Skip to main content

Piscivorous Mammalian Wildlife as Sentinels of Methylmercury Exposure and Neurotoxicity in Humans

  • Chapter
  • First Online:
Methylmercury and Neurotoxicity

Part of the book series: Current Topics in Neurotoxicity ((Current Topics Neurotoxicity,volume 2))

Abstract

The purpose of this chapter is to provide an overview of how piscivorous (fish-eating) wildlife can be used to complement existing public health strategies to assess the neurotoxic risks of methylmercury. A brief introduction concerning the use of wildlife as model sentinel organisms in the field of environmental neurotoxicology is provided. Next, selected scientific examples are detailed that illustrate how data from piscivorous wildlife may provide pertinent, real-world information on the bioavailability of methylmercury and environmental exposures. Information concerning methylmercury’s subclinical (e.g., perturbations in brain neurochemistry and neuroendocrine hormones) and clinical (structural and functional deficits) neurological effects across organisms is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aronson SM. The dancing cats of Minamata Bay. Med Health R I. 2005;88:209.

    PubMed  Google Scholar 

  • Aschner M, Yao CP, Allen JW, Tan KH. Methylmercury alters glutamate transport in astrocytes. Neurochem Int. 2000;37:199–206.

    Article  PubMed  CAS  Google Scholar 

  • Basu N, Head J. Mammalian wildlife as complementary models in environmental neurotoxicology. Neurotoxicol Teratol. 2010;32:114–9.

    Article  PubMed  CAS  Google Scholar 

  • Basu N, Klenavic K, Gamberg M, O’Brien M, Evans RD, Scheuhammer AM, Chan HM. Effects of mercury on neurochemical receptor binding characteristics in wild mink. Environ Toxicol Chem. 2005a;24(6):1444–50.

    Article  PubMed  CAS  Google Scholar 

  • Basu N, Scheuhammer AM, Grochowina NM, Klenavic K, Evans RD, O’Brien M, Chan HM. Effects of mercury on neurochemical receptors in wild river otters (Lontra canadensis). Environ Sci Technol. 2005b;39(10):3585–91.

    Article  PubMed  CAS  Google Scholar 

  • Basu N, Stamler CJ, Loua KM, Chan HM. An inter-species comparison of mercury inhibition on muscarinic acetylcholine receptor binding in the cerebral cortex and cerebellum. Toxicol Appl Pharmacol. 2005c;205(1):71–6.

    Article  PubMed  CAS  Google Scholar 

  • Basu N, Scheuhammer AM, Rouvinen-Watt K, Grochowina N, Klenavic K, Evans RD, Chan HM. Methylmercury impairs components of the cholinergic system in captive mink (Mustela vison). Toxicol Sci. 2006a;91:202–9.

    Article  PubMed  CAS  Google Scholar 

  • Basu N, Kwan M, Chan HM. Mercury but not organochlorines inhibit muscarinic cholinergic receptor binding in the cerebrum of ringed seals (Phoca hispida). J Toxicol Environ Health A. 2006b;69:1133–43.

    Article  PubMed  CAS  Google Scholar 

  • Basu N, Scheuhammer AM, Bursian S, Rouvinen-Watt K, Elliott J, Chan HM. Mink as a sentinel in environmental health. Environ Res. 2007a;103:130–44.

    Article  PubMed  CAS  Google Scholar 

  • Basu N, Scheuhammer AM, Rouvinen-Watt K, Grochowina NM, Evans RD, O’Brien M, Chan HM. Decreased N-methyl-D-aspartic acid (NMDA) receptor levels are associated with mercury exposure in wild and captive mink. Neurotoxicology. 2007b;28(3):587–93.

    Article  PubMed  CAS  Google Scholar 

  • Basu N, Scheuhammer AM, Evans RD, O’Brien M, Chan HM. Cholinesterase and monoamine oxidase activity in relation to mercury levels in the cerebral cortex of wild river otters. Hum Exp Toxicol. 2007c;26:213–20.

