Skip to main content

Methylmercury and Neural Stem Cells

  • Chapter
  • First Online:
Methylmercury and Neurotoxicity

Part of the book series: Current Topics in Neurotoxicity ((Current Topics Neurotoxicity,volume 2))

Abstract

The developing nervous system has a unique susceptibility to methylmercury (MeHg), as shown by the wide range of adverse morphological and functional outcomes reported by human and experimental animal studies. Despite regulations that have substantially decreased environmental mercury contamination, MeHg remains a global pollutant, and of special concern is the possibility that developmental exposure to low levels of MeHg may result in neurodevelopmental alterations with long-lasting consequences.

Neural stem cells (NSCs) play a key role during prenatal development of the nervous system as well as throughout adulthood when the capability for self-renewal appears to be important for learning, memory and response to injuries. In recent years, we have implemented the use of NSCs as in vitro experimental models to detect and characterise the effects of potentially neurotoxic agents. Here we review our recent studies on the alterations induced by MeHg on rodent and human NSC survival, proliferation and differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Earlier studies of MeHg exposure of undifferentiated cells (rat pheochromocytoma PC12 cells, mouse neuroblastoma cells) in vitro found apoptosis to be induced at higher concentrations (Toimela and Tähti 2004; Wilke et al. 2003; Miura et al. 1999).

References

  • Altman J. Autoradiographic and histological studies of postnatal neurogenesis. IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb. J Comp Neurol. 1969;137(4):433–57. doi:10.1002/cne.901370404.

    PubMed  CAS  Google Scholar 

  • Altman J, Das GD. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol. 1965;124(3):319–35.

    PubMed  CAS  Google Scholar 

  • Alvarez-Buylla A, Temple S. Stem cells in the developing and adult nervous system. J Neurobiol. 1998;36(2):105–10.

    PubMed  CAS  Google Scholar 

  • Alvarez-Buylla A, Kohwi M, Nguyen TM, Merkle FT. The heterogeneity of adult neural stem cells and the emerging complexity of their niche. Cold Spring Harb Symp Quant Biol. 2008;73: 357–65. doi:sqb.2008.73.019 [pii]10.1101/sqb.2008.73.019.

    PubMed  CAS  Google Scholar 

  • Atchison WD, Hare MF. Mechanisms of methylmercury-induced neurotoxicity. FASEB J. 1994;8(9):622–9.

    PubMed  CAS  Google Scholar 

  • Bibel M, Richter J, Schrenk K, Tucker KL, Staiger V, Korte M, Goetz M, Barde YA. Differentiation of mouse embryonic stem cells into a defined neuronal lineage. Nat Neurosci. 2004;7(9):1003–9. doi:10.1038/nn1301.

    PubMed  CAS  Google Scholar 

  • Bibel M, Richter J, Lacroix E, Barde YA. Generation of a defined and uniform population of CNS progenitors and neurons from mouse embryonic stem cells. Nat Protoc. 2007;2(5):1034–43. doi:10.1038/nprot.2007.147.

    PubMed  CAS  Google Scholar 

  • Bjornberg KA, Vahter M, Grawe KP, Berglund M. Methyl mercury exposure in Swedish women with high fish consumption. Sci Total Environ. 2005;341(1–3):45–52. doi:10.1016/j.scitotenv.2004.09.033.

    PubMed  Google Scholar 

  • Bratton SB, MacFarlane M, Cain K, Cohen GM. Protein complexes activate distinct caspase cascades in death receptor and stress-induced apoptosis. Exp Cell Res. 2000;256(1):27–33. doi:S0014-4827(00)94835-3 [pii]10.1006/excr.2000.4835.

    PubMed  CAS  Google Scholar 

  • Breier JM, Radio NM, Mundy WR, Shafer TJ. Development of a high-throughput screening assay for chemical effects on proliferation and viability of immortalized human neural progenitor cells. Toxicol Sci. 2008;105(1):119–33. doi:10.1093/toxsci/kfn115.

    PubMed  CAS  Google Scholar 

  • Burbacher TM, Rodier PM, Weiss B. Methylmercury developmental neurotoxicity: a comparison of effects in humans and animals. Neurotoxicol Teratol. 1990;12(3):191–202.

