Skip to main content

Redox State in Mediating Methylmercury Neurotoxicity

  • Chapter
  • First Online:
Methylmercury and Neurotoxicity

Part of the book series: Current Topics in Neurotoxicity ((Current Topics Neurotoxicity,volume 2))

Abstract

Methylmercury (MeHg) is an environmental pollutant that has been reported to induce neurotoxicity in both animals and humans. Although the molecular mechanisms underlying MeHg toxicity remain elusive, several lines of evidence indicate that MeHg is able to change the redox state of particular redox couples (i.e., reduced/oxidized glutathione (GSH), reduced/oxidized sulfhydryl or selenohydryl proteins, etc.), thus changing the entire cellular redox environment. These events contribute to oxidative stress, which culminates in neurotoxicity. Although MeHg-induced changes in the redox state are related to its direct interactions with nucleophilic molecules, such as GSH or sulfhydryl/selenohydryl proteins, it is noteworthy that MeHg can cause neurotoxicity even when present in concentrations 100- to 1,000-fold less than those of these nucleophiles. Accordingly, recent evidence indicates that specific nucleophilic molecules (not yet fully identified) are primarily and/or preferentially targeted by MeHg due to their particular high reactivity toward this toxicant, thus initiating a cascade of molecular events that culminate in neurotoxicity.

In this chapter, we give an initial background on the general concepts regarding the redox state and its important role in counteracting oxidative stress in the central nervous system, followed by discussions on the potential interaction of MeHg with redox couplers (mainly nucleophilic thiol- and selenol-containing molecules). Taking into account that the knowledge concerning such molecules (“primary MeHg neurotargets”) and their involvement in MeHg-induced neurotoxicity is not yet completely understood, further research in this area is well warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aizenman E, Lipton SA, Loring RH. Selective modulation of NMDA responses by reduction and oxidation. Neuron. 1989;2:1257–63.

    Article  PubMed  CAS  Google Scholar 

  • Allen JW, Mutkus LA, Aschner M. Methylmercury-mediated inhibition of 3H-D-aspartate transport in cultured astrocytes is reversed by the antioxidant catalase. Brain Res. 2001;902:92–100.

    Article  PubMed  CAS  Google Scholar 

  • Allen JW, Shanker G, Aschner M. Methylmercury inhibits the in vitro uptake of the glutathione precursor, cystine, in astrocytes, but not in neurons. Brain Res. 2001;894:131–40.

    Article  PubMed  CAS  Google Scholar 

  • Araie H, Shiraiwa Y. Selenium utilization strategy by microalgae. Molecules. 2009;14:4880–91.

    Article  PubMed  CAS  Google Scholar 

  • Arriza JL, Fairman WA, Wadiche JI, Murdoch GH, Kavanaugh MP, Amara SG. Functional comparisons of three glutamate transporter subtypes cloned from human motor cortex. J Neurosci. 1994;14:5559–69.

    PubMed  CAS  Google Scholar 

  • Asahina M, Yamada T, Yoshiyama Y, Yodoi J. Expression of adult T cell leukemia-derived factor in human brain and peripheral nerve tissues. Dement Geriatr Cogn Disord. 1998;9:181–5.

    Article  PubMed  CAS  Google Scholar 

  • Aschner M, Eberle NB, Goderie S, Kimelberg HK. Methylmercury uptake in rat primary astrocyte cultures: the role of the neutral amino acid transport system. Brain Res. 1990;521:221–8.

    Article  PubMed  CAS  Google Scholar 

  • Aschner M, Mullaney KJ, Wagoner D, Lash LH, Kimelberg HK. Intracellular glutathione (GSH) levels modulate mercuric chloride (MC)- and methylmercuric chloride (MeHgCl)-induced amino acid release from neonatal rat primary astrocytes cultures. Brain Res. 1994;664:133–40.

    Article  PubMed  CAS  Google Scholar 

  • Aschner M, Yao CP, Allen JW, Tan KH. Methylmercury alters glutamate transport in astrocytes. Neurochem Int. 2000;37:199–206.

    Article  PubMed  CAS  Google Scholar 

  • Ballatori N, Clarkson TW. Developmental changes in the biliary excretion of methylmercury and glutathione. Science. 1982;216:61–3.

    Article  PubMed  CAS  Google Scholar 

  • Barber DS, LoPachin RM. Proteomic analysis of acrylamide-protein adduct formation in rat brain synaptosomes. Toxicol Appl Pharmacol. 2004;201:120–36.

    Article  PubMed  CAS  Google Scholar 

  • Basu N, Scheuhammer AM, Rouvinen-Watt K, Evans RD, Grochowina N, Chan LHM. The effects of mercury on muscarinic cholinergic receptor subtypes (M1 and M2) in captive mink. Neurotoxicology. 2008;29:328–34.