    Article  PubMed  CAS  Google Scholar 

  • Basu N, Scheuhammer AM, Rouvinen-Watt K, Evans D, Grochowina NM, Chan HM. The effects of mercury on muscarinic cholinergic receptor subtypes (M1 and M2) in captive mink. Neurotoxicology. 2008;29:328–34.

    Article  PubMed  CAS  Google Scholar 

  • Basu N, Scheuhammer AM, Sonne C, Letcher RJ, Born EW, Dietz R. Is dietary mercury of neurotoxicological concern to polar bears (Ursus maritimus)? Environ Toxicol Chem. 2009;28(1): 133–40.

    Article  PubMed  CAS  Google Scholar 

  • Basu N, Scheuhammer AM, Rouvinen-Watt K, Evans RD, Trudeau VL, Chan HM. In vitro and whole animal evidence that methylmercury disrupts GABAergic systems in discrete brain regions in captive mink. Comp Biochem Physiol C Toxicol Pharmacol. 2010;151(3):379–85.

    Article  PubMed  Google Scholar 

  • Beeby A. What do sentinels stand for? Environ Pollut. 2001;112:285–98.

    Article  PubMed  CAS  Google Scholar 

  • Berntssen MH, Aatland A, Handy RD. Chronic dietary mercury exposure causes oxidative stress, brain lesions, and altered behaviour in Atlantic salmon (Salmo salar) parr. Aquat Toxicol. 2003;65:55–72.

    Article  PubMed  CAS  Google Scholar 

  • Björkman L, Lundekvam BF, Laegreid T, Bertelsen BI, Morild I, Lilleng P, Lind B, Palm B, Vahter M. Mercury in human brain, blood, muscle and toenails in relation to exposure: an autopsy study. Environ Health. 2007;6:30.

    Article  PubMed  Google Scholar 

  • Borg K, Wanntrop H, Erne K, Hanko H. Alkyl mercury poisoning in terrestrial Swedish wildlife. Viltrevy. 1967;6:302–77.

    Google Scholar 

  • Burbacher TM, Rodier PM, Weiss B. Methylmercury developmental neurotoxicity: a comparison of effects in humans and animals. Neurotoxicol Teratol. 1990;12:191–202.

    Article  PubMed  CAS  Google Scholar 

  • Burgess NM, Evers DC, Kaplan JD. Mercury and other contaminants in common loons breeding in Atlantic Canada. Ecotoxicology. 2005;14:241–52.

    Article  PubMed  CAS  Google Scholar 

  • Cardellicchio N, Decataldo A, Di LA, Misino A. Accumulation and tissue distribution of mercury and selenium in striped dolphins (Stenella coeruleoalba) from the Mediterranean Sea (southern Italy). Environ Pollut. 2002;116:265–71.

    Article  PubMed  CAS  Google Scholar 

  • Chakrabarti SK, Loua KM, Bai C, Durham H, Panisset JC. Modulation of monoamine oxidase activity in different brain regions and platelets following exposure of rats to methylmercury. Neurotoxicol Teratol. 1998;20:161–8.

    Article  PubMed  CAS  Google Scholar 

  • Clarkson TW, Magos L. The toxicology of mercury and its chemical compounds. Crit Rev Toxicol. 2006;36:609–62.

    Article  PubMed  CAS  Google Scholar 

  • Coccini T, Randine G, Candura SM, Nappi RE, Prockop LD, Manzo L. Low-level exposure to methylmercury modifies muscarinic cholinergic receptor binding characteristics in rat brain and lymphocytes: physiologic implications and new opportunities in biologic monitoring. Environ Health Perspect. 2000;108:29–33.

    Article  PubMed  CAS  Google Scholar 

  • Colborn T, vom Saal FS, Soto AM. Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ Health Perspect. 1993;101:378–84.

    Article  PubMed  CAS  Google Scholar 

  • Cumbie PM. Mercury levels in Georgia otter mink and freshwater fish. Bull Environ Contam Toxicol. 1975;14:193–6.

