598–3608

    Article  PubMed  CAS  Google Scholar 

  60. Isaacs JS et al (2002) Hsp90 regulates a von Hippel Lindau-independent hypoxia-inducible factor-1 alpha-degradative pathway. J Biol Chem 277(33):29936–29944

    Article  PubMed  CAS  Google Scholar 

  61. Koga F, Kihara K, Neckers L (2009) Inhibition of cancer invasion and metastasis by targeting the molecular chaperone heat-shock protein 90. Anticancer Res 29(3):797–807

    PubMed  CAS  Google Scholar 

  62. Ronnen EA et al (2006) A phase II trial of 17-(allylamino)-17-demethoxygeldanamycin in patients with papillary and clear cell renal cell carcinoma. Invest New Drugs 24(6):543–546

    Article  PubMed  CAS  Google Scholar 

  63. Yeo EJ et al (2003) YC-1: a potential anticancer drug targeting hypoxia-inducible factor 1. J Natl Cancer Inst 95(7):516–525

    Article  PubMed  CAS  Google Scholar 

  64. Pourgholami MH et al (2010) Potent inhibition of tumoral hypoxia-inducible factor 1alpha by albendazole. BMC Cancer 10:143

    Article  PubMed  Google Scholar 

  65. Melillo G (2007) Targeting hypoxia cell signaling for cancer therapy. Cancer Metastasis Rev 26(2):341–352

    Article  PubMed  CAS  Google Scholar 

  66. Kondo K et al (2002) Inhibition of HIF is necessary for tumor suppression by the von Hippel-Lindau protein. Cancer Cell 1(3):237–246

    Article  PubMed  CAS  Google Scholar 

  67. Maranchie JK et al (2002) The contribution of VHL substrate binding and HIF1-alpha to the phenotype of VHL loss in renal cell carcinoma. Cancer Cell 1(3):247–255

    Article  PubMed  CAS  Google Scholar 

  68. Raval RR et al (2005) Contrasting properties of hypoxia-inducible factor 1 (HIF-1) and HIF-2 in von Hippel-Lindau-associated renal cell carcinoma. Mol Cell Biol 25(13):5675–5686

    Article  PubMed  CAS  Google Scholar 

  69. Maxwell PH et al (1999) The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399(6733):271–275

    Article  PubMed  CAS  Google Scholar 

  70. Kong HS et al (2010) Emetine promotes von Hippel-Lindau-independent degradation of hypoxia-inducible factor-2alpha in clear cell renal carcinoma. Mol Pharmacol 78(6): 1072–1078

    Article  PubMed  CAS  Google Scholar 

  71. Maltepe E et al (1997) Abnormal angiogenesis and responses to glucose and oxygen deprivation in mice lacking the protein ARNT. Nature 386(6623):403–407

    Article  PubMed  CAS  Google Scholar 

  72. LeRoy PJ et al (2007) Localization of human TACC3 to mitotic spindles is mediated by phosphorylation on Ser558 by Aurora A: a novel pharmacodynamic method for measuring Aurora A activity. Cancer Res 67(11):5362–5370

    Article  PubMed  CAS  Google Scholar 

  73. Kochhar R et al (2010) Role of FDG PET/CT in imaging of renal lesions. J Med Imaging Radiat Oncol 54(4):347–357

    Article  PubMed  CAS  Google Scholar 

  74. Kumar R et al (2010) Role of FDG PET-CT in recurrent renal cell carcinoma. Nucl Med Commun 31(10):844–850

    PubMed  Google Scholar 

  75. Namura K et al (2010) Impact of maximum standardized uptake value (SUVmax) evaluated by 18-fluoro-2-deoxy-d-glucose positron emission tomography/computed tomography (18F- FDG-PET/CT) on survival for patients with advanced renal cell carcinoma: a preliminary report. BMC Cancer 10:667

    Article  PubMed  Google Scholar 

  76. Safran M et al (2006) Mouse model for noninvasive imaging of HIF prolyl hydroxylase ­activity: assessment of an oral agent that stimulates erythropoietin production. Proc Natl Acad Sci USA 103(1):105–110

    Article  PubMed  CAS  Google Scholar 

  77. Kudo T et al (2009) Imaging of HIF-1-active tumor hypoxia using a protein effectively delivered to and specifically stabilized in HIF-1-active tumor cells. J Nucl Med 50(6):942–949

    Article  PubMed  Google Scholar 

  78. Kudo T et al (2011) PET imaging of hypoxia-inducible factor-1-active tumor cells with pretargeted oxygen-dependent degradable streptavidin and a novel (18)F-labeled biotin derivative. Mol Imaging Biol 13(5):1003–1010

    Article  PubMed  Google Scholar 

  79. Ueda M et al (2010) Rapid detection of hypoxia-inducible factor-1-active tumours: pretargeted imaging with a protein degrading in a mechanism similar to hypoxia-inducible factor-1alpha. Eur J Nucl Med Mol Imaging 37(8):1566–1574

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Kimryn Rathmell M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rathmell, W.K. (2012). HIF Biology in RCC: Implications for Signaling, Disease Progression, and Treatment. In: Figlin, R., Rathmell, W., Rini, B. (eds) Renal Cell Carcinoma. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-2400-0_3

Download citation

Publish with us

Policies and ethics