    Article  PubMed  CAS  Google Scholar 

  • Berman SB, Hastings TG. Inhibition of glutamate transport in synaptosomes by dopamine oxidation and reactive oxygen species. J Neurochem. 1997;69:1185–95.

    Article  PubMed  CAS  Google Scholar 

  • Braestrup C, Andersen PH. Effects of heavy metal cations and other sulfhydryl reagents on brain dopamine D1 receptors: evidence for involvement of a thiol group in the conformation of the active site. J Neurochem. 1987;48:1667–72.

    Article  PubMed  CAS  Google Scholar 

  • Branco V, Canário J, Holmgren A, Carvalho C. Inhibition of the thioredoxin system in the brain and liver of zebra-seabreams exposed to waterborne methylmercury. Toxicol Appl Pharmacol. 2011;251:9.

    Article  CAS  Google Scholar 

  • Brookes N, Kristt DA. Inhibition of amino acid transport and protein synthesis by HgCl2 and methylmercury in astrocytes: selectivity and reversibility. J Neurochem. 1989;53:1228–37.

    Article  PubMed  CAS  Google Scholar 

  • Carlberg I, Mannervik B. Glutathione reductase. Methods Enzymol. 1985;113:484–90.

    Article  PubMed  CAS  Google Scholar 

  • Carvalho MC, Franco JL, Ghizoni H, et al. Effects of 2,3-dimercapto-1-propanesulfonic acid (DMPS) on methylmercury-induced locomotor deficits and cerebellar toxicity in mice. Toxicology. 2007;239:195–203.

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Berry MJ. Selenium and selenoproteins in the brain and brain diseases. J Neurochem. 2003;86:1–12.

    Article  PubMed  CAS  Google Scholar 

  • Cidon S, Sihra TS. Characterization of a H+−ATPase in rat brain synaptic vesicles. Coupling to L-glutamate transport. J Biol Chem. 1989;264:8281–8.

    PubMed  CAS  Google Scholar 

  • Circu ML, Aw TY. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med. 2010;48:749–62.

    Article  PubMed  CAS  Google Scholar 

  • Clarkson TW, Magos L, Myers GJ. The toxicology of mercury–current exposures and clinical manifestations. N Engl J Med. 2003;349:1731–7.

    Article  PubMed  CAS  Google Scholar 

  • Clavreul N, Adachi T, Pimental DR, Ido Y, Schoneich C, Cohen RA. S-glutathiolation by peroxynitrite of p21ras at cysteine-118 mediates its direct activation and downstream signaling in endothelial cells. FASEB J. 2006;20:518–20.

    PubMed  CAS  Google Scholar 

  • Coccini T, Randine G, Candura SM, Nappi RE, Prockop LD, Manzo L. Low-level exposure to methylmercury modifies muscarinic cholinergic receptor binding characteristics in rat brain and lymphocytes: physiologic implications and new opportunities in biologic monitoring. Environ Health Perspect. 2000;108:29–33.

    Article  PubMed  CAS  Google Scholar 

  • Compeau GC, Bartha R. Sulfate-reducing bacteria: principal methylators of mercury in anoxic estuarine sediment. Appl Environ Microbiol. 1985;50:498–502.

    PubMed  CAS  Google Scholar 

  • Cooper AJ, Kristal BS. Multiple roles of glutathione in the central nervous system. Biol Chem. 1997;378:793–802.

    PubMed  CAS  Google Scholar 

  • Costa LG, Aschner M, Vitalone A, Syversen T, Soldin OP. Developmental neuropathology of environmental agents. Annu Rev Pharmacol Toxicol. 2004;44:87–110.

    Article  PubMed  CAS  Google Scholar 

  • Crack PJ, Cimdins K, Ali U, Hertzog PJ, Iannello RC. Lack of glutathione peroxidase-1 exacerbates Abeta-mediated neurotoxicity in cortical neurons. J Neural Transm. 2006;113:645–57.

    Article  PubMed  CAS  Google Scholar 

  • Cuvin-Aralar ML, Furness RW. Mercury and selenium interaction: a review. Ecotoxicol Environ Saf. 1991;21:348–64.

    Article  PubMed  CAS  Google Scholar 

  • Dalle-Donne I, Rossi R, Colombo G, Giustarini D, Milzani A. Protein S-glutathionylation: a regulatory device from bacteria to humans. Trends Biochem Sci. 2009;34:85–96.

    Article  PubMed  CAS  Google Scholar 

  • Daré E, Fetissov S, Hökfelt T, Hall H, Ögren SO, Ceccatelli S. Effects of prenatal exposure to methylmercury on dopamine-mediated locomotor activity and dopamine D2 receptor binding. Naunyn-Schmiedebergs Arch Pharmacol. 2003;367:500–8.

