Skip to main content

The Genetic Basis of Kidney Cancer and Implications for Targeted Therapies

  • Chapter
  • First Online:
Book cover Renal Cell Carcinoma

Abstract

Kidney cancer is not a single disease but a number of different types of epithelial tumors of the kidney, each with a different histology, a different clinical course, and caused by a different gene defect. Studies of families with inherited forms of kidney cancer, including von Hippel–Lindau, hereditary papillary renal carcinoma, Birt–Hogg–Dubé syndrome, hereditary leiomyomatosis renal cell carcinoma, succinate dehydrogenase-familial renal cancer, and tuberous sclerosis complex, have led to the identification of seven kidney cancer predisposing genes—VHL, MET, FLCN, FH, SDH, TSC1, and TSC2. Knowledge of the pathways of these kidney cancer genes has provided the basis for development of targeted therapeutic approaches for patients with sporadic, non-inherited, as well as hereditary forms of kidney cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics, 2010. CA Cancer J Clin 60:277–300

    Article  PubMed  Google Scholar 

  2. Linehan WM, Rini B, Yang JC (2010) Cancer of the kidney. In: DeVita VT, Lawrence TS, Rosenberg SA (eds) Cancer: principles and practice of oncology, 9th edn. Lippincott Williams & Wilkins, Philadelphia, PA, pp 1161–1182

    Google Scholar 

  3. Linehan WM, Srinivasan R, Schmidt LS (2010) The genetic basis of kidney cancer: a metabolic disease. Nat Rev Urol 7:277–285

    Article  PubMed  CAS  Google Scholar 

  4. Lonser RR, Glenn GM, Walther MM, Chew EY, Libutti SK, Linehan WM et al (2003) von Hippel-Lindau disease. Lancet 361:2059–2067

    Article  PubMed  CAS  Google Scholar 

  5. Maher ER (2004) von Hippel-Lindau disease. Curr Mol Med 4:833–842

    Article  PubMed  CAS  Google Scholar 

  6. Stolle C, Glenn GM, Zbar B, Humphrey JS, Choyke P, Walther MM et al (1998) Improved detection of germline mutations in the von Hippel-Lindau disease tumor suppressor gene. Hum Mutat 12:417–423

    Article  PubMed  CAS  Google Scholar 

  7. Chen F, Kishida T, Yao M, Hustad T, Glavac D, Dean M et al (1995) Germline mutations in the von Hippel-Lindau disease tumor suppressor gene: correlations with phenotype. Hum Mutat 5:66–75

    Article  PubMed  CAS  Google Scholar 

  8. Crossey P, Eng C, Ginalska-Malinowska M, Lennard T, Wheeler D, Ponder B et al (1995) Molecular genetic diagnosis of von Hippel-Lindau disease in familial pheochromocytoma. J Med Genet 32:885–886

    Article  PubMed  CAS  Google Scholar 

  9. Stebbins CE, Kaelin WG Jr, Pavletich NP (1999) Structure of the VHL-ElonginC-ElonginB complex: implications for VHL tumor suppressor function. Science 284:455–461

    Article  PubMed  CAS  Google Scholar 

  10. Clifford SC, Cockman ME, Smallwood AC, Mole DR, Woodward ER, Maxwell PH, Ratcliffe PJ, Maher ER (2001) Contrasting effects on HIF-1alpha regulation by disease-causing pVHL mutations correlate with patterns of tumourigenesis in von Hippel-Lindau disease. Hum Mol Genet 10:1029–1038

    Article  PubMed  CAS  Google Scholar 

  11. Hoffman MA, Ohh M, Yang H, Klco JM, Ivan M, Kaelin WG Jr (2001) von Hippel-Lindau protein mutants linked to type 2C VHL disease preserve the ability to downregulate HIF. Hum Mol Genet 10:1019–1027

    Article  PubMed  CAS  Google Scholar 

  12. Maranchie JK, Afonso A, Albert PS, Kalyandrug S, Phillips JL, Zhou S et al (2004) Solid renal tumor severity in von Hippel Lindau disease is related to germline deletion length and location. Hum Mutat 23:40–46

    Article  PubMed  CAS  Google Scholar 

  13. Cohen AJ, Li FP, Berg S, Marchetto DJ, Tsai S, Jacobs SC et al (1979) Hereditary renal-cell carcinoma associated with a chromosomal translocation. N Engl J Med 301:592–595

    Article  PubMed  CAS  Google Scholar 

  14. Schmidt L, Li F, Brown RS, Berg S, Chen F, Wei MH et al (1995) Mechanism of tumorigenesis of renal carcinomas associated with the constitutional chromosome 3;8 translocation. Cancer J Sci Am 1:191–195