    PubMed  CAS  Google Scholar 

  • Burke K, Cheng Y, Li B, Petrov A, Joshi P, Berman RF, Reuhl KR, DiCicco-Bloom E. Methylmercury elicits rapid inhibition of cell proliferation in the developing brain and decreases cell cycle regulator, cyclin E. Neurotoxicology. 2006;27(6):970–81. doi:10.1016/j.neuro. 2006.09.001.

    PubMed  CAS  Google Scholar 

  • Buzanska L, Machaj EK, Zablocka B, Pojda Z, Domanska-Janik K. Human cord blood-derived cells attain neuronal and glial features in vitro. J Cell Sci. 2002;115(Pt 10):2131–8.

    PubMed  CAS  Google Scholar 

  • Buzanska L, Jurga M, Stachowiak EK, Stachowiak MK, Domanska-Janik K. Neural stem-like cell line derived from a nonhematopoietic population of human umbilical cord blood. Stem Cells Dev. 2006;15(3):391–406. doi:10.1089/scd.2006.15.391.

    PubMed  CAS  Google Scholar 

  • Buzanska L, Sypecka J, Nerini-Molteni S, Compagnoni A, Hogberg HT, del Torchio R, Domanska-Janik K, Zimmer J, Coecke S. A human stem cell-based model for identifying adverse effects of organic and inorganic chemicals on the developing nervous system. Stem Cells. 2009;27(10):2591–601. doi:10.1002/stem.179.

    PubMed  CAS  Google Scholar 

  • Cameron HA, Woolley CS, McEwen BS, Gould E. Differentiation of newly born neurons and glia in the dentate gyrus of the adult rat. Neuroscience. 1993;56(2):337–44.

    PubMed  CAS  Google Scholar 

  • Ceccatelli S, Daré E, Moors M. Methylmercury-induced neurotoxicity and apoptosis. Chem Biol Interact. 2010;188(2):301–8. doi:S0009-2797(10)00268-1 [pii]10.1016/j.cbi.2010.04.007.

    PubMed  CAS  Google Scholar 

  • Chan SL, Mattson MP. Caspase and calpain substrates: roles in synaptic plasticity and cell death. J Neurosci Res. 1999;58(1):167–90.

    PubMed  CAS  Google Scholar 

  • Choi BH. Effects of methylmercury on neuroepithelial germinal cells in the developing telencephalic vesicles of mice. Acta Neuropathol. 1991;81(4):359–65.

    PubMed  CAS  Google Scholar 

  • Choi BH, Lapham LW, Amin-Zaki L, Saleem T. Abnormal neuronal migration, deranged cerebral cortical organization, and diffuse white matter astrocytosis of human fetal brain: a major effect of methylmercury poisoning in utero. J Neuropathol Exp Neurol. 1978;37(6):719–33.

    PubMed  CAS  Google Scholar 

  • Clarkson TW. The pharmacology of mercury compounds. Annu Rev Pharmacol. 1972;12:375–406. doi:10.1146/annurev.pa.12.040172.002111.

    PubMed  CAS  Google Scholar 

  • Clarkson TW. The toxicology of mercury. Crit Rev Clin Lab Sci. 1997;34(4):369–403. doi:10.3109/10408369708998098.

    PubMed  CAS  Google Scholar 

  • Clarkson TW. The three modern faces of mercury. Environ Health Perspect. 2002;110 Suppl 1:11–23.

    PubMed  CAS  Google Scholar 

  • Conti L, Cattaneo E. Neural stem cell systems: physiological players or in vitro entities? Nat Rev Neurosci. 2010;11(3):176–87. doi:10.1038/nrn2761.

    PubMed  CAS  Google Scholar 

  • Conti L, Pollard SM, Gorba T, Reitano E, Toselli M, Biella G, Sun Y, Sanzone S, Ying QL, Cattaneo E, Smith A. Niche-independent symmetrical self-renewal of a mammalian tissue stem cell. PLoS Biol. 2005;3(9):e283. doi:10.1371/journal.pbio.0030283.

    PubMed  Google Scholar 

  • Daré E, Götz ME, Zhivotovsky B, Manzo L, Ceccatelli S. Antioxidants J811 and 17beta-estradiol protect cerebellar granule cells from methylmercury-induced apoptotic cell death. J Neurosci Res. 2000;62(4):557–65. doi:10.1002/1097-4547(20001115)62:4<557::AID-JNR10>3.0.CO; 2-9 [pii].