    Article  PubMed  CAS  Google Scholar 

  • de Freitas AS, Funck VR, Rotta Mdos S, et al. Diphenyl diselenide, a simple organoselenium compound, decreases methylmercury-induced cerebral, hepatic and renal oxidative stress and mercury deposition in adult mice. Brain Res Bull. 2009;79:77–84.

    Article  PubMed  CAS  Google Scholar 

  • Debes F, Budtz-Jørgensen E, Weihe P, White RF, Grandjean P. Impact of prenatal methylmercury exposure on neurobehavioral function at age 14 years. Neurotoxicol Teratol. 2006;28:363–75.

    Article  PubMed  CAS  Google Scholar 

  • Dreiem A, Shan M, Okoniewski RJ, Sanchez-Morrissey S, Seegal RF. Methylmercury inhibits dopaminergic function in rat pup synaptosomes in an age-dependent manner. Neurotoxicol Teratol. 2009;31:312–7.

    Article  PubMed  CAS  Google Scholar 

  • Dringen R, Hirrlinger J. Glutathione pathways in the brain. Biol Chem. 2003;384:505–16.

    PubMed  CAS  Google Scholar 

  • Dringen R, Pawlowski PG, Hirrlinger J. Peroxide detoxification by brain cells. J Neurosci Res. 2005;79:157–65.

    Article  PubMed  CAS  Google Scholar 

  • Farina M, Rocha JBT, Aschner M. Oxidative stress and methylmercury-induced neurotoxicity. Indianapolis: John Wiley & Sons; 2010.

    Google Scholar 

  • Farina M, Brandao R, de Lara FS, et al. Profile of nonprotein thiols, lipid peroxidation and delta-aminolevulinate dehydratase activity in mouse kidney and liver in response to acute exposure to mercuric chloride and sodium selenite. Toxicology. 2003;184:179–87.

    Article  PubMed  CAS  Google Scholar 

  • Farina M, Campos F, Vendrell I, et al. Probucol increases glutathione peroxidase-1 activity and displays long-lasting protection against methylmercury toxicity in cerebellar granule cells. Toxicol Sci. 2009;112:416–26.

    Article  PubMed  CAS  Google Scholar 

  • Farina M, Dahm KC, Schwalm FD, et al. Methylmercury increases glutamate release from brain synaptosomes and glutamate uptake by cortical slices from suckling rat pups: modulatory effect of ebselen. Toxicol Sci. 2003;73:135–40.

    Article  PubMed  CAS  Google Scholar 

  • Farina M, Franco JL, Ribas CM, et al. Protective effects of Polygala paniculata extract against methylmercury-induced neurotoxicity in mice. J Pharm Pharmacol. 2005;57:1503–8.

    Article  PubMed  CAS  Google Scholar 

  • Farina M, Frizzo ME, Soares FA, et al. Ebselen protects against methylmercury-induced inhibition of glutamate uptake by cortical slices from adult mice. Toxicol Lett. 2003;144:351–7.

    Article  PubMed  CAS  Google Scholar 

  • Feng Y, Forgac M. Cysteine 254 of the 73-kDa A subunit is responsible for inhibition of the coated vesicle (H+)-ATPase upon modification by sulfhydryl reagents. J Biol Chem. 1992;267:5817–22.

    PubMed  CAS  Google Scholar 

  • Flohe L. Glutathione peroxidase. Basic Life Sci. 1988;49:663–8.

    PubMed  CAS  Google Scholar 

  • Forgac M. Structure and function of vacuolar class of ATP-driven proton pumps. Physiol Rev. 1989;69:765–96.

    PubMed  CAS  Google Scholar 

  • Franco JL, Braga HC, Stringari J, et al. Mercurial-induced hydrogen peroxide generation in mouse brain mitochondria: protective effects of quercetin. Chem Res Toxicol. 2007;20:1919–26.

    Article  PubMed  CAS  Google Scholar 

  • Franco JL, Posser T, Dunkley PR, et al. Methylmercury neurotoxicity is associated with inhibition of the antioxidant enzyme glutathione peroxidase. Free Radic Biol Med. 2009;47:449–57.

    Article  PubMed  CAS  Google Scholar 

  • Franco JL, Teixeira A, Meotti FC, et al. Cerebellar thiol status and motor deficit after lactational exposure to methylmercury. Environ Res. 2006;102:22–8.

    Article  PubMed  CAS  Google Scholar 

  • Freitas AJ, Rocha JB, Wolosker H, Souza DO. Effects of Hg2+ and CH3Hg+ on Ca2+ fluxes in rat brain microsomes. Brain Res. 1996;738:257–64.

    Article  PubMed  CAS  Google Scholar 

  • Fujimura M, Usuki F, Kawamura M, Izumo S. Inhibition of the Rho/ROCK pathway prevents neuronal degeneration in vitro and in vivo following methylmercury exposure. Toxicol Appl Pharmacol. 2011;250(1):1–9.

