Skip to main content

Morphology, Chemical, and Phase Composition of Electrodeposited Co–Ni, Fe–Ni, and Mo–Ni–O Powders

  • Chapter
  • First Online:
Electrochemical Production of Metal Powders

Part of the book series: Modern Aspects of Electrochemistry ((MAOE,volume 54))

Abstract

The alloy powders of the iron-group metals are of great interest for many industrial applications [1–88].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Papers CT, Brabyn SM (1987) Met Powder Rep 42:863

    Google Scholar 

  2. Ekemar S, Lindholm L, Hartzell T (1982) Int J Refract H 1:37

    CAS  Google Scholar 

  3. Erol S, Nursel D (1999) J Adhes Sci Technol 13:679

    Article  Google Scholar 

  4. Rehim SS, Halim AM, Osman MM (1985) J Appl Electrochem 15:107

    Article  Google Scholar 

  5. Laughlin D, Lu B, Hsu Y, Zou J, Lambeth D (2000) IEEE Trans Magn 36:48

    Article  CAS  Google Scholar 

  6. Vassal N, Salmon E, Fauvarque J (1999) J Electrochem Soc 146:20

    Article  CAS  Google Scholar 

  7. Benvenuti F, Carlini C, Marchetti F, Marchionna M, Galletti A, Sbrana G (2001) J Organomet Chem 622:286

    Article  CAS  Google Scholar 

  8. Tsay M, Chang F (2000) Appl Catal A Gen 203:15

    Article  CAS  Google Scholar 

  9. Diskin A, Cunningham R, Ormerod R (1998) Catal Today 46:147

    Article  CAS  Google Scholar 

  10. Kapoor S, Salunke HG, Tripathi AK, Kulshreshtha SK, Mittal JP (2000) Mater Res Bull 35:143

    Article  CAS  Google Scholar 

  11. Ishihara T, Horiuchi N, Inoue T, Eguchi K, Takita Y, Arai H (1992) J Catal 136:232

    Article  CAS  Google Scholar 

  12. Kikuko K, Teruh iko I (1998) Jpn Kokai Tokkyo Koho JP 10302790

    Google Scholar 

  13. Bianco A, Gusmano G, Montanari R, Montesperelli G, Traversa E (1994) Mater Lett 19:263

    Article  CAS  Google Scholar 

  14. Bianco A, Gusmano G, Montanari R, Montesperelli G, Traversa E (1995) Thermochim Acta 269(270):117

    Article  Google Scholar 

  15. Aymard L, Dumont B, Viau G (1996) J Alloys Compd 242:108

    Article  CAS  Google Scholar 

  16. Huang J, Wu Y, Ye H (1996) Acta Mater 44:1201

    Article  CAS  Google Scholar 

  17. Koltypin Y, Katabi G, Cao X, Prozorov R, Gedanken A (1966) J Non Cryst Solids 201:159

    Article  Google Scholar 

  18. Kapoor S, Salunke H, Tripathi A, Kulshreshta S, Mittal J (2000) Mater Res Bull 35:143

    Article  CAS  Google Scholar 

  19. Kurikka V, Gedanken A, Prozorov R, Revesz A, Lendvai J (2000) J Mater Res 15:332

    Article  Google Scholar 

  20. Fievet F, Lagier J, Blin B, Meaudoin B, Figlarz M (1989) Solid State Ionics 32(33):198

    Article  Google Scholar 

  21. Li Y, Li L, Liao H, Wang H, Qian Y (1999) J Mater Chem 9:2675

    Article  CAS  Google Scholar 

  22. Degen A, Macek J (1999) Nanostruct Mater 12:225

    Article  Google Scholar 

  23. Gibson KP (1995) Science 267:1338

    Article  CAS  Google Scholar 

  24. Chen D, Wu S (2000) Chem Mater 12:1354

    Article  CAS  Google Scholar 

  25. Zhang D-E, Ni X-M, Zhang X-J, Zheng H-G (2006) J Magn Magn Mater 302:290

    Article  CAS  Google Scholar 

  26. Hayashi T, Ohno T, Yatsuda S, Uyeda R (1977) Jpn J Appl Phys 16:705

    Article  CAS  Google Scholar 

  27. Dong L, Zhang Z, Jin S, Sun W, Chuang Y (1998) Nanostruct Mater 10:585

    Article  CAS  Google Scholar 

  28. Bianco A, Gusmano G, Montanari R, Montesperelli G, Traversa E (1995) Thermochim Acta 269:117

    Article  Google Scholar 

  29. Viau G, Ravel F, Acher O, Fiévet-Vincent F, Fiévet F (1995) J Magn Magn Mater 144:377

    Article  Google Scholar 

  30. Gao X, Chen D, Dollimore D, Skrzypczak-Jankum E, Burckel P (1993) Thermochim Acta 220:75

    Article  CAS  Google Scholar 

  31. Neddermann R, Binnewies M (1996) Z Anorg Allg Chem 622:17

    Article  CAS  Google Scholar 

  32. Girirdin D, Maurer M (1990) Mater Res Bull 25:119

    Article  Google Scholar 

  33. Xiaoli X, Zuoren N, Yabao J, Peiyun T, Shunlin S, Jie X, Tieyong Z (2008) J Alloys Compd 466:387

    Article  CAS  Google Scholar 

  34. Jang HC, Ju SH, Kang YC (2009) J Alloys Compd 478:206