    PubMed  Google Scholar 

  • Daré E, Gorman AM, Ahlbom E, Götz M, Momoi T, Ceccatelli S. Apoptotic morphology does not always require caspase activity in rat cerebellar granule neurons. Neurotox Res. 2001;3(5): 501–14.

    PubMed  Google Scholar 

  • Debes F, Budtz-Jorgensen E, Weihe P, White RF, Grandjean P. Impact of prenatal methylmercury exposure on neurobehavioral function at age 14 years. Neurotoxicol Teratol. 2006;28(5):536–47. doi:10.1016/j.ntt.2006.02.005.

    PubMed  CAS  Google Scholar 

  • Doetsch F, Garcia-Verdugo JM, Alvarez-Buylla A. Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci. 1997;17(13):5046–61.

    PubMed  CAS  Google Scholar 

  • Doetsch F, Petreanu L, Caille I, Garcia-Verdugo JM, Alvarez-Buylla A. EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron. 2002;36(6):1021–34.

    PubMed  CAS  Google Scholar 

  • Donato R, Miljan EA, Hines SJ, Aouabdi S, Pollock K, Patel S, Edwards FA, Sinden JD. Differential development of neuronal physiological responsiveness in two human neural stem cell lines. BMC Neurosci. 2007;8:36. doi:1471-2202-8-36 [pii]10.1186/1471-2202-8-36.

    PubMed  Google Scholar 

  • Ehebauer M, Hayward P, Martinez-Arias A. Notch signaling pathway. Sci STKE. 2006(364):cm7. doi:stke.3642006cm7[pii]10.1126/stke.3642006cm7.

    Google Scholar 

  • Elkabetz Y, Panagiotakos G, Al Shamy G, Socci ND, Tabar V, Studer L. Human ES cell-derived neural rosettes reveal a functionally distinct early neural stem cell stage. Genes Dev. 2008;22(2):152–65. doi:10.1101/gad.1616208.

    PubMed  CAS  Google Scholar 

  • Engleson G, Herner T. Alkyl mercury poisoning. Acta Paediatr. 1952;41(3):289–94.

    PubMed  CAS  Google Scholar 

  • Faustman EM, Ponce RA, Ou YC, Mendoza MA, Lewandowski T, Kavanagh T. Investigations of methylmercury-induced alterations in neurogenesis. Environ Health Perspect. 2002;110 Suppl 5:859–64.

    PubMed  CAS  Google Scholar 

  • Freire C, Ramos R, Lopez-Espinosa MJ, Diez S, Vioque J, Ballester F, Fernandez MF. Hair mercury levels, fish consumption, and cognitive development in preschool children from Granada, Spain. Environ Res. 2010;110(1):96–104. doi:10.1016/j.envres.2009.10.005.

    PubMed  CAS  Google Scholar 

  • Frisen J, Johansson CB, Lothian C, Lendahl U. Central nervous system stem cells in the embryo and adult. Cell Mol Life Sci. 1998;54(9):935–45.

    PubMed  CAS  Google Scholar 

  • Gage FH, Ray J, Fisher LJ. Isolation, characterization, and use of stem cells from the CNS. Annu Rev Neurosci. 1995;18:159–92. doi:10.1146/annurev.ne.18.030195.001111.

    PubMed  CAS  Google Scholar 

  • Giménez-Llort L, Ahlbom E, Daré E, Vahter M, Ögren S, Ceccatelli S. Prenatal exposure to methylmercury changes dopamine-modulated motor activity during early ontogeny: age and gender-dependent effects. Environ Toxicol Pharmacol. 2001;9(3):61–70. doi:S1382668900000600 [pii].

    PubMed  Google Scholar 

  • Gotz M, Stoykova A, Gruss P. Pax6 controls radial glia differentiation in the cerebral cortex. Neuron. 1998;21(5):1031–44.

    PubMed  CAS  Google Scholar 

  • Graff RD, Falconer MM, Brown DL, Reuhl KR. Altered sensitivity of posttranslationally modified microtubules to methylmercury in differentiating embryonal carcinoma-derived neurons. Toxicol Appl Pharmacol. 1997;144(2):215–24. doi:10.1006/taap. 1997.8138.

    PubMed  CAS  Google Scholar 

  • Grandjean P, Herz KT. Methylmercury and brain development: imprecision and underestimation of developmental neurotoxicity in humans. Mt Sinai J Med. 2011;78(1):107–18. doi:10.1002/msj.20228.