    Article  PubMed  CAS  Google Scholar 

  • Fujimura M, Usuki F, Sawada M, Rostene W, Godefroy D, Takashima A. Methylmercury exposure downregulates the expression of Racl and leads to neuritic degeneration and ultimately apoptosis in cerebrocortical neurons. Neurotoxicology. 2009;30:16–22.

    Article  PubMed  CAS  Google Scholar 

  • Fujiyama J, Hirayama K, Yasutake A. Mechanism of methylmercury efflux from cultured astrocytes. Biochem Pharmacol. 1994;47:1525–30.

    Article  PubMed  CAS  Google Scholar 

  • Ghezzi P. Regulation of protein function by glutathionylation. Free Radic Res. 2005;39:573–80.

    Article  PubMed  CAS  Google Scholar 

  • Glaser V, Leipnitz G, Straliotto MR, et al. Oxidative stress-mediated inhibition of brain creatine kinase activity by methylmercury. Neurotoxicology. 2010;31:454–60.

    Article  PubMed  CAS  Google Scholar 

  • Glover CN, Zheng D, Jayashankar S, Sales GD, Hogstrand C, Lundebye AK. Methylmercury speciation influences brain gene expression and behavior in gestationally-exposed mice pups. Toxicol Sci. 2009;110:389–400.

    Article  PubMed  CAS  Google Scholar 

  • Grandjean P, Weihe P, White RF, et al. Cognitive deficit in 7-year-old children with prenatal exposure to methylmercury. Neurotoxicol Teratol. 1997;19:417–28.

    Article  PubMed  CAS  Google Scholar 

  • Gul M, Kutay FZ, Temocin S, Hanninen O. Cellular and clinical implications of glutathione. Indian J Exp Biol. 2000;38:625–34.

    PubMed  CAS  Google Scholar 

  • Hattori F, Oikawa S. Peroxiredoxins in the central nervous system. Subcell Biochem. 2007;44:357–74.

    Article  PubMed  Google Scholar 

  • Hattori I, Takagi Y, Nakamura H, et al. Intravenous administration of thioredoxin decreases brain damage following transient focal cerebral ischemia in mice. Antioxid Redox Signal. 2004;6:81–7.

    Article  PubMed  CAS  Google Scholar 

  • Herden CJ, Pardo NE, Hajela RK, Yuan Y, Atchison WD. Differential effects of methylmercury on î³-aminobutyric acid type a receptor currents in rat cerebellar granule and cerebral cortical neurons in culture. J Pharmacol Exp Ther. 2008;324:517–28.

    Article  PubMed  CAS  Google Scholar 

  • Hintelmann H. Organomercurials. Their formation and pathways in the environment. Met Ions Life Sci. 2010;7:365–401.

    Article  PubMed  CAS  Google Scholar 

  • Holmgren A, Luthman M. Tissue distrubution and subcellular localization of bovine thioredoxin determined by radioimmunoassay. Biochemistry. 1978;17:4071–7.

    Article  PubMed  CAS  Google Scholar 

  • Hüttemann M, Lee I, Pecinova A, Pecina P, Przyklenk K, Doan J. Regulation of oxidative phosphorylation, the mitochondrial membrane potential, and their role in human disease. J Bioenerg Biomembr. 2008;40:445–56.

    Article  PubMed  CAS  Google Scholar 

  • Jones C. Sulfur in proteins. In: Torchinsky YM (translated by W Wittenberg). Biochemical Education. Pergamon Press: Oxford; 1981. p 294. (original in Russian, 1977). ($96 ISBN 0-08-023778-9.1982;10:123).

    Google Scholar 

  • Jones DP, Go Y-M, Anderson CL, Ziegler TR, Kinkade JJM, Kirlin WG. Cysteine/cystine couple is a newly recognized node in the circuitry for biologic redox signaling and control. FASEB J. 2004;18(11):1246–8.

    PubMed  CAS  Google Scholar 

  • Juarez BI, Martinez ML, Montante M, Dufour L, Garcia E, Jimenez-Capdeville ME. Methylmercury increases glutamate extracellular levels in frontal cortex of awake rats. Neurotoxicol Teratol. 2002;24:767–71.

    Article  PubMed  CAS  Google Scholar 

  • Julvez J, Debes F, Weihe P, Choi A, Grandjean P. Sensitivity of continuous performance test (CPT) at age 14years to developmental methylmercury exposure. Neurotoxicol Teratol. 2010;32:627–32.

    Article  PubMed  CAS  Google Scholar 

  • Kanai Y, Hediger MA. Primary structure and functional characterization of a high-affinity glutamate transporter. Nature. 1992;360:467–71.

    Article  PubMed  CAS  Google Scholar 

  • Kaur P, Aschner M, Syversen T. Glutathione modulation influences methyl mercury induced neurotoxicity in primary cell cultures of neurons and astrocytes. Neurotoxicology. 2006;27:492–500.