    PubMed  CAS  Google Scholar 

  15. Bonné AC, Bodmer D, Schoenmakers EFPM, van Ravenswaaij CM, Hoogerbrugge N, van Kessel AG (2004) Chromosome 3 translocations and familial renal cell cancer. Curr Mol Med 4:849–854

    Article  PubMed  Google Scholar 

  16. Bodmer D, Eleveld MJ, Ligtenberg MJ, Weterman MA, Janssen BA, Smeets DF et al (1998) An alternative route for multistep tumorigenesis in a novel case of hereditary renal cell cancer and a t(2;3)(q35;q21) chromosome translocation. Am J Hum Genet 62:1475–1483

    Article  PubMed  CAS  Google Scholar 

  17. Zbar B, Brauch H, Talmadge C, Linehan WM (1987) Loss of alleles of loci on the short arm of chromosome 3 in renal cell carcinoma. Nature 327:721–724

    Article  PubMed  CAS  Google Scholar 

  18. Seizinger BR, Rouleau GA, Ozelius LJ, Lane AH, Farmer GE, Lamiell JM et al (1988) Von Hippel-Lindau disease maps to the region of chromosome 3 associated with renal cell carcinoma. Nature 332:268–269

    Article  PubMed  CAS  Google Scholar 

  19. Latif F, Tory K, Gnarra JR, Yao M, Duh F-M, Orcutt ML et al (1993) Identification of the von Hippel-Lindau disease tumor suppressor gene. Science 260:1317–1320

    Article  PubMed  CAS  Google Scholar 

  20. Foster K, Prowse A, van den Berg A, Fleming S, Hulsbeek MM, Crossey PA et al (1994) Somatic mutations of the von Hippel-Lindau disease tumor suppressor gene in non-familial clear cell carcinoma. Hum Mol Genet 3:2169–2173

    Article  PubMed  CAS  Google Scholar 

  21. Gnarra JR, Tory K, Weng Y, Schmidt L, Wei MH, Li H et al (1994) Mutations of the VHL tumour suppressor gene in renal carcinoma. Nat Genet 7:85–90

    Article  PubMed  CAS  Google Scholar 

  22. Knudson AG Jr (1971) Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 68:820–823

    Article  PubMed  Google Scholar 

  23. Duan DR, Pause A, Burgess WH, Aso T, Chen DY, Garrett KP, Conaway RC, Conaway JW, Linehan WM, Klausner RD (1995) Inhibition of transcriptional elongation by the VHL tumor suppressor protein. Science 269:1402–1406

    Article  PubMed  CAS  Google Scholar 

  24. Kaelin WG Jr (2008) The von Hippel-Lindau tumor suppressor protein: O2 sensing and cancer. Nat Rev Cancer 8:865–873

    Article  PubMed  CAS  Google Scholar 

  25. Kibel A, Iliopoulos O, DeCaprio JA, Kaelin WG Jr (1995) Binding of the von Hippel-Lindau tumor suppressor protein to Elongin B and C. Science 269:1444–1446

    Article  PubMed  CAS  Google Scholar 

  26. Pause A, Lee S, Worrell RA, Chen DY, Burgess WH, Linehan WM, Klausner RD (1997) The von Hippel-Lindau tumor-suppressor gene product forms a stable complex with human CUL-2, a member of the Cdc53 family of proteins. Proc Natl Acad Sci USA 94:2156–2161

    Article  PubMed  CAS  Google Scholar 

  27. Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, Salic A, Asara JM, Lane WS, Kaelin WG Jr (2001) HIFα targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292:464–468

    Article  PubMed  CAS  Google Scholar 

  28. Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ et al (2001) Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292:468–472

    Article  PubMed  CAS  Google Scholar 

  29. Kaelin WG Jr, Ratcliffe PJ (2008) Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell 30:393–402

    Article  PubMed  CAS  Google Scholar 

  30. Kondo K, Kico J, Nakamura E, Lechpammer M, Kaelin WG Jr (2002) Inhibition of HIF is necessary for tumor suppression by the von Hippel-Lindau protein. Cancer Cell 1:237–246

    Article  PubMed  CAS  Google Scholar 

  31. Maranchie JK, Vasselli JR, Riss J, Bonifacino JS, Linehan WM, Klausner RD (2002) The contribution of VHL substrate binding and HIF1-alpha to the phenotype of VHL loss in renal cell carcinoma. Cancer Cell 1:247–255

    Article  PubMed  CAS  Google Scholar 

  32. Gordan JD, Lal P, Dondeti VR, Letrero R, Parekh KN, Oquendo CE et al (2008) HIF-alpha effects on c-Myc distinguish two subtypes of sporadic VHL-deficient clear cell renal carcinoma. Cancer Cell 14:435–446

    Article  PubMed  CAS  Google Scholar 

  33. Nickerson ML, Jaeger E, Shi Y, Durocher JA, Mahurkar S, Zaridze D et al (2008) Improved identification of von Hippel-Lindau gene alterations in clear cell renal tumors. Clin Cancer Res 14:4726–4734

