Skip to main content

Mechanisms of Resistance to VEGF-Directed Therapy and Implications for Future Trial Design

  • Chapter
  • First Online:
Renal Cell Carcinoma
  • 782 Accesses

Abstract

The von Hippel–Lindau (VHL) tumor suppressor gene is functionally inactivated in the majority of renal cell carcinomas (RCC), resulting in the stabilization of hypoxia-inducible factors HIF-1 and HIF-2 and the overproduction of the angiogenesis factor VEGF. As a consequence, the microvasculature of most RCC is uniquely VEGF dependent and sensitive to drugs that block signaling through the dominant VEGF receptor, VEGFR2. The progression-free survival (PFS) of RCC patients undergoing first-line therapy with any of the recently approved VEGFR2 antagonists is nearly 1 year. Despite these encouraging results, however, the overwhelming majority of RCC patients ultimately develop resistance to these drugs. This chapter reviews several of the mechanisms by which RCC is thought to escape from VEGF-targeted therapies. Many of the proposed mechanisms of acquired resistance involve the increased production by the tumor cells of angiogenesis factors capable of compensating for the loss of VEGF function. Others involve the production of cytokines and matrix metalloproteinases by tumor-associated fibroblasts or infiltrating bone marrow-derived myeloid cells (BDMC). The chapter concludes with a brief review of ongoing clinical trials involving novel agents that could be used in combination with VEGF-targeted therapies in an effort to thwart the development of resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Motzer RJ, Michaelson MD, Redman BG et al (2006) Activity of SU11248, a multitargeted inhibitor of vascular endothelial growth factor receptor and platelet-derived growth factor receptor, in patients with metastatic renal cell carcinoma. J Clin Oncol 24:16–24

    Article  PubMed  CAS  Google Scholar 

  2. Ward JE, Stadler WM (2010) Pazopanib in renal cell carcinoma. Clin Cancer Res 16:5923–5927

    Article  PubMed  CAS  Google Scholar 

  3. Bergers G, Hanahan D (2008) Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 8:592–603

    Article  PubMed  CAS  Google Scholar 

  4. Ebos JM, Lee CR, Kerbel RS (2009) Tumor and host-mediated pathways of resistance and disease progression in response to antiangiogenic therapy. Clin Cancer Res 15:5020–5025

    Article  PubMed  CAS  Google Scholar 

  5. Rini BI, Atkins MB (2009) Resistance to targeted therapy in renal cell carcinoma. Lancet Oncol 10:992–1000

    Article  PubMed  CAS  Google Scholar 

  6. Schor-Bardach R, Alsop DC, Perosa I et al (2009) Does arterial spin-labeling MR imaging-measured tumor perfusion correlate with renal cell cancer response to antiangiogenic therapy in a mouse model? Radiology 251:731–742

    Article  PubMed  Google Scholar 

  7. Laderoute KR, Amin K, Calaoagan JM et al (2006) 5′ AMP-activated protein kinase (AMPK) is induced by low oxygen and glucose deprivation conditions found in solid tumor microenvironments. Mol Cell Biol 26:5336–5347

    Article  PubMed  CAS  Google Scholar 

  8. Ouchi N, Shibata R, Walsh K (2005) AMP-activated protein kinase signaling stimulates VEGF expression and angiogenesis in skeletal muscle. Circ Res 96:838–846

    Article  PubMed  CAS  Google Scholar 

  9. Bi M, Naczki C, Koritzinsky M et al (2005) ER stress-regulated translation increases tolerance to extreme hypoxia and promotes tumor growth. EMBO J 24:3470–3482

    Article  PubMed  CAS  Google Scholar 

  10. Sitia R, Molteni SN (2004) Stress, protein misfolding and signaling: The redox connection. Sci STKE 239:27–33

    Google Scholar 

  11. Blais JD, Addison CL, Edge R et al (2006) PERK-dependent translational regulation promotes tumor cell adaptation and angiogenesis in response to hypoxic stress. Mol Cell Biol 26:9517–9527

    Article  PubMed  CAS  Google Scholar 

  12. Fels DR, Koumenis C (2006) The PERK/eIF2α/ATF4 module of the UPR in hypoxia resistance and tumor growth. Cancer Biol Ther 5:723–732

    PubMed  CAS  Google Scholar 

  13. Romero-Ramirez L, Csao H, Nelson D et al (2004) XBP1 is essential for survival under hypoxic conditions and is required for tumor growth. Cancer Res 64:5943–5951