    Article  PubMed  CAS  Google Scholar 

  • Kaur P, Aschner M, Syversen T. Role of glutathione in determining the differential sensitivity between the cortical and cerebellar regions towards mercury-induced oxidative stress. Toxicology. 2007;230:164–77.

    Article  PubMed  CAS  Google Scholar 

  • Keller JE, Bravo DT, Parsons SM. modification of cysteines reveals linkage to acetylcholine and vesamicol binding sites in the vesicular acetylcholine transporter of Torpedo californica. J Neurochem. 2000;74:1739–48.

    Article  PubMed  CAS  Google Scholar 

  • Kemmerling U, Munoz P, Muller M, et al. Calcium release by ryanodine receptors mediates hydrogen peroxide-induced activation of ERK and CREB phosphorylation in N2a cells and hippocampal neurons. Cell Calcium. 2007;41:491–502.

    Article  PubMed  CAS  Google Scholar 

  • Kenow KP, Hoffman DJ, Hines RK, et al. Effects of methylmercury exposure on glutathione metabolism, oxidative stress, and chromosomal damage in captive-reared common loon (Gavia immer) chicks. Environ Pollut. 2008;156:732–8.

    Article  PubMed  CAS  Google Scholar 

  • Kerper LE, Mokrzan EM, Clarkson TW, Ballatori N. Methylmercury efflux from brain capillary endothelial cells is modulated by intracellular glutathione but not ATP. Toxicol Appl Pharmacol. 1996;141:526–31.

    Article  PubMed  CAS  Google Scholar 

  • Khan MA, Wang F. Mercury-selenium compounds and their toxicological significance: toward a molecular understanding of the mercury-selenium antagonism. Environ Toxicol Chem. 2009;28:1567–77.

    Article  PubMed  CAS  Google Scholar 

  • Kim SO, Merchant K, Nudelman R, et al. OxyR: a molecular code for redox-related signaling. Cell. 2002;109:383–96.

    Article  PubMed  CAS  Google Scholar 

  • Kiskin NI, Krishtal OA, Tsyndrenko A, Akaike N. Are sulfhydryl groups essential for function of the glutamate-operated receptor-ionophore complex? Neurosci Lett. 1986;66:305–10.

    Article  PubMed  CAS  Google Scholar 

  • Kung MP, Kostyniak P, Olson J, Malone M, Roth JA. Studies of the in vitro effect of methylmercury chloride on rat brain neurotransmitter enzymes. J Appl Toxicol. 1987;7:119–21.

    Article  PubMed  CAS  Google Scholar 

  • Laube B, Kuryatov A, Kuhse J, Betz H. Glycine-glutamate interactions at the NMDA receptor: role of cysteine residues. FEBS Lett. 1993;335:331–4.

    Article  PubMed  CAS  Google Scholar 

  • Lee SR, Bar-Noy S, Kwon J, Levine RL, Stadtman TC, Rhee SG. Mammalian thioredoxin reductase: oxidation of the C-terminal cysteine/selenocysteine active site forms a thioselenide, and replacement of selenium with sulfur markedly reduces catalytic activity. Proc Natl Acad Sci USA. 2000;97:2521–6.

    Article  PubMed  CAS  Google Scholar 

  • Lee S-R, Bar-Noy S, Kwon J, Levine RL, Stadtman TC, Rhee SG. Mammalian thioredoxin reductase: oxidation of the C-terminal cysteine/selenocysteine active site forms a thioselenide, and replacement of selenium with sulfur markedly reduces catalytic activity. Proc Natl Acad Sci USA. 2000;97:2521–6.

    Article  PubMed  CAS  Google Scholar 

  • Lipton SA, Choi YB, Takahashi H, et al. Cysteine regulation of protein function–as exemplified by NMDA-receptor modulation. Trends Neurosci. 2002;25:474–80.

    Article  PubMed  CAS  Google Scholar 

  • Lobanov AV, Fomenko DE, Zhang Y, Sengupta A, Hatfield DL, Gladyshev VN. Evolutionary dynamics of eukaryotic selenoproteomes: large selenoproteomes may associate with aquatic life and small with terrestrial life. Genome Biol. 2007;8:R198.

    Article  PubMed  CAS  Google Scholar 

  • Lobanov AV, Hatfield DL, Gladyshev VN. Eukaryotic selenoproteins and selenoproteomes. Biochim Biophys Acta. 2009;1790:1424–8.

    Article  PubMed  CAS  Google Scholar 

  • LoPachin RM. The changing view of acrylamide neurotoxicity. Neurotoxicology. 2004;25:617–30.

    Article  PubMed  CAS  Google Scholar 

  • LoPachin RM, Barber DS. Synaptic cysteine sulfhydryl groups as targets of electrophilic neurotoxicants. Toxicol Sci. 2006;94:240–55.

    Article  PubMed  CAS  Google Scholar 

  • Lu J, Holmgren A. Selenoproteins. J Biol Chem. 2009;284:723–7.