    Article  PubMed  CAS  Google Scholar 

  34. Reisman D, Glaros S, Thompson EA (2009) The SWI/SNF complex and cancer. Oncogene 28:1653–1668

    Article  PubMed  CAS  Google Scholar 

  35. Varela I, Tarpey P, Raine K, Huang D, Ong CK, Stephens P et al (2011) Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature 469:539–542

    Article  PubMed  CAS  Google Scholar 

  36. Herring JC, Enquist EG, Chernoff A, Linehan WM, Choyke PL, Walther MM (2001) Parenchymal sparing surgery in patients with hereditary renal cell carcinoma: 10-year experience. J Urol 165:777–781

    Article  PubMed  CAS  Google Scholar 

  37. Matin SF, McCutcheon IE, Gombos DS, Waguespack S, Tannir NM, Wen S, Davis DW, Smith LA, Fuller G, Jonasch E (2010) Treatment of VHL patients with sunitinib: clinical outcomes and translational studies. J Clin Oncol 28:15s (suppl; abstr 3040)

    Google Scholar 

  38. Zbar B, Tory K, Merino M, Schmidt L, Glenn G, Choyke P et al (1994) Hereditary papillary renal cell carcinoma. J Urol 151:561–566

    PubMed  CAS  Google Scholar 

  39. Kovacs G, Fuzesi L, Emanual A, Kung HF (1991) Cytogenetics of papillary renal cell tumors. Genes Chromosomes Cancer 3:249–255

    Article  PubMed  CAS  Google Scholar 

  40. Schmidt L, Junker K, Weirich G, Glenn G, Choyke P, Lubensky I et al (1998) Two North American families with hereditary papillary renal carcinoma and identical novel mutations in the MET proto-oncogene. Cancer Res 58:1719–1722

    PubMed  CAS  Google Scholar 

  41. Schmidt LS, Nickerson ML, Angeloni D, Glenn GM, Walther MM, Albert PS et al (2004) Early onset hereditary papillary renal carcinoma: germline missense mutations in the tyrosine kinase domain of the met proto-oncogene. J Urol 172:1256–1261

    Article  PubMed  Google Scholar 

  42. Dharmawardana PG, Giubellino A, Bottaro DP (2004) Hereditary papillary renal carcinoma type I. Curr Mol Med 4:855–868

    Article  PubMed  CAS  Google Scholar 

  43. Schmidt L, Duh FM, Chen F, Kishida T, Glenn G, Choyke P et al (1997) Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat Genet 16:68–73

    Article  PubMed  CAS  Google Scholar 

  44. Lubensky IA, Schmidt LS, Zhuang Z, Weirich G, Pack S, Zambrano N et al (1999) Hereditary and sporadic papillary renal carcinomas with c-met mutations share a distinct morphological phenotype. Am J Pathol 155:517–526

    Article  PubMed  CAS  Google Scholar 

  45. Salvi A, Marchina E, Benetti A, Grigolato P, De Petro G, Barlati S (2008) Germline and somatic c-met mutations in multifocal/bilateral and sporadic papillary renal carcinomas of selected patients. Int J Onocol 33:271–276

    CAS  Google Scholar 

  46. Schmidt L, Junker K, Nakaigawa N, Kinjerski T, Weirich G, Miller M et al (1999) Novel mutations of the MET proto-oncogene in papillary renal carcinomas. Oncogene 18:2343–2350

    Article  PubMed  CAS  Google Scholar 

  47. Birchmeier C, Birchmeier W, Gherardi E, Vande Woude GF (2003) Met, metastasis, motility and more. Nat Rev Mol Cell Biol 4:915–925

    Article  PubMed  CAS  Google Scholar 

  48. Gentile A, Trusolino L, Comoglio PM (2008) The Met tyrosine kinase receptor in development and cancer. Cancer Metastasis Rev 27:85–94

    Article  PubMed  CAS  Google Scholar 

  49. Giordano S, Maffe A, Williams TA, Artigiani S, Gual P, Bardelli A, Basilico C, Michieli P, Comoglio PM (2000) Different point mutations in the met oncogene elicit distinct biological properties. FASEB J 14:399–406

    PubMed  CAS  Google Scholar 

  50. Jeffers M, Schmidt L, Nakaigawa N, Webb CP, Weirich G, Kishida T, Zbar B, Vande Woude GF (1997) Activating mutations for the met tyrosine kinase receptor in human cancer. Proc Natl Acad Sci USA 94:11445–11450

    Article  PubMed  CAS  Google Scholar 

  51. Jeffers M, Fiscella M, Webb CP, Anver M, Koochekpour S, Vande Woude GF (1998) The mutationally activated Met receptor mediates motility and metastasis. Proc Natl Acad Sci USA 95:14417–14422