    Article  PubMed  CAS  Google Scholar 

  14. Auf G, Jabouille A, Guerit S et al (2010) Inositol-requiring enzyme-1α is a key regulator of angiogenesis and invasion in malignant glioma. Proc Natl Acad Sci USA 107:15553–15559

    Article  PubMed  CAS  Google Scholar 

  15. Pereira ER, Liao N, Neale GA, Hendershot LM (2010) Transcriptional and post-transcriptional regulation of proangiogenic factors by the unfolded protein response. PLoS One 5:e12521

    Article  Google Scholar 

  16. Benedettini E, Sholl LM, Peyton M et al (2010) Met activation in non-small cell lung cancer is associated with de novo resistance to EGFR inhibitors and the development of brain metastasis. Am J Pathol 177:415–423

    Article  PubMed  CAS  Google Scholar 

  17. Bonanno L, Jirillo A, Favaretto A (2011) Mechanisms of acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors and new therapeutic perspectives in non-small cell lung cancer. Curr Drug Targets 12:922–933

    Article  PubMed  CAS  Google Scholar 

  18. Diamond JM, Melo JV (2011) Mechanisms of resistance to BCR-ABL kinase inhibitors. Leuk Lymphoma 52(Suppl 1):12–22

    Article  PubMed  CAS  Google Scholar 

  19. Zhang L, Bhasin M, Schor-Bardach R et al (2011) Resistance of renal cell carcinoma to sorafenib is mediated by potentially reversible gene expression. PLoS One 6:e19144

    Article  PubMed  CAS  Google Scholar 

  20. Hammers HJ, Verheul HM, Salumbides B et al (2010) Reversible epithelial to mesenchymal transition and acquired resistance to sunitinib in patients with renal cell carcinoma: evidence from a xenograft study. Mol Cancer Ther 9:11525–11535

    Article  Google Scholar 

  21. Elfiky AA, Cho DC, McDermott DF et al (2011) Predictors of response to sequential sunitinib and the impact of prior VEGF-targeted drug washout in patients with metastatic clear cell renal cell carcinoma. Urol Oncol 29(6):756–763

    Article  PubMed  CAS  Google Scholar 

  22. Zama IN, Hutson TE, Elson P et al (2010) Sunitinib rechallenge in metastatic renal cell carcinoma patients. Cancer 116:5400–5406

    Article  PubMed  CAS  Google Scholar 

  23. Deprimo SE, Bello CL, Smeraglia J et al (2007) Circulating protein biomarkers of pharmacodynamic activity of sunitinib in patients with metastatic renal cell carcinoma: modulation of VEGF and VEGF-related proteins. J Transl Med 5:32

    Article  PubMed  Google Scholar 

  24. Ebos JM, Lee CR, Christensen JG et al (2007) Multiple circulating proangiogenic factors induced by sunitinib malate are tumor-independent and correlate with antitumor efficacy. Proc Natl Acad Sci USA 104:17069–17074

    Article  PubMed  CAS  Google Scholar 

  25. Casanovas O, Hicklin DJ, Bergers G, Hanahan D (2005) Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 8:299–309

    Article  PubMed  CAS  Google Scholar 

  26. Huang D, Ding Y, Zhou M et al (2010) Interleukin-8 mediates resistance to antiangiogenic agent sunitinib in renal cell carcinoma. Cancer Res 70:1063–1071

    Article  PubMed  CAS  Google Scholar 

  27. Welti JC, Gourlaouen M, Powles T et al (2011) Fibroblast growth factor 2 regulates endothelial cell sensitivity to sunitinib. Oncogene 30:1183–1193

    Article  PubMed  CAS  Google Scholar 

  28. Bello E, Colella G, Scarlato V et al (2011) E-3810 is a potent dual inhibitor of VEGFR and FGFR that exerts antitumor activity in multiple preclinical models. Cancer Res 71:1396–1405

    Article  PubMed  CAS  Google Scholar 

  29. Peruzzi B, Bottaro DP (2006) Targeting the c-met signaling pathway in cancer. Clin Cancer Res 12:3657–3660

    Article  PubMed  CAS  Google Scholar 

  30. Shojaei F, Lee JH, Simmons BH et al (2010) HGF/c-met acts as an alternative angiogenic pathway in sunitinib-resistant tumors. Cancer Res 70:10090–10100

