Skip to main content

Methylmercury Neurotoxicity: A Synopsis of In Vitro Effects

  • Chapter
  • First Online:
Methylmercury and Neurotoxicity

Part of the book series: Current Topics in Neurotoxicity ((Current Topics Neurotoxicity,volume 2))

  • 833 Accesses

Abstract

Following severe episodes of human poisoning, a large number of studies in experimental animals have confirmed that methylmercury (MeHg) is a potent developmental neurotoxicant. Furthermore, extensive research in vivo and in vitro has delineated the possible mechanisms underlying MeHg neurotoxicity. This chapter summarizes major findings on the effects of MeHg at the cellular level in both neuronal and glial cells in vitro. Given the multitude of information available, only major pathways of toxicity are discussed, with a focus on the ability of MeHg to cause apoptotic cell death, by mechanisms involving the perturbation of calcium homeostasis and the induction of oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aschner M, Du YL, Gannon M, et al. Methylmercury-induced alterations in excitatory amino acid transport in rat primary astrocyte cultures. Brain Res. 1993;602:181–6.

    Article  PubMed  CAS  Google Scholar 

  • Aschner M, Yao CP, Allen JW, et al. Methylmercury alters glutamate transport in astrocytes. Neurochem Int. 2000;37:199–206.

    Article  PubMed  CAS  Google Scholar 

  • Atchison WD, Hare MF. Mechanisms of methylmercury-induced neurotoxicity. FASEB J. 1994;8: 622–8.

    PubMed  CAS  Google Scholar 

  • Bakir F, Damluji SF, Amin-Zaki L, et al. Methylmercury poisoning in Iraq. Science. 1973;181: 230–41.

    Article  PubMed  CAS  Google Scholar 

  • Belletti S, Orlandini G, Vettori MV, et al. Time course assessment of methylmercury effects on C6 glioma cells: submicromolar concentrations induce oxidative DNA damage and apoptosis. J Neurosci Res. 2002;70:703–11.

    Article  PubMed  CAS  Google Scholar 

  • Castoldi AF, Barni S, Turin I, et al. Early acute necrosis, delayed apoptosis and cytoskeletal breakdown in cultured cerebellar granule neurons exposed to methylmercury. J Neurosci Res. 2000;59:775–87.

    Article  PubMed  CAS  Google Scholar 

  • Castoldi AF, Coccini T, Ceccatelli S, Manzo L. Neurotoxicity and molecular effects of methylmercury. Brain Res Bull. 2001;55:197–203.

    Article  PubMed  CAS  Google Scholar 

  • Castoldi AF, Onishchenko N, Johansson C, et al. Developmental neurotoxicity of methylmercury: laboratory animal data and their contribution to human risk assessment. Regul Toxicol Pharmacol. 2008;51:215–29.

    Article  PubMed  CAS  Google Scholar 

  • Ceccatelli S, Daré E, Moors M. Methylmercury-induced neurotoxicity and apoptosis. Chem Biol Interact. 2010;188:301–8.

    Article  PubMed  CAS  Google Scholar 

  • Clarkson TW, Magos L. The toxicology of mercury and its chemical compounds. Crit Rev Toxicol. 2006;36:609–62.

    Article  PubMed  CAS  Google Scholar 

  • Costa LG. Contaminants in fish: risk-benefit considerations. Arch Ind Hyg Toxicol. 2007;58: 367–74.

    Article  CAS  Google Scholar 

  • Costa LG, Fattori V, Giordano G, et al. An in vitro approach to assess the toxicity of certain food contaminants: methylmercury and polychlorinated biphenyls. Toxicology. 2007;237:65–76.

    Article  PubMed  CAS  Google Scholar 

  • Cuello S, Goya L, Madrid Y, et al. Molecular mechanisms of methylmercury-induced cell death in human HepG2 cells. Food Chem Toxicol. 2010;48:1405–11.

    Article  PubMed  CAS  Google Scholar 

  • Daré E, Gotz ME, Zhivotovsky B, et al. Antioxidants J811 and 17β-estradiol protect cerebellar granule cells from methylmercury-induced apoptotic cell death. J Neurosci Res. 2000;62:557–65.

    Article  PubMed  Google Scholar 

  • Daré E, Gorman AM, Ahlbom E, et al. Apoptotic morphology does not always require caspase activity in rat cerebellar granule neurons. Neurotox Res. 2001a;3:501–14.

    Article  PubMed  Google Scholar 

  • Daré E, Li W, Zhivotovsky B, et al. Methylmercury and H2O2 provoke lysosomal damage in human astrocytoma D384 cells followed by apoptosis. Free Radic Biol Med. 2001b;30:1347–56.