    Article  PubMed  CAS  Google Scholar 

  52. Miller M, Ginalski K, Lesyng B, Nakaigawa N, Schmidt L, Zbar B (2001) Structural basis of oncogenic activation caused by point mutations in the kinase domain of the MET proto-oncogene: modeling studies. Proteins 44:32–43

    Article  PubMed  CAS  Google Scholar 

  53. Fischer J, Palmedo G, von Knobloch R, Bugert P, Prayer-Galetti T, Pagano F, Kovacs G (1998) Duplication and overexpression of the mutant allele of the MET proto-oncogene in multiple hereditary papillary renal cell tumours. Oncogene 17:733–739

    Article  PubMed  CAS  Google Scholar 

  54. Zhuang Z, Park WS, Pack S, Schmidt L, Vortmeyer AO, Pak E et al (1998) Trisomy 7: harboring non-random duplication of the mutant MET allele in hereditary papillary renal carcinomas. Nat Genet 20:66–69

    Article  PubMed  CAS  Google Scholar 

  55. Pennacchietti S, Michieli P, Galluzzo M, Mazzone M, Giordano S, Comoglio PM (2003) Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell 3:347–361

    Article  PubMed  Google Scholar 

  56. Zimmer M, Ebert BL, Neil C, Brenner K, Papaioannou I, Melas A et al (2008) Small-molecule inhibitors of HIF-2a translation link its 5′UTR iron-responsive element to oxygen sensing. Mol Cell 32:838–848

    Article  PubMed  CAS  Google Scholar 

  57. Chernoff A, Choyke PL, Linehan WM, Walther MM (2001) Parenchymal sparing surgery in a patient with multiple bilateral papillary renal cancer. J Urol 165:1623–1624

    Article  PubMed  CAS  Google Scholar 

  58. Srinivasan R, Linehan WM, Vaishampayan U, Logan T, Shankar SM, Sherman LJ et al (2009) A phase II study of two dosing regimens of GSK 1363089 (GSK089), a dual MET/VEGFR2 inhibitor, in patients (pts) with papillary renal carcinoma (PRC). J Clin Oncol 27:15s (suppl; abstr 5103)

    Article  Google Scholar 

  59. Birt AR, Hogg GR, Dube WJ (1977) Hereditary multiple fibrofolliculomas with trichodiscomas and acrochordons. Arch Dermatol 113:1674–1677

    Article  PubMed  CAS  Google Scholar 

  60. Toro JR, Glenn GM, Duray PH, Darling T, Weirich G, Zbar B, Linehan M, Turner ML (1999) Birt-Hogg-Dube syndrome: a novel marker of kidney neoplasia. Arch Dermatol 135:1195–1202

    Article  PubMed  CAS  Google Scholar 

  61. Zbar B, Alvord WG, Glenn GM, Turner M, Pavlovich CP, Schmidt L et al (2002) Risk of renal and colonic neoplasms and spontaneous pneumothorax in the Birt-Hogg-Dube syndrome. Cancer Epidemiol Biomarkers Prev 11:393–400

    PubMed  Google Scholar 

  62. Pavlovich CP, Walther MM, Eyler RA, Hewitt SM, Zbar B, Linehan WM, Merino MJ (2002) Renal tumors in the Birt-Hogg-Dube syndrome. Am J Surg Pathol 26:1542–1552

    Article  PubMed  Google Scholar 

  63. Kluger N, Giraud S, Coupier I, Avril MF, Dereure O, Guillot B, Richard S, Bessis D (2010) Birt-Hogg-Dubé syndrome: clinical and genetic studies of 10 French families. Br J Dermatol 162:527–537

    Article  PubMed  CAS  Google Scholar 

  64. Schmidt LS, Nickerson ML, Warren MB, Glenn GM, Toro JR, Merino MJ et al (2005) Germline BHD-mutation spectrum and phenotype analysis of a large cohort of families with Birt-Hogg-Dube syndrome. Am J Hum Genet 76:1023–1033

    Article  PubMed  CAS  Google Scholar 

  65. Toro JR, Wei MH, Glenn GM, Weinreich M, Toure O, Vocke C et al (2008) BHD mutations, clinical and molecular genetic investigations of Birt-Hogg-Dubé syndrome: a new series of 50 families and a review of published reports. J Med Genet 45:321–331

    Article  PubMed  CAS  Google Scholar 

  66. Leter EM, Koopmans AK, Gille JJ, van Os TA, Vittoz GG, David EF et al (2008) Birt-Hogg-Dubé syndrome: clinical and genetic studies of 20 families. J Invest Dermatol 128:45–49

    Article  PubMed  CAS  Google Scholar 

  67. Khoo SK, Giraud S, Kahnoski K, Chen J, Motorna O, Nickolov R et al (2002) Clinical and genetic studies of Birt-Hogg-Dubé syndrome. J Med Genet 39:906–912