    Article  PubMed  CAS  Google Scholar 

  • Luthman M, Holmgren A. Rat liver thioredoxin and thioredoxin reductase: purification and characterization. Biochemistry. 1982;21:6628–33.

    Article  PubMed  CAS  Google Scholar 

  • Ma S, Caprioli RM, Hill KE, Burk RF. Loss of selenium from selenoproteins: conversion of selenocysteine to dehydroalanine in vitro. J Am Soc Mass Spectrom. 2003;14:593–600.

    Article  PubMed  CAS  Google Scholar 

  • Maekawa M, Satoh S, Murayama T, Nomura Y. Involvement of Hg2+−sensitive sulfhydryl groups in regulating noradrenaline release induced by S-nitrosocysteine in rat brain slices. Biochem Pharmacol. 2000;59:839–45.

    Article  PubMed  CAS  Google Scholar 

  • Magos L, Webb M. The interactions of selenium with cadmium and mercury. Crit Rev Toxicol. 1980;8:1–42.

    Article  PubMed  CAS  Google Scholar 

  • Malagutti KS, da Silva AP, Braga HC, et al. 17[beta]-estradiol decreases methylmercury-induced neurotoxicity in male mice. Environ Toxicol Pharmacol. 2009;27:293–7.

    Article  PubMed  CAS  Google Scholar 

  • Manfroi CB, Schwalm FD, Cereser V, et al. Maternal milk as methylmercury source for suckling mice: neurotoxic effects involved with the cerebellar glutamatergic system. Toxicol Sci. 2004;81:172–8.

    Article  PubMed  CAS  Google Scholar 

  • Marsh DO, Clarkson TW, Myers GJ, et al. The Seychelles study of fetal methylmercury exposure and child development: introduction. Neurotoxicology. 1995;16:583–96.

    PubMed  CAS  Google Scholar 

  • McCord JM. Superoxide dismutase in aging and disease: an overview. Methods Enzymol. 2002;349:331–41.

    Article  PubMed  CAS  Google Scholar 

  • Meister A. Glutathione metabolism. Methods Enzymol. 1995;251:3–7.

    Article  PubMed  CAS  Google Scholar 

  • Meyer Y, Buchanan BB, Vignols F, Reichheld JP. Thioredoxins and glutaredoxins: unifying elements in redox biology. Annu Rev Genet. 2009;43:335–67.

    Article  PubMed  CAS  Google Scholar 

  • Moretto MB, Funchal C, Santos AQ, et al. Ebselen protects glutamate uptake inhibition caused by methyl mercury but does not by Hg2+. Toxicology. 2005;214:57–66.

    Article  PubMed  CAS  Google Scholar 

  • Moretto MB, Funchal C, Zeni G, Pessoa-Pureur R, Rocha JB. Selenium compounds prevent the effects of methylmercury on the in vitro phosphorylation of cytoskeletal proteins in cerebral cortex of young rats. Toxicol Sci. 2005;85:639–46.

    Article  PubMed  CAS  Google Scholar 

  • Murata K, Dakeishi M, Shimada M, Satoh H. Assessment of intrauterine methylmercury exposure affecting child development: messages from the newborn. Tohoku J Exp Med. 2007;213:187–202.

    Article  PubMed  CAS  Google Scholar 

  • Mustacich D, Powis G. Thioredoxin reductase. Biochem J. 2000;346(Pt 1):1–8.

    Article  PubMed  CAS  Google Scholar 

  • Nogueira CW, Rocha JBT. Toxicology and pharmacology of selenium: emphasis on synthetic organoselenium compounds. Arch Toxicol. 2011;85(11):1313–59.

    Article  PubMed  CAS  Google Scholar 

  • Nogueira CW, Rocha JBT. Diphenyl diselenide a janus-faced molecule. J Braz Chem Soc. 2010;21:2055–71.

    Article  CAS  Google Scholar 

  • Nogueira CW, Zeni G, Rocha JB. Organoselenium and organotellurium compounds: toxicology and pharmacology. Chem Rev. 2004;104:6255–85.

    Article  PubMed  CAS  Google Scholar 

  • Patenaude A, Murthy MR, Mirault ME. Emerging roles of thioredoxin cycle enzymes in the central nervous system. Cell Mol Life Sci. 2005;62:1063–80.

    Article  PubMed  CAS  Google Scholar 

  • Pearson RG, Songstad J. Application of the principle of hard and soft acids and bases to organic chemistry. J Am Chem Soc. 1967;89:1827–36.

    Article  CAS  Google Scholar 

  • Porciuncula LO, Rocha JB, Tavares RG, Ghisleni G, Reis M, Souza DO. Methylmercury inhibits glutamate uptake by synaptic vesicles from rat brain. Neuroreport. 2003;14:577–80.