    Article  CAS  Google Scholar 

  35. Abd El-Halim AM, Khalil RM (1986) Surf Coat Technol 27:103

    Article  CAS  Google Scholar 

  36. Yur’ev BP, Golubkov LA (1969) Trudy—Leningradskii Politekhnicheskii Institut imeni M. I. Kalinina 14:269

    Google Scholar 

  37. Jović VD, Maksimović V, Pavlović MG, Popov KI (2006) J Solid State Electrochem 10:373

    Article  CAS  Google Scholar 

  38. Jović VD, Jović BM, Pavlović MG, Maksimović V (2006) J Solid State Electrochem 10:959

    Article  CAS  Google Scholar 

  39. Jović VD, Jović BM, Maksimović V, Pavlović MG (2007) Electrochim Acta 52:4254

    Article  CAS  Google Scholar 

  40. Jović VD, Jović BM, Pavlović MG (2006) Electrochim Acta 51:5468

    Article  CAS  Google Scholar 

  41. Jović VD, Maksimović V, Pavlović MG, Jović BM (2006) Mater Sci Forum 518:307

    Article  Google Scholar 

  42. Maurice DR, Courtney TH (1990) Metall Mater Trans A 21A:289

    CAS  Google Scholar 

  43. Hamzaoui R, Elkedim O, Greneche JM, Gaffet E (2005) J Magn Magn Mater 294:e145

    Article  CAS  Google Scholar 

  44. Hamzaoui R, Elkedim O, Gaffet E (2004) Mater Sci Eng A 381:363

    Article  CAS  Google Scholar 

  45. Valderruten JF, Perez Alcazar GA, Greneche JM (2006) Phys B 384:316

    Article  CAS  Google Scholar 

  46. Zhou PH, Deng LJ, Xie JL, Liang DF, Chen L, Zhao XQ (2005) J Magn Magn Mater 292:325

    Article  CAS  Google Scholar 

  47. Kaloshkin SD, Tcherdyntsev VV, Tomilin IA (2001) Phys B 299:236

    Article  CAS  Google Scholar 

  48. Tcherdyntsev VV, Kaloshkin SD, Tomilin LA, Shelekhov EV, Baldokhin YuV (1999) Nanostruct Mater 12:139

    Article  Google Scholar 

  49. Baldokhin YuV, Tcherdyntsev VV, Kaloshkin SD, Kochetov GA, Pustov YuA (1999) J Magn Magn Mater 203:313

    Article  CAS  Google Scholar 

  50. Baldokhin YV, Kolotyrkin PY, Petrov YI, Shafranovsky EA (1994) Phys Lett A 189:137

    Article  CAS  Google Scholar 

  51. Schirmer B, Wuttig M (1999) Phys Rev B 60:945

    Google Scholar 

  52. Kuhrt C, Schultz L (1993) J Appl Phys 73:1975

    Article  CAS  Google Scholar 

  53. Jartych E, Zurawicz JK, Oleszak D, Pekala M (2000) J Magn Magn Mater 208:221

    Article  CAS  Google Scholar 

  54. Koohkana R, Sharafia S, Shokrollahib H, Janghorbanb K (2008) J Magn Magn Mater 320:1089

    Article  CAS  Google Scholar 

  55. Pandey B, Verma HC (2007) J Phys Condens Matter 19:406207

    Article  CAS  Google Scholar 

  56. Wang H, Liu Q, Zhang J, Hsu TY (Zuyao X) (2003) Nanotechnology 14:696

    Google Scholar 

  57. Schneeweissa O, Davida B, Zaka T, Zborilb R, Mashlanb M (2007) J Magn Magn Mater 310:e858

    Article  CAS  Google Scholar 

  58. Song HB, Lee KJ, Kim KH, Oh ST, Lee SK, Choa YH (2010) J Nanosci Nanotechnol 10:106

    Article  CAS  Google Scholar 

  59. Kim KH, Yu JH, Lee SB, Lee SK, Choa YH, Oh ST, Kim JR (2008) IEEE Trans Magn 44:3805

    Article  CAS  Google Scholar 

  60. Kasagi T, Tsutaoka T, Hatakeyama K (1999) IEEE Trans Magn 35:3424

    Article  Google Scholar 

  61. Oh ST, Joo MH, Choa YH, Kim KH, Lee SK (2010) Phys Scr T139:014050

    Article  CAS  Google Scholar 

  62. Lačnjevac U, Jović BM, Jović VD (2009) Electrochim Acta 55:535

    Article  CAS  Google Scholar 

  63. Lačnjevac U, Jović BM, Maksimović VM, Jović VD (2010) J Appl Electrochem 40:701

    Article  CAS  Google Scholar 

  64. Zhelibo EP, Kravets NN, Gamarkin MYu, Remez SV (1995) Powder Metall Metal Ceram 34:113

    Article  Google Scholar 

  65. Zhelibo EP, Kravets NN (1997) Powd Metall Metal Ceram 36:264

    Article  CAS  Google Scholar 

  66. Chu CM (2003) J Chin Inst Eng 34:689

    CAS  Google Scholar 

  67. Morrish AH, Haneda KJ (1981) Appl Phys 52:2496

    CAS  Google Scholar 

  68. Ishino K, Narumiya Y (1987) Am Ceram Soc Bull 66:1469

    CAS  Google Scholar 

  69. Zhang Q, Itoh T, Abe M, Tamaura Y (1992) In: Yamaguchi T, Abe M (eds) Proceedings of the 6th international conference on ferrites. The Japan Society of Powder and Powder Metallurgy, Tokyo, p 481