    Article  PubMed  CAS  Google Scholar 

  68. Nahorski MS, Lim DH, Martin L, Gille JJ, McKay K, Rehal PK et al (2010) Investigation of the Birt-Hogg-Dube tumour suppressor gene (FLCN) in familial and sporadic colorectal cancer. J Med Genet 47:385–390

    Article  PubMed  CAS  Google Scholar 

  69. Khoo SK, Bradley M, Wong FK, Hedblad MA, Nordenskjöld M, Teh BT (2001) Birt-Hogg-Dubé syndrome: mapping of a novel hereditary neoplasia gene to chromosome 17p12-q11.2. Oncogene 20:5239–5242

    Article  PubMed  CAS  Google Scholar 

  70. Schmidt LS, Warren MB, Nickerson ML, Weirich G, Matrosova V, Toro JR et al (2001) Birt-Hogg-Dubé syndrome, a genodermatosis associated with spontaneous pneumothorax and kidney neoplasia, maps to chromosome 17p11.2. Am J Hum Genet 69:876–882

    Article  PubMed  CAS  Google Scholar 

  71. Nickerson ML, Warren MB, Toro JR, Matrosova V, Glenn G, Turner ML et al (2002) Mutations in a novel gene lead to kidney tumors, lung wall defects, and benign tumors of the hair follicle in patients with the Birt-Hogg-Dube syndrome. Cancer Cell 2:157–164

    Article  PubMed  CAS  Google Scholar 

  72. Benhammou JN, Vocke CD, Santani A, Schmidt LS, Baba M, Seyama K, Wu X, Korolevich S, Nathanson KL, Stolle CA, Linehan WM (2011) Identification of intragenic deletions and duplication in the FLCN gene in Birt-Hogg-Dubé syndrome. Genes Chromosomes Cancer 50:466–477

    Article  PubMed  CAS  Google Scholar 

  73. Kunogi M, Kurihara M, Ikegami TS, Kobayashi T, Shindo N, Kumasaka T et al (2010) Clinical and genetic spectrum of Birt-Hogg-Dube syndrome patients in whom pneumothorax and/or multiple lung cysts are the presenting feature. J Med Genet 47:281–287

    Article  PubMed  CAS  Google Scholar 

  74. Gad S, Lefevre SH, Khoo SK, Giraud S, Vieillefond A, Vasiliu V et al (2007) Mutations in BHD and TP53 genes, but not in HNF1beta gene, in a large series of sporadic chromophobe renal cell carcinoma. Br J Cancer 96:336–340

    Article  PubMed  CAS  Google Scholar 

  75. Khoo SK, Kahnoski K, Sugimura J, Petillo D, Chen J, Shockley K et al (2003) Inactivation of BHD in sporadic renal tumors. Cancer Res 63:4583–4587

    PubMed  CAS  Google Scholar 

  76. Nagy A, Zoubakov D, Stupar Z, Kovacs G (2004) Lack of mutation of the folliculin gene in sporadic chromophobe renal cell carcinoma and renal oncocytoma. Int J Cancer 109:472–475

    Article  PubMed  CAS  Google Scholar 

  77. Vocke CD, Yang Y, Pavlovich CP, Schmidt LS, Nickerson ML, Torres-Cabala CA, Merino MJ, Walther MM, Zbar B, Linehan WM (2005) High frequency of somatic frameshift BHD gene mutations in Birt-Hogg-Dube-associated renal tumors. J Natl Cancer Inst 97:931–935

    Article  PubMed  CAS  Google Scholar 

  78. Hasumi Y, Baba M, Ajima R, Hasumi H, Valera VA, Klein ME et al (2009) Homozygous loss of BHD causes early embryonic lethality and kidney tumor development with activation of mTORC1 and mTORC2. Proc Natl Acad Sci USA 106:18722–18727

    Article  PubMed  CAS  Google Scholar 

  79. Baba M, Hong SB, Sharma N, Warren MB, Nickerson ML, Iwamatsu A et al (2006) Folliculin encoded by the BHD gene interacts with a binding protein, FNIP1, and AMPK, and is involved in AMPK and mTOR signaling. Proc Natl Acad Sci USA 103:15552–15557

    Article  PubMed  CAS  Google Scholar 

  80. Hasumi H, Baba M, Hong SB, Hasumi Y, Huang Y, Yao M, Valera VA, Linehan WM, Schmidt LS (2008) Identification and characterization of a novel folliculin-interacting protein FNIP2. Gene 415:60–67