    Article  PubMed  CAS  Google Scholar 

  31. Maulik G, Shrikhande A, Kijima T et al (2002) Role of the hepatocyte growth factor receptor c-met in oncogenesis and potential for therapeutic inhibition. Cytokine Growth Factor Rev Drug Discov 13:41–59

    Article  CAS  Google Scholar 

  32. Bommi-Reddy A, Almeciga I, Sawyer J et al (2008) Kinase requirements in human cells: III. Altered kinase requirements in VHL-/- cancer cells detected in a pilot synthetic lethal screen. Proc Natl Acad Sci USA 105:16484–16489

    Article  PubMed  CAS  Google Scholar 

  33. Gale LM, McColl SR (1999) Chemokines: extracellular messengers for all occasions? Bioessays 21:17–28

    Article  PubMed  CAS  Google Scholar 

  34. Strieter RM, Polverini PJ, Arenberg DA, Kunkel SL (1995) The role of CXC chemokines as regulators of angiogenesis. Shock 4:155–160

    Article  PubMed  CAS  Google Scholar 

  35. Karakurum M, Shreeniwas R, Chen J et al (1994) Hypoxic induction of interleukin-8 gene expression in human endothelial cells. J Clin Invest 93:1564–1570

    Article  PubMed  CAS  Google Scholar 

  36. Mizukami Y, Jo WS, Duerr EM et al (2005) Induction of interleukin-8 preserves the angiogenic response in HIF-1-alpha-deficient colon cancer cells. Nat Med 11:992–997

    PubMed  CAS  Google Scholar 

  37. Strieter RM, Kunkel SL, Arenberg DA et al (1995) Interferon gamma-inducible protein (IP-10), a member of the CXC chemokine family, is an inhibitor of angiogenesis. Biochem Biophys Res Commun 210:51–57

    Article  PubMed  CAS  Google Scholar 

  38. Bhatt RS, Wang X, Zhang L et al (2010) Renal cancer resistance to antiangiogenic therapy is delayed by restoration of angiostatic signaling. Mol Cancer Ther 9:2793–2802

    Article  PubMed  CAS  Google Scholar 

  39. Yotsumoto F, Yagi H, Suzuki SO et al (2008) Validation of HB-EGF and amphiregulin as targets for human cancer therapy. Biochem Biophys Res Commun 365:55–61

    Article  Google Scholar 

  40. Weber KL, Doucet M, Price JE et al (2003) Blockade of epidermal growth factor receptor signaling leads to inhibition of renal cell carcinoma growth in the bone of nude mice. Cancer Res 63:2940–2947

    PubMed  CAS  Google Scholar 

  41. Cascone T, Herynk MH, Xu L et al (2011) Upregulated stromal EGFR and vascular remodeling in mouse xenograft models of angiogenesis inhibitor-resistant human lung adenocarcinoma. J Clin Invest 121:1313–1328

    Article  PubMed  CAS  Google Scholar 

  42. Rowinsky EK, Schwartz GH, Gollob JA et al (2004) Safety, pharmacokinetics, and activity of ABX-EGF, a fully human anti-epidermal growth factor receptor monoclonal antibody in patients with metastatic renal cell cancer. J Clin Oncol 22:3003–3015

    Article  PubMed  CAS  Google Scholar 

  43. Bukowski RM, Kabbinavar FF, Figlin RA et al (2007) Randomized phase II study of erlotinib combined with bevacizumab compared with bevacizumab alone in metastatic renal cancer. J Clin Oncol 25:4536–4541

    Article  PubMed  CAS  Google Scholar 

  44. Hashizume H, Falcon BL, Kuroda T et al (2010) Complementary actions of inhibitors of angiopoietin-2 and VEGF on tumor angiogenesis and growth. Cancer Res 70:2213–2223

    Article  PubMed  CAS  Google Scholar 

  45. Falcon BL, Hashizume H, Koumoutsakos P et al (2009) Contrasting actions of selective inhibitors of angiopoietin-1 and angiopoietin-2 on the normalization of tumor blood vessels. Am J Pathol 175:2159–2170

    Article  PubMed  CAS  Google Scholar 

  46. Mazzieri R, Pucci F, Moi D et al (2011) Targeting the ANG2/TIE2 axis inhibits tumor growth and metastasis by impairing angiogenesis and disabling rebounds of proangiogenic myeloid cells. Cancer Cell 19:512–526

    Article  PubMed  CAS  Google Scholar 

  47. Muramatsu M, Yamamoto S, Osawa T, Shibuya M (2010) Vascular endothelial growth factor receptor-1 signaling promotes mobilization of macrophage lineage cells from bone marrow and stimulates solid tumor growth. Cancer Res 70:8211–8221