    Google Scholar 

  70. Dube GR, Darshane YS (1993) J Mol Catal 79:285

    Article  CAS  Google Scholar 

  71. Gopal Reddy CV, Manorama SV, Rao VJ (1999) Sens Actuators B Chem 55:90

    Google Scholar 

  72. Satyanarayana LK, Reddy KM, Manorama SV (2003) Mater Chem Phys 82:21

    Article  CAS  Google Scholar 

  73. Abe M, Itoh T, Tamaura Y et al (1998) J Appl Phys 63:3774

    Article  Google Scholar 

  74. Itoh T, Abe M, Sasao T et al (1989) IEEE Trans Magn 25:4230

    Article  CAS  Google Scholar 

  75. Suran G, Heurtel A (1972) J Appl Phys 43:536

    Article  CAS  Google Scholar 

  76. Naoe M, Yamanaka S (1970) Jpn J Appl Phys 9:293

    Article  CAS  Google Scholar 

  77. Marshall DJ (1971) J Cryst Growth 9:305

    Article  CAS  Google Scholar 

  78. Gibart P, Robbins M, Кane AB (1974) J Cryst Growth 24–25:166

    Article  Google Scholar 

  79. Pulliam GR (1967) J Appl Phys 38:1120

    Article  CAS  Google Scholar 

  80. Mee JE, Pulliam GR, Archer JL et al (1969) IEEE Trans Magn 5:717

    Article  CAS  Google Scholar 

  81. Fitzgerald AG, Engin R (1974) Thin Solid Films 20:317

    Article  CAS  Google Scholar 

  82. Itoh H, Takeda T, Naka S (1986) J Mater Sci 21:3677

    Article  CAS  Google Scholar 

  83. Tsuchiya T, Yamashiro H, Sei T et al (1992) J Mater Sci 27:3645

    Article  CAS  Google Scholar 

  84. Jung DS, Kang YC (2009) J Magn Magn Mater 321:619

    Article  CAS  Google Scholar 

  85. Deschanres JL, Langlet M, Joubert JC (1990) J Magn Magn Mater 83:437

    Article  Google Scholar 

  86. Lee PY, Ishizaka K, Suematsu H et al (2006) J Nanocryst Res 8:29

    Article  CAS  Google Scholar 

  87. Sartale SD, Lokhande CD, Giersig M et al (2004) J Phys Condens Matter 16:773

    Article  CAS  Google Scholar 

  88. Fang J, Shama N, Tung L et al (2003) J Appl Phys 93:7483

    Article  CAS  Google Scholar 

  89. Ceylan A, Ozcan S, Ni C et al (2008) J Magn Magn Mater 320:857

    Article  CAS  Google Scholar 

  90. Kinh VO, Chassaing E, Saurat M (1975) Electrodep Surf Treat 3:205

    Article  Google Scholar 

  91. Yao SW, Zeng Y, Guo HT (1994) Surf Tech (Japan) 45:643

    CAS  Google Scholar 

  92. Friend WZ (1980) Corrosion of nickel and nickel-base alloys. Wiley Interscience, New York, p 248

    Google Scholar 

  93. Kriz JF, Shimada H, Yoshimura Y, Matsubayashi N, Nishijama A (1995) Fuel 74:1852

    Article  CAS  Google Scholar 

  94. Astier MP, Dji G, Teichner SJ (1991) Appl Catal 72:321

    Article  CAS  Google Scholar 

  95. Tsenta TE, Knyazheva VM, Svistunova TV, Kolotyrkin YM, Zakharin DS (1989) Prot Met 25:28

    Google Scholar 

  96. Beltowska-Lehman E (1990) J Appl Electrochem 20:132

    Article  CAS  Google Scholar 

  97. Drown DE, Mahmood MN, Turner AK, Hall SM, Fogarty PO (1982) Int J Hydrogen Energy 7:405

    Article  Google Scholar 

  98. Huot JY, Brossard L (1988) J Appl Electrochem 18:815

    Article  CAS  Google Scholar 

  99. Conway BE, Bai L, Sattar MA (1987) Int J Hydrogen Energy 12:607