    Article  PubMed  CAS  Google Scholar 

  81. Takagi Y, Kobayashi T, Shiono M, Wang L, Piao X, Sun G, Zhang D, Abe M, Hagiwara Y, Takahashi K, Hino O (2008) Interaction of folliculin (Birt-Hogg-Dubé gene product) with a novel Fnip1-like (FnipL/Fnip2) protein. Oncogene 27:5339–5347

    Article  PubMed  CAS  Google Scholar 

  82. Zoncu R, Efeyan A, Sabatini DM (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12:21–35

    Article  PubMed  CAS  Google Scholar 

  83. Baba M, Furihata M, Hong SB, Tessarollo L, Haines DC, Southon E et al (2008) Kidney-targeted Birt-Hogg-Dubé gene inactivation in a mouse model: Erk1/2 and Akt-mTOR activation, cell hyperproliferation, and polycystic kidneys. J Natl Cancer Inst 100:140–154

    Article  PubMed  CAS  Google Scholar 

  84. Chen J, Futami K, Petillo D, Peng J, Wang P, Knol J et al (2008) Deficiency of FLCN in mouse kidney led to development of polycystic kidneys and renal neoplasia. PLoS One 3:e3581

    Article  PubMed  CAS  Google Scholar 

  85. van Slegtenhorst M, Khabibullin D, Hartman TR, Nicolas E, Kruger WD, Henske EP (2007) The Birt-Hogg-Dube and tuberous sclerosis complex homologs have opposing roles in amino acid homeostasis in Schizosaccharomyces pombe. J Biol Chem 282:24583–24590

    Article  PubMed  CAS  Google Scholar 

  86. Hartman TR, Nicolas E, Klein-Szanto A, Al-Saleem T, Cash TP, Simon MC, Henske EP (2009) The role of the Birt-Hogg-Dubé protein in mTOR activation and renal tumorigenesis. Oncogene 28:1594–1604

    Article  PubMed  CAS  Google Scholar 

  87. Hudon V, Sabourin S, Dydensborg AB, Kottis V, Ghazi A, Paquet M et al (2010) Renal tumor suppressor function of the Birt-Hogg-Dube syndrome gene product folliculin. J Med Genet 47:182–189

    Article  PubMed  CAS  Google Scholar 

  88. Cash TP, Gruber JJ, Hartman TR, Henske EP, Simon MC (2011) Loss of the Birt-Hogg-Dubé tumor suppressor results in apoptotic resistance due to aberrant TGFβ-mediated transcription. Oncogene 30:2534–2546

    Article  PubMed  CAS  Google Scholar 

  89. Hong SB, Oh H, Valera VA, Stull J, Ngo DT, Baba M, Merino MJ, Linehan WM, Schmidt LS (2010) Tumor suppressor FLCN inhibits tumorigenesis of a FLCN-null renal cancer cell line and regulates expression of key molecules in TGF-beta signaling. Mol Cancer 9:160

    Article  PubMed  CAS  Google Scholar 

  90. Preston RS, Philp A, Claessens T, Gijezen L, Dydensborg AB, Dunlop EA et al (2011) Absence of the Birt-Hogg-Dubé gene product is associated with increased hypoxia-inducible factor transcriptional activity and a loss of metabolic flexibility. Oncogene 30:1159–1173

    Article  PubMed  CAS  Google Scholar 

  91. Pavlovich CP, Grubb RL, Hurley K, Glenn GM, Toro J, Schmidt LS, Torres-Cabala C, Merino MJ, Zbar B, Choyke P, Walther MM, Linehan WM (2005) Evaluation and management of renal tumors in the Birt-Hogg-Dube syndrome. J Urol 173:1482–1486

    Article  PubMed  Google Scholar 

  92. Launonen V, Vierimaa O, Kiuru M, Isola J, Roth S, Pukkala E, Sistonen P, Herva R, Aaltonen LA (2001) Inherited susceptibility to uterine leiomyomas and renal cell cancer. Proc Natl Acad Sci USA 98:3387–3392

    Article  PubMed  CAS  Google Scholar 

  93. Smit DL, Mensenkamp AR, Badeloe S, Breuning MH, Simon ME, van Spaendonck KY et al (2011) Hereditary leiomyomatosis and renal cell cancer in families referred for fumarate hydratase germline mutation analysis. Clin Genet 79:49–59

    Article  PubMed  CAS  Google Scholar 

  94. Toro JR, Nickerson ML, Wei MH, Warren MB, Glenn GM, Turner ML et al (2003) Mutations in the fumarate hydratase gene cause hereditary leiomyomatosis and renal cell cancer in families in North America. Am J Hum Genet 73:95–106

    Article  PubMed  CAS  Google Scholar 

  95. Wei MH, Toure O, Glenn GM, Pithukpakorn M, Neckers L, Stolle C et al (2006) Novel mutations in FH and expansion of the spectrum of phenotypes expressed in families with hereditary leiomyomatosis and renal cell cancer. J Med Genet 43:18–27