    Article  PubMed  CAS  Google Scholar 

  • Dietz R, Riget FF, Boertmann D, Sonne C, Olsen MT, Fjeldsa J, Falk K, Kirkegaard M, Egevang C, Asmund G, Wille F, Moller S. Time trends of mercury in feathers of West Greenland birds of prey during 1851–2003. Environ Sci Technol. 2006a;40:5911–6.

    Article  PubMed  CAS  Google Scholar 

  • Dietz R, Riget F, Born EW, Sonne C, Grandjean P, Kirkegaard M, Olsen MT, Asmund G, Renzoni A, Baagøe H, Andreasen C. Trends in mercury in hair of Greenlandic polar bears (Ursus maritimus) during 1892–2001. Environ Sci Technol. 2006b;40(4):1120–5.

    Article  PubMed  CAS  Google Scholar 

  • Dietz R, Born EW, Riget F, Sonne C, Aubail A, Drimmie R, Basu N. Temporal trends and future predictions of mercury concentrations in northwest Greenland polar bear (Ursus maritimus) hair. Environ Sci Technol. 2011;45(4):1458–65.

    Article  CAS  Google Scholar 

  • Egeland GM, Ponce R, Bloom NS, Knecht R, Loring S, Middaugh JP. Hair methylmercury levels of mummies of the Aleutian Islands, Alaska. Environ Res. 2009;109(3):281–6.

    Article  PubMed  CAS  Google Scholar 

  • Eto K. Pathology of Minamata disease. Toxicol Pathol. 1997;25:614–23.

    Article  PubMed  CAS  Google Scholar 

  • Evers DC, Kaplan JD, Meyer MW, Reaman PS, Braselton WE, Major A, Burgess N, Scheuhammer AM. Geographic trend in mercury measured in common loon feathers and blood. Environ Toxicol Chem. 1998;17:173–83.

    Article  CAS  Google Scholar 

  • Evers DC, Han Y-J, Driscoll CT, Kamman NC, Goodale MW, Lambert KL, Holsen TM, Chen CY, Clair TA, Butler T. Biological mercury hotspots in the Northeastern United State and Southeastern Canada. Bioscience. 2007;58(1):29–43.

    Article  Google Scholar 

  • Facemire CF, Gross TS, Guillette Jr LJ. Reproductive impairment in the Florida panthers: nature or nurture? Environ Health Perspect. 1995;103 Suppl 4:79–86.

    Article  PubMed  CAS  Google Scholar 

  • Faro LR, Duran R, Do Nascimento JL, Perez-Vences D, Alfonso M. Effects of successive intrastriatal methylmercury administrations on dopaminergic system. Ecotoxicol Environ Saf. 2003;55:173–7.

    Article  PubMed  CAS  Google Scholar 

  • Fimreite N, Reynolds LM. Mercury contamination of fish in northwestern Ontario. J Wildl Manage. 1973;37:62–8.

    Article  CAS  Google Scholar 

  • Foley RE, Jackling SJ, Sloan RJ, Brown MK. Organochlorine and mercury residues in wild mink and otter: comparison with fish. Environ Toxicol Chem. 1988;7:363–74.

    Article  CAS  Google Scholar 

  • FonfrĂ­a E, RodrĂ­guez-FarrĂ© E, Suñol C. Mercury interaction with the GABAA receptor modulates the benzodiazepine binding site in primary cultures of mouse cerebellar granule cells. Neuropharmacology. 2001;41:819–33.

    Article  PubMed  Google Scholar 

  • FonfrĂ­a E, Vilaro MT, Babot Z, Rodriguez-Farre E, Sunol C. Mercury compounds disrupt neuronal glutamate transport in cultured mouse cerebellar granule cells. J Neurosci Res. 2005;79: 545–53.

    Article  PubMed  Google Scholar 

  • Frederick PC, Hylton B, Heath JA, Spalding MG. A historical record of mercury contamination in southern Florida (USA) as inferred from avian feather tissue. Environ Toxicol Chem. 2004;23:1474–8.

    Article  PubMed  CAS  Google Scholar 

  • Golden NH, Rattner BA. Ranking terrestrial vertebrate species for utility in biomonitoring and vulnerability to environmental contaminants. Rev Environ Contam Toxicol. 2003;176:67–136.