    PubMed  Google Scholar 

  • Grandjean P, Landrigan PJ. Developmental neurotoxicity of industrial chemicals. Lancet. 2006;368(9553):2167–78. doi:10.1016/s0140-6736(06)69665-7.

    PubMed  CAS  Google Scholar 

  • Grandjean P, Weihe P, White RF, Debes F. Cognitive performance of children prenatally exposed to “safe” levels of methylmercury. Environ Res. 1998;77(2):165–72. doi:10.1006/enrs.1997.3804.

    PubMed  CAS  Google Scholar 

  • Gritti A, Parati EA, Cova L, Frolichsthal P, Galli R, Wanke E, Faravelli L, Morassutti DJ, Roisen F, Nickel DD, Vescovi AL. Multipotential stem cells from the adult mouse brain proliferate and self-renew in response to basic fibroblast growth factor. J Neurosci. 1996;16(3):1091–100.

    PubMed  CAS  Google Scholar 

  • Hartfuss E, Galli R, Heins N, Gotz M. Characterization of CNS precursor subtypes and radial glia. Dev Biol. 2001;229(1):15–30. doi:10.1006/dbio.2000.9962.

    PubMed  CAS  Google Scholar 

  • Hurlbut GD, Kankel MW, Lake RJ, Artavanis-Tsakonas S. Crossing paths with Notch in the hyper-network. Curr Opin Cell Biol. 2007;19(2):166–75. doi:10.1016/j.ceb.2007.02.012.

    PubMed  CAS  Google Scholar 

  • Jaiswal AK. Regulation of antioxidant response element-dependent induction of detoxifying enzyme synthesis. Methods Enzymol. 2004;378:221–38. doi:S0076687904780180 [pii]10.1016/S0076-6879(04)78018-0.

    PubMed  CAS  Google Scholar 

  • Jensen S, Jernelov A. Biological methylation of mercury in aquatic organisms. Nature. 1969;223(5207):753–4.

    PubMed  CAS  Google Scholar 

  • Johansson C, Castoldi AF, Onishchenko N, Manzo L, Vahter M, Ceccatelli S. Neurobehavioural and molecular changes induced by methylmercury exposure during development. Neurotox Res. 2007;11(3–4):241–60.

    PubMed  CAS  Google Scholar 

  • Jurga M, Markiewicz I, Sarnowska A, Habich A, Kozlowska H, Lukomska B, Buzanska L, Domanska-Janik K. Neurogenic potential of human umbilical cord blood: neural-like stem cells depend on previous long-term culture conditions. J Neurosci Res. 2006;83(4):627–37. doi:10.1002/jnr.20766.

    PubMed  CAS  Google Scholar 

  • Kageyama R, Ohtsuka T. The Notch-Hes pathway in mammalian neural development. Cell Res. 1999;9(3):179–88. doi:10.1038/sj.cr.7290016.

    PubMed  CAS  Google Scholar 

  • Kageyama R, Ohtsuka T, Hatakeyama J, Ohsawa R. Roles of bHLH genes in neural stem cell differentiation. Exp Cell Res. 2005;306(2):343–8. doi:10.1016/j.yexcr.2005.03.015.

    PubMed  CAS  Google Scholar 

  • Koch P, Opitz T, Steinbeck JA, Ladewig J, Brustle O. A rosette-type, self-renewing human ES cell-derived neural stem cell with potential for in vitro instruction and synaptic integration. Proc Natl Acad Sci USA. 2009;106(9):3225–30. doi:10.1073/pnas.0808387106.

    PubMed  CAS  Google Scholar 

  • Kraft AD, Johnson DA, Johnson JA. Nuclear factor E2-related factor 2-dependent antioxidant response element activation by tert-butylhydroquinone and sulforaphane occurring preferentially in astrocytes conditions neurons against oxidative insult. J Neurosci. 2004;24(5):1101–12. doi:24/5/1101 [pii]10.1523/JNEUROSCI.3817-03.2004.

    PubMed  CAS  Google Scholar 

  • LeBel CP, Ali SF, McKee M, Bondy SC. Organometal-induced increases in oxygen reactive species: the potential of 2′,7′-dichlorofluorescin diacetate as an index of neurotoxic damage. Toxicol Appl Pharmacol. 1990;104(1):17–24.