    Article  PubMed  Google Scholar 

  • Fang SC, Fallin E. The binding of various mercurial compounds to serum proteins. Bull Environ Contam Toxicol. 1976;15:110–7.

    Article  PubMed  CAS  Google Scholar 

  • Gatti R, Belletti S, Uggeri J, et al. Methylmercury cytotoxicity in PC12 cells is mediated by primary glutathione depletion independent of excess reactive oxygen species generation. Toxicology. 2004;204:175–85.

    Article  PubMed  CAS  Google Scholar 

  • Giordano G, Kavanagh TJ, Costa LG. Neurotoxicity of a polybrominated diphenyl ether mixture (DE-71) in mouse neurons and astrocytes is modulated by intracellular glutathione levels. Toxicol Appl Pharmacol. 2008;232:161–8.

    Article  PubMed  CAS  Google Scholar 

  • Grandjean P, Weihe P, White RF, et al. Cognitive deficit in 7-year-old children with prenatal exposure to methylmercury. Neurotoxicol Teratol. 1997;19:417–28.

    Article  PubMed  CAS  Google Scholar 

  • Harada M. Minamata disease: methylmercury poisoning in Japan caused by environmental pollution. Crit Rev Toxicol. 1995;25:1–24.

    Article  PubMed  CAS  Google Scholar 

  • Hare MF, Atchison WD. Methylmercury mobilizes Ca++ from intracellular stores sensitive to inositol 1,4,5-trisphosphate in NG108-15 cells. J Pharmacol Exp Ther. 1995;272:1016–23.

    PubMed  CAS  Google Scholar 

  • Kaur P, Aschner M, Syversen T. Glutathione modulation influences methyl mercury induced neurotoxicity in primary cultures of neurons and astrocytes. Neurotoxicology. 2006;27:492–500.

    Article  PubMed  CAS  Google Scholar 

  • Kaur P, Aschner M, Syversen T. Role of glutathione in determining the differential sensitivity between cortical and cerebellar regions towards mercury-induced oxidative stress. Toxicology. 2007;230:164–77.

    Article  PubMed  CAS  Google Scholar 

  • Kunimoto M. Methylmercury induces apoptosis of rat cerebellar neurons in primary culture. Biochem Biophys Res Commun. 1994;204:310–7.

    Article  PubMed  CAS  Google Scholar 

  • Limke TL, Bearss JJ, Atchison WD. Acute exposure to methylmercury causes Ca2+ dysregulation and neuronal death in rat cerebellar granule cells through an M3 muscarinic receptor-linked pathway. Toxicol Sci. 2004;80:60–8.

    Article  PubMed  CAS  Google Scholar 

  • Marty MS, Atchison WD. Pathways mediating Ca2+ entry in rat cerebellar granule cells following I vitro exposure to methyl mercury. Toxicol Appl Pharmacol. 1997;147:319–30.

    Article  PubMed  CAS  Google Scholar 

  • Marty MS, Atchison WD. Elevations of intracellular Ca2+ as a probable contributor to decreased viability in cerebellar granule cells following acute exposure to methylmercury. Toxicol Appl Pharmacol. 1998;150:98–105.

    Article  PubMed  CAS  Google Scholar 

  • Meacham CA, Freudenrich TM, Anderson WL, et al. Accumulation of methylmercury and polychlorinated biphenyls in in vitro models of rat neuronal tissue. Toxicol Appl Pharmacol. 2005;295:177–87.

    Article  Google Scholar 

  • Morken TS, Sonnewald U, Aschner M, et al. Effects of methylmercury on primary brain cells in mono-and co-culture. Toxicol Sci. 2005;87:169–75.

    Article  PubMed  CAS  Google Scholar 

  • Ni M, Li X, Yin Z, et al. Methylmercury induces acute oxidative stress, altering Nrf2 protein level in primary microglial cells. Toxicol Sci. 2010;116:590–603.

    Article  PubMed  CAS  Google Scholar 

  • Nishioku T, Takai N, Miyamoto KI, et al. Involvement of caspase 3-like protease in methylmercury-induced apoptosis in primary cultured rat cerebral microglia. Brain Res. 2000;871: 160–4.

    Article  PubMed  CAS  Google Scholar 

  • Orrenius S, Nicotera P. The calcium ion and cell death. J Neural Transm. 1994;43:1–11.

    CAS  Google Scholar 

  • Sakaue M, Okazaki M, Hara S. Very low levels of methylmercury induce cell death of cultured rat cerebellar neurons via calpain activation. Toxicology. 2005;213:97–106.