    Article  PubMed  CAS  Google Scholar 

  • Prabhakar R, Morokuma K, Musaev DG. Peroxynitrite reductase activity of selenoprotein glutathione peroxidase:   a computational study  . Biochemistry. 2006;45:6967–77.

    Article  PubMed  CAS  Google Scholar 

  • Prohaska JR, Ganther HE. Selenium and glutathione peroxidase in developing rat brain. J Neurochem. 1976;27:1379–87.

    Article  PubMed  CAS  Google Scholar 

  • Rabenstein DL, Isab AA, Reid RS. A proton nuclear magnetic resonance study of the binding of methylmercury in human erythrocytes. Biochim Biophys Acta. 1982;720:53–64.

    Article  PubMed  CAS  Google Scholar 

  • Reis HJ, Gomez MV, Kalapothakis E, et al. Inhibition of glutamate uptake by Tx3-4 is dependent on the redox state of cysteine residues. Neuroreport. 2000;11:2191–4.

    Article  PubMed  CAS  Google Scholar 

  • Rocha JB, Freitas AJ, Marques MB, Pereira ME, Emanuelli T, Souza DO. Effects of methylmercury exposure during the second stage of rapid postnatal brain growth on negative geotaxis and on delta-aminolevulinate dehydratase of suckling rats. Braz J Med Biol Res. 1993;26:1077–83.

    PubMed  CAS  Google Scholar 

  • Rybnikova E, Damdimopoulos AE, Gustafsson JA, Spyrou G, Pelto-Huikko M. Expression of novel antioxidant thioredoxin-2 in the rat brain. Eur J Neurosci. 2000;12:1669–78.

    Article  PubMed  CAS  Google Scholar 

  • Sarafian TA, Bredesen DE, Verity MA. Cellular resistance to methylmercury. Neurotoxicology. 1996;17:27–36.

    PubMed  CAS  Google Scholar 

  • Schafer FQ, Buettner GR. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med. 2001;30:1191–212.

    Article  PubMed  CAS  Google Scholar 

  • Schwarz K, Foltz CM. Selenium as an integral part of factor 3 against dietary necrotic liver degeneration. J Am Chem Soc. 1957;79:3292–3.

    Article  CAS  Google Scholar 

  • Schweizer U, Schomburg L, Savaskan NE. The neurobiology of selenium: lessons from transgenic mice. J Nutr. 2004;134:707–10.

    PubMed  CAS  Google Scholar 

  • Seres T, Ravichandran V, Moriguchi T, Rokutan K, Thomas JA, Johnston RB Jr. Protein S-thiolation and dethiolation during the respiratory burst in human monocytes. A reversible post-translational modification with potential for buffering the effects of oxidant stress. J Immunol. 1996;156:1973–80.

    PubMed  CAS  Google Scholar 

  • Shanker G, Allen JW, Mutkus LA, Aschner M. Methylmercury inhibits cysteine uptake in cultured primary astrocytes, but not in neurons. Brain Res. 2001;914:159–65.

    Article  PubMed  CAS  Google Scholar 

  • Shanker G, Syversen T, Aschner JL, Aschner M. Modulatory effect of glutathione status and antioxidants on methylmercury-induced free radical formation in primary cultures of cerebral astrocytes. Brain Res Mol Brain Res. 2005;137:11–22.

    Article  PubMed  CAS  Google Scholar 

  • Sidhu A, Kassis S, Kebabian J, Fishman PH. Sulfhydryl group(s) in the ligand binding site of the D-1 dopamine receptor: specific protection by agonist and antagonist. Biochemistry. 1986;25:6695–701.

    Article  PubMed  CAS  Google Scholar 

  • Simpson RB. Association constants of methylmercury with sulfhydryl and other bases. J Am Chem Soc. 1961;83:4711–7.

    Article  CAS  Google Scholar 

  • Soares FA, Farina M, Santos FW, Souza D, Rocha JB, Nogueira CW. Interaction between metals and chelating agents affects glutamate binding on brain synaptic membranes. Neurochem Res. 2003;28:1859–65.

    Article  PubMed  CAS  Google Scholar 

  • Stringari J, Nunes AK, Franco JL, et al. Prenatal methylmercury exposure hampers glutathione antioxidant system ontogenesis and causes long-lasting oxidative stress in the mouse brain. Toxicol Appl Pharmacol. 2008;227:147–54.

    Article  PubMed  CAS  Google Scholar 

  • Sugiura Y, Hojo Y, Tamai Y, Tanaka H. Selenium protection against mercury toxicity. Binding of methylmercury by the selenohydryl-containing ligand. J Am Chem Soc. 1976;98:2339–41.

    Article  PubMed  CAS  Google Scholar 

  • Sumi D. Biological effects of and responses to exposure to electrophilic environmental chemicals. J Health Sci. 2008;54:6.