    Article  PubMed  CAS  Google Scholar 

  96. Merino MJ, Torres-Cabala C, Pinto PA, Linehan WM (2007) The morphologic spectrum of kidney tumors in hereditary leiomyomatosis and renal cell carcinoma (HLRCC) syndrome. Am J Surg Pathol 31:1578–1585

    Article  PubMed  Google Scholar 

  97. Alam NA, Rowan AJ, Wortham NC, Pollard PJ, Mitchell M, Tyrer JP et al (2003) Genetic and functional analyses of FH mutations in multiple cutaneous and uterine leiomyomatosis, hereditary leiomyomatosis and renal cancer, and fumarate hydratase deficiency. Hum Mol Genet 12:1241–1252

    Article  PubMed  CAS  Google Scholar 

  98. Kiuru M, Launonen V (2004) Hereditary leiomyomatosis and renal cell cancer (HLRCC). Curr Mol Med 4:869–875

    Article  PubMed  CAS  Google Scholar 

  99. Tomlinson IP, Alam NA, Rowan AJ, Barclay E, Jaeger EE, Kelsell D et al (2002) Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat Genet 30:406–410

    Article  PubMed  CAS  Google Scholar 

  100. Pithukpakorn M, Wei MH, Toure O, Steinbach PJ, Glenn GM, Zbar B, Linehan WM, Toro JR (2006) Fumarate hydratase enzyme activity in lymphoblastoid cells and fibroblasts of individuals in families with hereditary leiomyomatosis and renal cell cancer. J Med Genet 43:755–762

    Article  PubMed  CAS  Google Scholar 

  101. Kiuru M, Lehtonen R, Arola J, Salovaara R, Jarvinen H, Aittomaki K et al (2002) Few FH mutations in sporadic counterparts of tumor types observed in hereditary leiomyomatosis and renal cell cancer families. Cancer Res 62:4554–4557

    PubMed  CAS  Google Scholar 

  102. Sudarshan S, Pinto PA, Neckers L, Linehan WM (2007) Mechanisms of disease: hereditary leiomyomatosis and renal cell cancer—a distinct form of hereditary kidney cancer. Nat Clin Pract Urol 4:104–110

    Article  PubMed  CAS  Google Scholar 

  103. Isaacs JS, Jung YJ, Mole DR, Lee S, Torres-Cabala C, Chung YL et al (2005) HIF overexpression correlates with biallelic loss of fumarate hydratase in renal cancer: novel role of fumarate in regulation of HIF stability. Cancer Cell 8:143–153

    Article  PubMed  CAS  Google Scholar 

  104. Pollard PJ, Brière JJ, Alam NA, Barwell J, Barclay E, Wortham NC et al (2005) Accumulation of Krebs cycle intermediates and over-expression of HIF1alpha in tumours which result from germline FH and SDH mutations. Hum Mol Genet 14:2231–2239

    Article  PubMed  CAS  Google Scholar 

  105. Sudarshan S, Sourbier C, Kong HS, Block K, Valera Romero VA, Yang Y et al (2009) Fumarate hydratase deficiency in renal cancer induces glycolytic addiction and hypoxia-inducible transcription factor 1alpha stabilization by glucose-dependent generation of reactive oxygen species. Mol Cell Biol 29:4080–4090

    Article  PubMed  CAS  Google Scholar 

  106. Ashrafian H, O’Flaherty L, Adam J, Steeples V, Chung YL, East P et al (2010) Expression profiling in progressive stages of fumarate-hydratase deficiency: the contribution of metabolic changes to tumorigenesis. Cancer Res 70:9153–9165

    Article  PubMed  CAS  Google Scholar 

  107. Grubb RL III, Franks ME, Toro J, Middelton L, Choyke L, Fowler S et al (2007) Hereditary leiomyomatosis and renal cell cancer: a syndrome associated with an aggressive form of inherited renal cancer. J Urol 177:2074–2080

    Article  PubMed  CAS  Google Scholar 

  108. Astuti D, Latif F, Dallol A, Dahia PL, Douglas F, George E et al (2001) Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocytoma and to familial paraganglioma. Am J Hum Genet 69:49–54

    Article  PubMed  CAS  Google Scholar 

  109. Pawlu C, Bausch B, Neumann HPH (2005) Mutations of the SDHB and SDHD genes. Fam Cancer 4:49–54

    Article  PubMed  Google Scholar 

  110. Vanharanta S, Buchta M, McWhinney SR, Virta SK, Peczkowska M, Morrison CD et al (2004) Early-onset renal cell carcinoma as a novel extraparaganglial component of SDHB-associated heritable paraganglioma. Am J Hum Genet 74:153–159

    Article  PubMed  CAS  Google Scholar 

  111. Henderson A, Douglas F, Perros P, Morgan C, Maher ER (2009) SDHB-associated renal oncocytoma suggests a broadening of the renal phenotype in hereditary paragangliomatosis. Fam Cancer 8:257–260