    PubMed  CAS  Google Scholar 

  • Lois C, Alvarez-Buylla A. Long-distance neuronal migration in the adult mammalian brain. Science. 1994;264(5162):1145–8.

    PubMed  CAS  Google Scholar 

  • Malatesta P, Hartfuss E, Gotz M. Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development. 2000;127(24):5253–63.

    PubMed  CAS  Google Scholar 

  • McKeown-Eyssen GE, Ruedy J, Neims A. Methyl mercury exposure in northern Quebec. II. Neurologic findings in children. Am J Epidemiol. 1983;118(4):470–9.

    PubMed  CAS  Google Scholar 

  • Miura K, Imura N. Mechanism of methylmercury cytotoxicity. Crit Rev Toxicol. 1987;18(3):161–88. doi:10.3109/10408448709089860.

    PubMed  CAS  Google Scholar 

  • Miura K, Koide N, Himeno S, Nakagawa I, Imura N. The involvement of microtubular disruption in methylmercury-induced apoptosis in neuronal and nonneuronal cell lines. Toxicol Appl Pharmacol 1999;160:279–288, doi:S0041-008X(99)98781-1 [pii].

    PubMed  CAS  Google Scholar 

  • Moors M, Cline JE, Abel J, Fritsche E. ERK-dependent and -independent pathways trigger human neural progenitor cell migration. Toxicol Appl Pharmacol. 2007;221(1):57–67. doi:10.1016/j.taap. 2007.02.018.

    PubMed  CAS  Google Scholar 

  • Moors M, Rockel TD, Abel J, Cline JE, Gassmann K, Schreiber T, Schuwald J, Weinmann N, Fritsche E. Human neurospheres as three-dimensional cellular systems for developmental neurotoxicity testing. Environ Health Perspect. 2009;117(7):1131–8. doi:10.1289/ehp. 0800207.

    PubMed  CAS  Google Scholar 

  • Morel FM, Kraepiel AM, Amyot M. The chemical cycle and bioaccumulation of mercury. Annu Rev Ecol Syst. 1998;29:543–66.

    Google Scholar 

  • Nagashima K, Fujii Y, Tsukamoto T, Nukuzuma S, Satoh M, Fujita M, Fujioka Y, Akagi H. Apoptotic process of cerebellar degeneration in experimental methylmercury intoxication of rats. Acta Neuropathol. 1996;91(1):72–7.

    PubMed  CAS  Google Scholar 

  • National Research Council. Toxicological effects of methylmercury. Washington: National Academy Press; 2000.

    Google Scholar 

  • Nelson AD, Suzuki M, Svendsen CN. A high concentration of epidermal growth factor increases the growth and survival of neurogenic radial glial cells within human neurosphere cultures. Stem Cells. 2008;26(2):348–55. doi:10.1634/stemcells.2007-0299.

    PubMed  CAS  Google Scholar 

  • Nguyen T, Sherratt PJ, Pickett CB. Regulatory mechanisms controlling gene expression mediated by the antioxidant response element. Annu Rev Pharmacol Toxicol. 2003;43:233–60. doi:100901.140229 [pii]10.1146/annurev.pharmtox.43.100901.140229.

    PubMed  CAS  Google Scholar 

  • Nordin-Andersson M, Forsby A, Heldring N, Dejongh J, Kjellstrand P, Walum E. Neurite degeneration in differentiated human neuroblastoma cells. Toxicol In Vitro. 1998;12(5):557–60.

    PubMed  CAS  Google Scholar 

  • Okano H, Temple S. Cell types to order: temporal specification of CNS stem cells. Curr Opin Neurobiol. 2009;19(2):112–9. doi:10.1016/j.conb.2009.04.003.

    PubMed  CAS  Google Scholar 

  • Onishchenko N, Tamm C, Vahter M, Hökfelt T, Johnson JA, Johnson DA, Ceccatelli S. Developmental exposure to methylmercury alters learning and induces depression-like behavior in male mice. Toxicol Sci. 2007;97(2):428–37. doi:kfl199 [pii]10.1093/toxsci/kfl199.

    PubMed  CAS  Google Scholar 

  • Ostenfeld T, Joly E, Tai YT, Peters A, Caldwell M, Jauniaux E, Svendsen CN. Regional specification of rodent and human neurospheres. Brain Res Dev Brain Res. 2002;134(1–2):43–55.