    Article  PubMed  CAS  Google Scholar 

  48. Olumi AF, Grossfeld GD, Hayward SW et al (1999) Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res 59:5002–5011

    PubMed  CAS  Google Scholar 

  49. Crawford Y, Kasman I, Yu L et al (2009) PDGF-C mediates the angiogenic and tumorigenic properties of fibroblasts associated with tumors refractory to anti-VEGF treatment. Cancer Cell 15:21–34

    Article  PubMed  CAS  Google Scholar 

  50. Bhowmick NA, Chytil A, Plieth D et al (2004) TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 303:848–851

    Article  PubMed  CAS  Google Scholar 

  51. Orimo A, Gupta PB, Sgroi DC et al (2005) Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121:335–348

    Article  PubMed  CAS  Google Scholar 

  52. Li X, Eriksson U (2003) Novel PDGF family members: PDGF-C and PDGF-D. Cytokine Growth Factor Rev 14:91–98

    Article  PubMed  CAS  Google Scholar 

  53. Pan J, Mestas J, Burdick MD et al (2006) Stromal-derived factor-1 (SDF-1/CXCL12) and CXCR4 in renal cell carcinoma metastasis. Mol Cancer 5:56

    Article  PubMed  Google Scholar 

  54. Kioi M, Vogel H, Schultz G et al (2010) Inhibition of vasculogenesis, but not angiogenesis, prevents recurrence of glioblastoma after irradiation in mice. J Clin Invest 120:694–705

    Article  PubMed  CAS  Google Scholar 

  55. Murdoch C, Giannoudis A, Lewis CE (2004) Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood 104:2224–2234

    Article  PubMed  CAS  Google Scholar 

  56. Lewis CE, DePalma M, Naldini L (2007) Tie2-expressing monocytes and tumor angiogenesis: regulation by hypoxia and angiopoietin-2. Cancer Res 67:8429–8432

    Article  PubMed  CAS  Google Scholar 

  57. Venneri MA, DePalma M, Ponzoni M et al (2007) identification of proangiogenic TIE2-expressing monocytes (TEMs) in human peripheral blood and cancer. Blood 109:5276–5285

    Article  PubMed  CAS  Google Scholar 

  58. DePalma M, Venneri MA, Galli R et al (2005) Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 8:211–226

    Article  CAS  Google Scholar 

  59. Murdoch C, Tazzyman S, Webster S, Lewis CE (2007) Expression of Tie-2 by human monocytes and their responses to angiopoietin-2. J Immunol 178:7405–7411

    PubMed  CAS  Google Scholar 

  60. Luttun A, Tjwa M, Moons L et al (2002) Revascularization of ischemic tissues by PlGF treatment and inhibition of tumor angiogenesis, arthritis, and atherosclerosis by anti-Flt1. Nat Med 8:831–840

    PubMed  CAS  Google Scholar 

  61. Fischer C, Jonckx B, Mazzone M et al (2007) Anti-PlGF inhibits growth of VEGFR-inhibitorresistant tumors without affecting healthy vessels. Cell 131:463–475

    Article  PubMed  CAS  Google Scholar 

  62. Kaplan RN, Riba RD, Zacharoulis S et al (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438:820–827

    Article  PubMed  CAS  Google Scholar 

  63. Zeisberger SM, Odermatt B, Marty C et al (2006) Clodronate-liposome-mediated depletion of tumour-associated macrophages: a new and highly effective antiangiogenic therapy approach. Br J Cancer 95:272–281

    Article  PubMed  CAS  Google Scholar 

  64. Yang L, Huang J, Ren X et al (2008) Abrogation of TGFβ signaling in mammary carcinomas recruits Gr-1+CD11b+ myeloid cells that promote metastasis. Cancer Cell 13:23–35

    Article  PubMed  CAS  Google Scholar 

  65. Chan DA, Kawahara TLA, Sutphin PD et al (2009) Tumor vasculature is regulated by PHD2-mediated angiogenesis and bone marrow-derived cell recruitment. Cancer Cell 15:527–538

    Article  PubMed  CAS  Google Scholar 

  66. Shojaei F, Wu X, Malik AK et al (2007) Tumor refractoriness to anti-VEGF treatment is mediated by CD11b+Gr1+ myeloid cells. Nat Biotechnol 25:911–920