    PubMed  Google Scholar 

  • Grandjean P, Budtz-Jørgensen E. Total imprecision of exposure biomarkers: implications for calculating exposure limits. Am J Ind Med. 2007;50:712–9.

    Article  PubMed  CAS  Google Scholar 

  • Haines KJ, Evans RD, O’Brien M, Evans HE. Accumulation of mercury and selenium in the brain of river otters (Lontra canadensis) and wild mink (Mustela vison) from Nova Scotia, Canada. Sci Total Environ. 2010;408(3):537–42.

    Article  PubMed  CAS  Google Scholar 

  • Hamilton M, Basu N, Scheuhammer AM. Mercury, selenium and neurochemical biomarkers in different brain regions of migrating common loons from Lake Erie, Canada. Ecotoxicology. 2011;20(7):1677–83.

    Article  PubMed  CAS  Google Scholar 

  • Harada M. Minamata disease: methylmercury poisoning in Japan caused by environmental pollution. Crit Rev Toxicol. 1995;25:1–24.

    Article  PubMed  CAS  Google Scholar 

  • Harada K, Koizumi A, Saito N, Inoue K, Yoshinaga T, Date C, Fujii S, Hachiya N, Hirosawa I, Koda S, Kusaka Y, Murata K, Omae K, Shimbo S, Takenaka K, Takeshita T, Todoriki H, Wada Y, Watanabe T, Ikeda M. Historical and geographical aspects of the increasing perfluorooctanoate and perfluorooctane sulfonate contamination in human serum in Japan. Chemosphere. 2007;66:293–301.

    Article  PubMed  CAS  Google Scholar 

  • Head J, DeBofsky A, Hinshaw J, Basu N. Retrospective analysis of mercury content in feathers of birds collected From the State of Michigan (1895–2007). Ecotoxicology. 2011;20(7): 1636–43.

    Article  PubMed  CAS  Google Scholar 

  • Hebert CE, Weseloh DVC, Idrissi A, Arts MT, O’Gorman R, Gorman OT, Locke B, Madenjian CP, Roseman EF. Restoring piscivorous fish populations in the Laurentian Great Lakes causes seabird dietary change. Ecology. 2008;89:891–7.

    Article  PubMed  Google Scholar 

  • Kannan K, Corsolini S, Falandysz J, Oehme G, Focardi S, Giesy JP. Perfluorooctanesulfonate and related fluorinated hydrocarbons in marine mammals, fishes, and birds from coasts of the Baltic and the Mediterranean Seas. Environ Sci Technol. 2002;36:3210–6.

    Article  PubMed  CAS  Google Scholar 

  • Klenavic K, Champoux L, Mike O, Daoust PY, Evans RD, Evans HE. Mercury concentrations in wild mink (Mustela vison) and river otters (Lontra canadensis) collected from eastern and Atlantic Canada: relationship to age and parasitism. Environ Pollut. 2008;156(2):359–66.

    Article  PubMed  CAS  Google Scholar 

  • Kucera E. Mink and otter as indicators of mercury in Manitoba waters. Can J Zool. 1983;61: 2250–6.

    Article  CAS  Google Scholar 

  • Law RJ, Allchin CR, de Boer J, Covaci A, Herzke D, Lepom P, Morris S, Tronczynski J, de Wit CA. Levels and trends of brominated flame retardants in the European environment. Chemosphere. 2006;64:187–208.

    Article  PubMed  CAS  Google Scholar 

  • LeBlanc GA, Bain LJ. Chronic toxicity of environmental contaminants sentinels and biomarkers. Environ Health Perspect. 1997;105 Suppl 1:65–80.

    Article  PubMed  CAS  Google Scholar 

  • Mahaffey KR, Clickner RP, Jeffries RA. Adult women’s blood mercury concentrations vary regionally in the United States: association with patterns of fish consumption (NHANES 1999–2004). Environ Health Perspect. 2009;117(1):47–53.