    PubMed  CAS  Google Scholar 

  • Ou YC, Thompson SA, Ponce RA, Schroeder J, Kavanagh TJ, Faustman EM. Induction of the cell cycle regulatory gene p21 (Waf1, Cip1) following methylmercury exposure in vitro and in vivo. Toxicol Appl Pharmacol. 1999;157(3):203–12. doi:10.1006/taap. 1999.8685.

    PubMed  CAS  Google Scholar 

  • Parran DK, Mundy WR, Barone Jr S. Effects of methylmercury and mercuric chloride on differentiation and cell viability in PC12 cells. Toxicol Sci. 2001;59(2):278–90.

    PubMed  CAS  Google Scholar 

  • Parran DK, Barone Jr S, Mundy WR. Methylmercury decreases NGF-induced TrkA autophosphorylation and neurite outgrowth in PC12 cells. Brain Res Dev Brain Res. 2003;141(1–2):71–81.

    PubMed  CAS  Google Scholar 

  • Ponce RA, Kavanagh TJ, Mottet NK, Whittaker SG, Faustman EM. Effects of methyl mercury on the cell cycle of primary rat CNS cells in vitro. Toxicol Appl Pharmacol. 1994;127(1):83–90. doi:10.1006/taap. 1994.1142.

    PubMed  CAS  Google Scholar 

  • Rice D, Barone Jr S. Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect. 2000;108 Suppl 3:511–33.

    PubMed  Google Scholar 

  • Rodier PM. Developing brain as a target of toxicity. Environ Health Perspect. 1995;103 Suppl 6:73–6.

    PubMed  Google Scholar 

  • Rodier PM, Aschner M, Sager PR. Mitotic arrest in the developing CNS after prenatal exposure to methylmercury. Neurobehav Toxicol Teratol. 1984;6(5):379–85.

    PubMed  CAS  Google Scholar 

  • Rossi AD, Ahlbom E, Ogren SO, Nicotera P, Ceccatelli S. Prenatal exposure to methylmercury alters locomotor activity of male but not female rats. Exp Brain Res. 1997;117(3):428–36.

    PubMed  CAS  Google Scholar 

  • Sager PR, Doherty RA, Olmsted JB. Interaction of methylmercury with microtubules in cultured cells and in vitro. Exp Cell Res. 1983;146(1):127–37.

    PubMed  CAS  Google Scholar 

  • Sakai Y, Shoji R, Mishima Y, Sakoda A, Suzuki M. Rapid and sensitive neurotoxicity test based on the morphological changes of PC12 cells with simple computer-assisted image analysis. J Biosci Bioeng. 2000;90(1):20–4.

    PubMed  CAS  Google Scholar 

  • Sarafian TA. Methyl mercury increases intracellular Ca2+ and inositol phosphate levels in cultured cerebellar granule neurons. J Neurochem. 1993;61(2):648–57.

    PubMed  CAS  Google Scholar 

  • Sarafian T, Verity MA. Oxidative mechanisms underlying methyl mercury neurotoxicity. Int J Dev Neurosci. 1991;9(2):147–53.

    PubMed  CAS  Google Scholar 

  • Schmitz I, Kirchhoff S, Krammer PH. Regulation of death receptor-mediated apoptosis pathways. Int J Biochem Cell Biol. 2000;32(11–12):1123–36.

    PubMed  CAS  Google Scholar 

  • Snyder EY, Deitcher DL, Walsh C, Arnold-Aldea S, Hartwieg EA, Cepko CL. Multipotent neural cell lines can engraft and participate in development of mouse cerebellum. Cell. 1992;68(1):33–51.

    PubMed  CAS  Google Scholar 

  • Soderstrom S, Ebendal T. In vitro toxicity of methyl mercury: effects on nerve growth factor (NGF)-responsive neurons and on NGF synthesis in fibroblasts. Toxicol Lett. 1995;75(1–3): 133–44.

    PubMed  CAS  Google Scholar 

  • Suh H, Deng W, Gage FH. Signaling in adult neurogenesis. Annu Rev Cell Dev Biol. 2009;25:253–75. doi:10.1146/annurev.cellbio.042308.113256.