    Article  PubMed  Google Scholar 

  112. Ricketts C, Woodward ER, Killick P, Morris MR, Astuti D, Latif F et al (2008) Germline SDHB mutations and familial renal cell carcinoma. J Natl Cancer Inst 100:1260–1262

    Article  PubMed  CAS  Google Scholar 

  113. Srirangalingam U, Walker L, Khoo B, MacDonald F, Gardner D, Wilkin TJ et al (2008) Clinical manifestations of familial paraganglioma and phaeochromocytomas in succinate dehydrogenase B (SDH-B) gene mutation carriers. Clin Endocrinol (Oxf) 69:587–596

    Article  CAS  Google Scholar 

  114. Ricketts CJ, Forman JR, Rattenberry E, Bradshaw N, Lalloo F, Izatt L et al (2010) Tumor risks and genotype-phenotype-proteotype analysis in 358 patients with germline mutations in SDHB and SDHD. Hum Mutat 31:41–51

    Article  PubMed  CAS  Google Scholar 

  115. Selak MA, Armour SM, MacKenzie ED, Boulahbel H, Watson DG, Mansfield KD, Pan Y, Simon MC, Thompson CB, Gottlieb E (2005) Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell 7:77–85

    Article  PubMed  CAS  Google Scholar 

  116. Crino PB, Nathanson KL, Henske EP (2006) The tuberous sclerosis complex. N Engl J Med 355:1345–1356

    Article  PubMed  CAS  Google Scholar 

  117. Bjornsson J, Short MP, Kwiatkowski DJ, Henske EP (1996) Tuberous sclerosis-associated renal cell carcinoma. Clinical, pathological, and genetic features. Am J Pathol 149:1–8

    Google Scholar 

  118. Robertson FM, Cendron M, Klauber GT, Harris BH (1996) Renal cell carcinoma in association with tuberous sclerosis in children. J Pediatr Surg 31:729–730

    Article  PubMed  CAS  Google Scholar 

  119. Washecka R, Hanna M (1991) Malignant renal tumors in tuberous sclerosis. Urology 37:340–343

    Article  PubMed  CAS  Google Scholar 

  120. van Slegtenhorst M, de Hoogt R, Hermans C, Nellist M, Janssen B, Verhoef S et al (1997) Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science 277:805–808

    Article  PubMed  Google Scholar 

  121. The European Chromosome 16 Tuberous Sclerosis Consortium (1993) Identification and characterization of the tuberous sclerosis gene on chromosome 16. Cell 75:1305–1315

    Article  Google Scholar 

  122. Niida Y, Stemmer-Rachamimov AO, Logrip M, Tapon D, Perez R, Kwiatkowski DJ et al (2001) Survey of somatic mutations in tuberous sclerosis complex (TSC) hamartomas suggests different genetic mechanisms for pathogenesis of TSC lesions. Am J Hum Genet 69:493–503

    Article  PubMed  CAS  Google Scholar 

  123. Sato T, Seyama K, Fujii H, Maruyama H, Setoguchi Y, Iwakami S, Fukuchi Y, Hino O (2002) Mutation analysis of the TSC1 and TSC2 genes in Japanese patients with pulmonary lymphangioleiomyomatosis. J Hum Genet 47:20–28

    Article  PubMed  CAS  Google Scholar 

  124. Inoki K, Guan KL (2009) Tuberous sclerosis complex, implication from a rare genetic disease to common cancer treatment. Hum Mol Genet 18:R94–R100

    Article  PubMed  CAS  Google Scholar 

  125. Shaw RJ, Bardeesy N, Manning BD, Lopez L, Kosmatka M, DePinho RA et al (2004) The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell 6:91–99

    Article  PubMed  CAS  Google Scholar 

  126. Bissler JJ, McCormack FX, Young LR, Elwing JM, Chuck G, Leonard JM et al (2008) Sirolimus for angiomyolipoma in tuberous sclerosis complex or lymphangioleiomyomatosis. N Engl J Med 358:140–151

    Article  PubMed  CAS  Google Scholar 

  127. Linehan WM, Walther MM, Zbar B (2003) The genetic basis of cancer of the kidney. J Urol 170:2163–2172

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported in part by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research. This project has been funded in part with federal funds from the National Cancer Institute, National Institutes of Health, under contract HHSN261200800001E. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the US Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Marston Linehan M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Schmidt, L.S., Srinivasan, R., Linehan, W.M. (2012). The Genetic Basis of Kidney Cancer and Implications for Targeted Therapies. In: Figlin, R., Rathmell, W., Rini, B. (eds) Renal Cell Carcinoma. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-2400-0_1

Download citation

Publish with us

Policies and ethics