    Article  Google Scholar 

  • Tabatabaie T, Potts JD, Floyd RA. Reactive oxygen species-mediated inactivation of pyruvate dehydrogenase. Arch Biochem Biophys. 1996;336:290–6.

    Article  PubMed  CAS  Google Scholar 

  • Takagi Y, Hattori I, Nozaki K, et al. Excitotoxic hippocampal injury is attenuated in thioredoxin transgenic mice. J Cereb Blood Flow Metab. 2000;20:829–33.

    Article  PubMed  CAS  Google Scholar 

  • Takagi Y, Mitsui A, Nishiyama A, et al. Overexpression of thioredoxin in transgenic mice attenuates focal ischemic brain damage. Proc Natl Acad Sci USA. 1999;96:4131–6.

    Article  PubMed  CAS  Google Scholar 

  • Trotti D, Rizzini BL, Rossi D, et al. Neuronal and glial glutamate transporters possess an SH-based redox regulatory mechanism. Eur J Neurosci. 1997;9:1236–43.

    Article  PubMed  CAS  Google Scholar 

  • Trotti D, Rossi D, Gjesdal O, et al. Peroxynitrite inhibits glutamate transporter subtypes. J Biol Chem. 1996;271:5976–9.

    Article  PubMed  CAS  Google Scholar 

  • Tsuzuki Y, Yamada T. Inhibitory actions of mercury compounds against glucose-6-phosphate dehydrogenase from yeast. J Toxicol Sci. 1979;4:105–13.

    Article  PubMed  CAS  Google Scholar 

  • Usuki F, Yamashita A, Fujimura M. Post-transcriptional defects of antioxidant selenoenzymes cause oxidative stress under methylmercury exposure. J Biol Chem. 2011;286:6641–9.

    Article  PubMed  CAS  Google Scholar 

  • Vina J, Hems R, Krebs HA. Maintenance of glutathione content is isolated hepatocyctes. Biochem J. 1978;170:627–30.

    PubMed  CAS  Google Scholar 

  • Volz TJ, Schenk JO. A comprehensive atlas of the topography of functional groups of the dopamine transporter. Synapse. 2005;58:72–94.

    Article  PubMed  CAS  Google Scholar 

  • Wagner C, Sudati JH, Nogueira CW, Rocha JB. In vivo and in vitro inhibition of mice thioredoxin reductase by methylmercury. Biometals. 2010;23:1171–7.

    Article  PubMed  CAS  Google Scholar 

  • Wang PF, McLeish MJ, Kneen MM, Lee G, Kenyon GL. An unusually low pK(a) for Cys282 in the active site of human muscle creatine kinase. Biochemistry. 2001;40:11698–705.

    Article  PubMed  CAS  Google Scholar 

  • Washburn MP, Wells WW. The catalytic mechanism of the glutathione-dependent dehydroascorbate reductase activity of thioltransferase (glutaredoxin). Biochemistry. 1999;38:268–74.

    Article  PubMed  CAS  Google Scholar 

  • Wolf M, Baynes J. Cadmium and mercury cause an oxidative stress-induced endothelial dysfunction. Biometals. 2007;20:73–81.

    Article  PubMed  CAS  Google Scholar 

  • Ying J, Tong X, Pimentel DR, et al. Cysteine-674 of the sarco/endoplasmic reticulum calcium ATPase is required for the inhibition of cell migration by nitric oxide. Arterioscler Thromb Vasc Biol. 2007;27:783–90.

    Article  PubMed  CAS  Google Scholar 

  • Yoneda S, Suzuki KT. Equimolar Hg-Se complex binds to selenoprotein P. Biochem Biophys Res Commun. 1997;231:7–11.

    Article  PubMed  CAS  Google Scholar 

  • Zareba G, Cernichiari E, Hojo R, et al. Thimerosal distribution and metabolism in neonatal mice: comparison with methyl mercury. J Appl Toxicol. 2007;27:511–8.

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Rocourt C, Cheng WH. Selenoproteins and the aging brain. Mech Ageing Dev. 2010;131:253–60.

    Article  PubMed  CAS  Google Scholar 

  • Zhu H, Zhang L, Xi X, Zweier JL, Li Y. 4-Hydroxy-2-nonenal upregulates endogenous antioxidants and phase 2 enzymes in rat H9c2 myocardiac cells: protection against overt oxidative and electrophilic injury. Free Radic Res. 2006;40:875–84.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank the colleagues/coauthors who have contributed to several studies referenced in this chapter. These studies were funded in part by grants from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and from the National Institute of Environmental Health Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Aschner PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Farina, M., Aschner, M., Rocha, J.B.T. (2012). Redox State in Mediating Methylmercury Neurotoxicity. In: Ceccatelli, S., Aschner, M. (eds) Methylmercury and Neurotoxicity. Current Topics in Neurotoxicity, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-2383-6_6

Download citation

Publish with us

Policies and ethics