    Article  PubMed  CAS  Google Scholar 

  67. Yang L, DeBusk LM, Fukuda K et al (2004) Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell 6:409–421

    Article  PubMed  CAS  Google Scholar 

  68. Shojaei F, Wu X, Zhong C et al (2007) Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature 450:825–831

    Article  PubMed  CAS  Google Scholar 

  69. Zea AH, Rodriguez PC, Atkins MB et al (2005) Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion. Cancer Res 65:3044–3048

    PubMed  CAS  Google Scholar 

  70. Nagaraj S, Gupta K, Pisarev V et al (2007) Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat Med 13:828–835

    Article  PubMed  CAS  Google Scholar 

  71. Dancey JE (2009) Kinase Inhibitor 4 Minisymposium summary. Expert Rev Anticancer Ther 9:891–894

    Article  PubMed  CAS  Google Scholar 

  72. Lamont FR, Tomlinson DC, Cooper PA et al (2011) Small molecule FGF receptor inhibitors block FGFR-dependent urothelial carcinoma growth in vitro and in vivo. Br J Cancer 104:75–82

    Article  PubMed  CAS  Google Scholar 

  73. Renhowe PA, Pecchi S, Shafer CM et al (2009) Design, structure-activity relationships and in vivo characterization of 4-amino-3-benzimidazol-2-ylhydroquinolin-2-ones: a novel class of receptor tyrosine kinase inhibitors. J Med Chem 52:278–292

    Article  PubMed  CAS  Google Scholar 

  74. Matsui J, Yamamoto Y, Funahashi Y et al (2008) E7080, a novel inhibitor that targets multiple kinases, has potent antitumor activities against stem cell factor producing human small cell lung cancer H146, based on angiogenesis inhibition. Int J Cancer 122:664–671

    Article  PubMed  CAS  Google Scholar 

  75. Neal J, Wakelee H (2010) AMG-386, a selective angiopoietin-1/2-neutralizing peptibody for the potential treatment of cancer. Curr Opin Mol Ther 12:487–495

    PubMed  CAS  Google Scholar 

  76. Herbst RS, Hong D, Chap L et al (2009) Safety, pharmacokinetics, and antitumor activity of AMG386, a selective angiopoietin inhibitor, in adult patients with advanced solid tumors. J Clin Oncol 27:3557–3565

    Article  PubMed  CAS  Google Scholar 

  77. Coxon A, Bready J, Min H et al (2010) Context-dependent role of angiopoietin-1 inhibition in the suppression of angiogenesis and tumor growth: implications for AMG386, an angiopoietin-1/2-neutralizing peptibody. Mol Cancer Ther 9:2641–2651

    Article  PubMed  CAS  Google Scholar 

  78. Cunha SI, Pardali E, Thorikay M et al (2010) Genetic and pharmacological targeting of activin receptor-like kinase 1 impairs tumor growth and angiogenesis. J Exp Med 207:85100

    Article  Google Scholar 

  79. Hu-Lowe DD, Chen E, Zhang L et al (2011) Targeting activin receptor-like kinase 1 inhibits angiogenesis and tumorigenesis through a mechanism of action complementary to anti-VEGF therapies. Cancer Res 71:1362–1373

    Article  PubMed  CAS  Google Scholar 

  80. Mitchell D, Pobre EG, Mulivor AW et al (2010) ALK1-Fc inhibits multiple mediators of angiogenesis and suppresses tumor growth. Mol Cancer Ther 9:379–388

    Article  PubMed  CAS  Google Scholar 

  81. Zhang L, Lira M, Ching et al (2011) Combination strategy to circumvent the acquired resistance to VEGF receptor tyrosine kinase inhibitor in M24met melanoma in mice. Proc AACR Abstr 3270

    Google Scholar 

  82. Pandya SS, Mier JW, McDermott DF, Cho DC (2011) Addition of gemcitabine at the time of sunitinib resistance in metastatic renal cell cancer. BJU Int 108(8 Pt 2):E245–E249

    Article  PubMed  Google Scholar 

  83. Zimmer M, Ebert BL, Neil C et al (2008) Small molecule inhibitors of HIF-2a translation link its 5′UTR iron-responsive element to oxygen sensing. Mol Cell 32:838–848

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James W. Mier M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mier, J.W. (2012). Mechanisms of Resistance to VEGF-Directed Therapy and Implications for Future Trial Design. In: Figlin, R., Rathmell, W., Rini, B. (eds) Renal Cell Carcinoma. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-2400-0_14

Download citation

Publish with us

Policies and ethics