    Article  PubMed  CAS  Google Scholar 

  • Manzo L, Castoldi AF, Coccini T, Prockop LD. Assessing effects of neurotoxic pollutants by biochemical markers. Environ Res. 2001;85:31–6.

    Article  PubMed  CAS  Google Scholar 

  • Mcintyre JW, Barr JF. Common Loon. In: Birds of North America Online. 2010. http://bna.birds.cornell.edu/bna/species/313/articles/foodhabits. Accessed 12 Feb 2011.

  • Meironyte D, Noren K, Bergman A. Analysis of polybrominated diphenyl ethers in Swedish human milk. A time-related trend study, 1972–1997. J Toxicol Environ Health A. 1999;58: 329–41.

    Article  PubMed  CAS  Google Scholar 

  • Morel FMM, Kraepiel AML, Amyot M. The chemical cycle and bioaccumulation of mercury. Annu Rev Ecol Syst. 1998;29:543–66.

    Article  Google Scholar 

  • Nagashima K. A review of experimental methylmercury toxicity in rats: neuropathology and evidence for apoptosis. Toxicol Pathol. 1997;25:624–31.

    Article  PubMed  CAS  Google Scholar 

  • NRC. Animals as sentinels of environmental health hazards. Washington: Committee on Animal as Monitors of Environmental Hazards, National Academy Press; 1991.

    Google Scholar 

  • Ronald K, Tessaro SV, Uthe JF, Freeman HC, Frank R. Methylmercury poisoning in the harp seal (Pagophilus groenlandicus). Sci Total Environ. 1977;8:1–11.

    Article  PubMed  CAS  Google Scholar 

  • Rutkiewicz J, Crump D, Scheuhammer AM, Jagla M, Basu N. Investigation of spatial trends and neurochemical impacts of mercury in herring gulls across the Laurentian Great Lakes. Environ Pollut. 2010;158:2733–7.

    Article  PubMed  CAS  Google Scholar 

  • Sample BE, Suter GWIII. Ecological risk assessment in a large river-reservoir: 4. Piscivorous wildlife. Environ Toxicol Chem. 1999;18:610–20.

    CAS  Google Scholar 

  • Scheuhammer AM, Meyer MW, Sandheinrich MB, Murray MW. Effects of environmental methylmercury on the health of wild birds, mammals, and fish. Ambio. 2007;36:12–8.

    Article  PubMed  CAS  Google Scholar 

  • Scheuhammer AM, Basu N, Burgess NM, Elliott JE, Campbell GD, Wayland M, Champoux L, Rodrigue J. Relationships among mercury, selenium, and neurochemical parameters in common loons (Gavia immer) and bald eagles (Haliaeetus leucocephalus). Ecotoxicology. 2008;17:93–101.

    Article  PubMed  CAS  Google Scholar 

  • Scheuhammer AM, Bank M, Basu N, Evers DC, Heinz GH, Sandheinrich MB. Toxicology of mercury in fish and wildlife: recent advances. In: Bank M, editor. Mercury in the environment: pattern and process. Berkeley: University of California Press; 2011.

    Google Scholar 

  • Sepulveda MS, Poppenga RH, Arrecis JJ, Quinn LB. Concentrations of mercury and selenium in tissues of double-crested cormorants (Phalacrocorax auritus) from southern Florida. Col Waterbirds. 1998;21:35–42.

    Article  Google Scholar 

  • Sleeman JM, Cristol DA, White AE, Evers DC, Gerhold RW, Keel MK. Mercury poisoning in a free-living northern river otter (Lontra canadensis). J Wildl Dis. 2010;46:1035–9.

    Google Scholar 

  • Stamler CJ, Abdelouahab N, Vanier C, Mergler D, Chan HM. Relationship between platelet monoamine oxidase-B (MAO-B) activity and mercury exposure in fish consumers from the Lake St. Pierre region of Que., Canada. Neurotoxicology. 2006;27:429–36.

    Article  PubMed  CAS  Google Scholar 

  • Strom S. Total mercury and methylmercury residues in river otters (Lutra canadensis) from Wisconsin. Arch Environ Contam Toxicol. 2008;54:546–54.