    PubMed  CAS  Google Scholar 

  • Svendsen CN, Skepper J, Rosser AE, ter Borg MG, Tyres P, Ryken T. Restricted growth potential of rat neural precursors as compared to mouse. Brain Res Dev Brain Res. 1997;99(2):253–8.

    PubMed  CAS  Google Scholar 

  • Svendsen CN, ter Borg MG, Armstrong RJ, Rosser AE, Chandran S, Ostenfeld T, Caldwell MA. A new method for the rapid and long term growth of human neural precursor cells. J Neurosci Methods. 1998;85(2):141–52.

    PubMed  CAS  Google Scholar 

  • Tamm C, Duckworth J, Hermanson O, Ceccatelli S. High susceptibility of neural stem cells to methylmercury toxicity: effects on cell survival and neuronal differentiation. J Neurochem. 2006;97(1):69–78. doi:JNC3718 [pii]10.1111/j.1471-4159.2006.03718.x.

    PubMed  CAS  Google Scholar 

  • Tamm C, Duckworth JK, Hermanson O, Ceccatelli S. Methylmercury inhibits differentiation of rat neural stem cells via Notch signalling. Neuroreport. 2008;19(3):339–43. doi:00001756-200802120-00016 [pii]10.1097/WNR.0b013e3282f50ca4.

    PubMed  CAS  Google Scholar 

  • Temple S. The development of neural stem cells. Nature. 2001;414(6859):112–7. doi: 10.1038/35102174.

    PubMed  CAS  Google Scholar 

  • Temple S, Qian X. Vertebrate neural progenitor cells: subtypes and regulation. Curr Opin Neurobiol. 1996;6(1):11–7.

    PubMed  CAS  Google Scholar 

  • Tofighi R, Tamm C, Moors M, Norhamidah Ibrahim W, Ceccatelli S. Neural Stem Cells. In Aschner M, Suñol C, Bal-Price A (eds.) Neuromethods, Vol 56, Cell Culture Techniques, 2011. 1st edn. Humana Press.

    PubMed  CAS  Google Scholar 

  • Toimela T, Tähti H. Mitochondrial viability and apoptosis induced by aluminum, mercuric mercury and methylmercury in cell lines of neural origin. Arch Toxicol 2004; 78, 565–574, doi:10.1007/s00204-004-0575-y

    PubMed  CAS  Google Scholar 

  • Vahter M, Akesson A, Lind B, Bjors U, Schutz A, Berglund M. Longitudinal study of methylmercury and inorganic mercury in blood and urine of pregnant and lactating women, as well as in umbilical cord blood. Environ Res. 2000;84(2):186–94. doi:10.1006/enrs.2000.4098.

    PubMed  CAS  Google Scholar 

  • Vogel DG, Margolis RL, Mottet NK. The effects of methyl mercury binding to microtubules. Toxicol Appl Pharmacol. 1985;80(3):473–86.

    PubMed  CAS  Google Scholar 

  • Westermark T. Kvicksilver hos vattenlevande organismer. Kvicksilverfrågan i Sverige. In: Paper presented at the Kvicksilverkonferensen, Stockholm; 1965.

    Google Scholar 

  • Wilke RA, Kolbert CP, Rahimi RA, Windebank AJ. Methylmercury induces apoptosis in cultured rat dorsal root ganglion neurons. Neurotoxicology 2003;24:369–378, doi:S0161-813X(03)00032-9 [pii].

    PubMed  CAS  Google Scholar 

  • Yee S, Choi BH. Methylmercury poisoning induces oxidative stress in the mouse brain. Exp Mol Pathol. 1994;60(3):188–96. doi:10.1006/exmp. 1994.1017.

    PubMed  CAS  Google Scholar 

  • Zhao C, Teng EM, Summers RG, Ming GL, Gage FH. Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. J Neurosci. 2006;26(1):3–11. doi:26/1/3 [pii]10.1523/JNEUROSCI.3648-05.2006.

    PubMed  CAS  Google Scholar 

  • Zimmermann KC, Bonzon C, Green DR. The machinery of programmed cell death. Pharmacol Ther. 2001;92(1):57–70.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Ceccatelli MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Edoff, K., Ceccatelli, S. (2012). Methylmercury and Neural Stem Cells. In: Ceccatelli, S., Aschner, M. (eds) Methylmercury and Neurotoxicity. Current Topics in Neurotoxicity, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-2383-6_16

Download citation

Publish with us

Policies and ethics