    Article  PubMed  CAS  Google Scholar 

  • Sanfeliu C, Sebastia J, Ki SU. Methylmercury neurotoxicity in cultures of human neurons, astrocytes, neuroblastoma cells. Neurotoxicology. 2001;22:317–27.

    Article  PubMed  CAS  Google Scholar 

  • Sanfeliu C, Sebastia J, Cristofol R, et al. Neurotoxicity of organomercurial compounds. Neurotox Res. 2003;5:283–305.

    Article  PubMed  Google Scholar 

  • Sarafian TA. Methyl mercury increases intracellular Ca2+ and inositol phosphate levels in cultured cerebellar granule neurons. J Neurochem. 1993;61:648–57.

    Article  PubMed  CAS  Google Scholar 

  • Sarafian TA, Verity MA. Oxidative mechanisms underlying methyl mercury neurotoxicity. Int J Dev Neurosci. 1991;9:147–53.

    Article  PubMed  CAS  Google Scholar 

  • Sarafian TA, Verity MA. Changes in protein phosphorylation in cultured neurons after exposure to methylmercury. Ann N Y Acad Sci. 1992;679:65–77.

    Article  Google Scholar 

  • Shanker G, Aschner M. Identification and characterization of uptake systems for cystine and cysteine in cultured astrocytes and neurons: evidence for methylmercury-targeted disruption of astrocyte transport. J Neurosci Res. 2001;66:998–1002.

    Article  PubMed  CAS  Google Scholar 

  • Shanker G, Aschner M. Methylmercury-induced reactive oxygen species formation in neonatal cerebral astrocytic cultures is attenuated by antioxidants. Mol Brain Res. 2003;110:85–91.

    Article  PubMed  CAS  Google Scholar 

  • Shanker G, Syversen T, Aschner M. Astrocyte-mediated methylmercury neurotoxicity. Biol Trace Elem Res. 2003;95:1–10.

    Article  PubMed  CAS  Google Scholar 

  • Shanker G, Aschner JL, Syversen T, et al. Free radical formation in cerebral cortex astrocytes in culture induced by methylmercury. Mol Brain Res. 2004;128:48–57.

    Article  PubMed  CAS  Google Scholar 

  • Shikiri M, Takanezawa Y, Uchida K, et al. Protection of cerebellar granule cells by tocopherols and tocotrienols against methylmercury toxicity. Brain Res. 2007;1182:106–15.

    Article  Google Scholar 

  • Soldin OP, O’Mara DM, Aschner M. Thyroid hormones and methylmercury toxicity. Biol Trace Elem Res. 2008;126:1–12.

    Article  PubMed  CAS  Google Scholar 

  • Takser L, Mergler D, Baldwin M, et al. Thyroid hormones in pregnancy in relation to environmental exposure to organochlorine compounds and mercury. Environ Health Perspect. 2006;113: 1039–45.

    Article  Google Scholar 

  • Tamm C, Duckworth J, Hermanson O, et al. High susceptibility of neural stem cells to methylmercury toxicity: effects on cell survival and neuronal differentiation. J Neurochem. 2006;97: 69–78.

    Article  PubMed  CAS  Google Scholar 

  • Toimela T, Tahti H. Mitochondrial viability and apoptosis induced by aluminum, mercuric mercury and methylmercury in cell lines of neural origin. Arch Toxicol. 2004;78:565–74.

    Article  PubMed  CAS  Google Scholar 

  • Vendrell I, Carrascal M, Vilano MT, et al. Cell viability and proteomic analysis in cultured neurons exposed to methylmercury. Hum Exp Toxicol. 2007;26:263–72.

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Jiang H, Yin Z, et al. Methylmercury toxicity and Nrf2-dependent detoxification in astrocytes. Toxicol Sci. 2009;107:135–43.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe J, Nakamachi T, Ogawa T, et al. Characterization of antioxidant protection of cultured neural progenitor cells (NPC) against methylmercury (MeHg) toxicity. J Toxicol Sci. 2009;34:315–25.

    Article  PubMed  CAS  Google Scholar 

  • Yin Z, Milatovic D, Aschner JL, et al. Methylmercury induces oxidative injury, alterations in permeability and glutamine transport in cultured astrocytes. Brain Res. 2007;1131:1–10.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work by the authors has been supported over the years by grants from the National Institutes of Health, the Environmental Protection Agency, the European Commission, and the Italian Ministry for Research (MIUR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucio G. Costa MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Costa, L.G., Giordano, G. (2012). Methylmercury Neurotoxicity: A Synopsis of In Vitro Effects. In: Ceccatelli, S., Aschner, M. (eds) Methylmercury and Neurotoxicity. Current Topics in Neurotoxicity, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-2383-6_11

Download citation

Publish with us

Policies and ethics