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi T, Eto K. The pathology of Minamata disease—a tragic story of water pollution. Fukuoka, Japan: Kyushu University Press; 1999.

    Google Scholar 

  • Thompson DR. Mercury in birds and terrestrial mammals. In: Beyer WN, Heinz GH, Redmon-Norwood AW, editors. Environmental contaminants in wildlife: interpreting tissue concentrations. SETAC special publication series. Boca Raton: Lewis Publishers; 1996. pp. 341–56.

    Google Scholar 

  • Thompson DR, Furness RW, Walsh PM. Historical changes in mercury concentrations in the marine ecosystem of the north and north-east Atlantic-ocean as indicated by seabird feathers. J Appl Ecol. 1992;29:79–84.

    Article  CAS  Google Scholar 

  • Trasande L, Landrigan PJ, Schechter C. Public health and economic consequences of methyl mercury toxicity to the developing brain. Environ Health Perspect. 2005;113:590–6.

    Article  PubMed  CAS  Google Scholar 

  • Tsuzuki Y. Effect of chronic methylmercury exposure on activities of neurotransmitter enzymes in rat cerebellum. Toxicol Appl Pharmacol. 1981;60:379–81.

    Article  PubMed  CAS  Google Scholar 

  • U.S. ATSDR. Toxicological profile for mercury. Atlanta: Agency for Toxic Substances and Disease Registry, US Department of Health and Human Services; 1999.

    Google Scholar 

  • U.S. EPA. Mercury study report to congress, vol. VII: Characterization of human health and wildlife risks from mercury exposure in the United States. Washington: Office of Research and Development; 1997.

    Google Scholar 

  • U.S. EPA. EPA National Listing of Fish Advisories. Washington: Office of Water. 2009. EPA-823-F-09-007. http://water.epa.gov/scitech/swguidance/fishshellfish/fishadvisories/tech2008.cfm. Accessed 30 Jan 2011.

  • U.S. NHANES. Mean body weight, height, and body mass index, United States 1960–2002. Atlanta: Centers for Disease Control and Prevention, US Department of Health and Human Services; 2004.

    Google Scholar 

  • Wobeser G, Swift M. Mercury poisoning in a wild mink. J Wildl Dis. 1976;12:335–40.

    PubMed  CAS  Google Scholar 

  • Wobeser G, Nielsen NO, Schiefer B. Mercury and mink. II. Experimental methyl mercury intoxication. Can J Comp Med. 1976;40:34–45.

    PubMed  CAS  Google Scholar 

  • Wren CD. Probable case of mercury poisoning in a wild otter, Lutra canadensis, in Northwestern Ontario. Can Field Naturalist. 1985;99:112–4.

    Google Scholar 

  • Wren CD, Stokes PM, Fischer KL. Mercury levels in Ontario mink and otter relative to food levels and environmental acidification. Can J Zool. 1986;64:2854–9.

    Article  CAS  Google Scholar 

  • Wren CD, Hunter DB, Leatherland JF, Stokes PM. The effects of polychlorinated biphenyls and methylmercury, singly and in combination, on mink. I. Uptake and toxic responses. Arch Environ Contam Toxicol. 1987;16:441–7.

    Article  PubMed  CAS  Google Scholar 

  • Yates D, Mayack D, Munney K, Evers DC, Taylor RJ, Kaur T, Major A. Mercury levels in mink and river otter in northeastern North America. Ecotoxicology. 2005;14:263–74.

    Article  PubMed  CAS  Google Scholar 

  • Zelikoff JT. Biomarkers of immunotoxicity in fish and other non-mammalian sentinel species: predictive value for mammals? Toxicology. 1998;129:63–71.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niladri Basu PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Basu, N. (2012). Piscivorous Mammalian Wildlife as Sentinels of Methylmercury Exposure and Neurotoxicity in Humans. In: Ceccatelli, S., Aschner, M. (eds) Methylmercury and Neurotoxicity. Current Topics in Neurotoxicity, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-2383-6_20

Download citation

Publish with us

Policies and ethics