    Article  CAS  Google Scholar 

  100. Raj IA, Vasu KI (1992) J Appl Electrochem 22:471

    Article  CAS  Google Scholar 

  101. Conway BE, Bai L, Tessier DF (1984) J Electroanal Chem 161:39

    Article  CAS  Google Scholar 

  102. Fan C, Piron DL, Paridis P (1994) Electrochim Acta 39:2715

    Article  CAS  Google Scholar 

  103. Conway BE, Bai L (1985) J Chem Soc Faraday Trans I 81:1841

    Article  CAS  Google Scholar 

  104. Raj IA, Kovenkatesan V (1988) Int J Hydrogen Energy 12:215

    Google Scholar 

  105. Fan C, Piron DL, Sleb A, Paridis P (1994) J Electrochem Soc 141:382

    Article  CAS  Google Scholar 

  106. Divisek J, Schmotz H, Balej J (1989) J Appl Electrochem 19:519

    Article  CAS  Google Scholar 

  107. Lasia A, Rami A (1990) J Electroanal Chem 294:123

    Article  CAS  Google Scholar 

  108. Jakšić JM, Vojnović MV, Krstajić NV (2000) Electrochim Acta 45:4151

    Article  Google Scholar 

  109. Gennero de Chialvo MR, Chialvo AC (1998) J Electroanal Chem 448:87

    Article  CAS  Google Scholar 

  110. Jakšić MM (1989) Mater Chem Phys 22:1

    Article  Google Scholar 

  111. Kedzierzawski P, Oleszak D, Janik-Czachor M (2001) Mater Sci Eng A300:105

    CAS  Google Scholar 

  112. Oleszak D, Portnoy VK, Matyja H (1999) Mater Sci Forum 312:345

    Article  Google Scholar 

  113. De la Torre SD, Oleszak D, Kakitsuji A, Miyamoto K, Miyamoto H, Martinez SR, Almeraya CF, Martinez VA, Rois JD (2000) Mater Sci Eng A276:226

    Google Scholar 

  114. Goswami GL, Kumar S, Galun R, Mordike BL (2003) Lasers Eng 13:1

    CAS  Google Scholar 

  115. Bhattacharjee PP, Ray RK, Upadhyaya A (2006) Physica C449:116

    Google Scholar 

  116. Brenner A (1963) Electrodeposition of alloys. Priniciples and practice, vol 2. Academic, New York

    Google Scholar 

  117. Podlaha EJ, Landolt D (1996) J Electrochem Soc 143:885

    Article  CAS  Google Scholar 

  118. Podlaha EJ, Landolt D (1996) J Electrochem Soc 143:893

    Article  CAS  Google Scholar 

  119. Podlaha EJ, Landolt D (1997) J Electrochem Soc 144:1672

    Article  CAS  Google Scholar 

  120. Marlot A, Kern P, Landolt D (2002) Electrochim Acta 48:29

    Article  CAS  Google Scholar 

  121. Jović BM, Jović VD, Maksimović VM, Pavlović MG (2008) Electrochim Acta 53:4796

    Article  CAS  Google Scholar 

  122. Lačnjevac U, Jović BM, Baščarević Z, Maksimović VM, Jović VD (2009) Electrochim Acta 54:3115

    Article  CAS  Google Scholar 

  123. Jović VD, Jović BM, Lačnjevac U, Branković G, Bernik S, Rečnik A (2010) Electrochim Acta 55:4188

    Article  CAS  Google Scholar 

  124. Dean JA (1985) Lange’s handbook of chemistry, 13th edn. Mc-Graw Hill, New York, p 5

    Google Scholar 

  125. Despić AR, Jović VD (1995) In: White RE et al (eds) Modern aspects of electrochemistry, chap 2, vol 27. Plenum, New York

    Google Scholar 

  126. Horkans J (1979) J Electrochem Soc 126:1861; (1981) J Electrochem Soc 128:45

    Google Scholar 

  127. Jepson F, Meecham S, Salt FW (1955) Trans Inst Met Finish 32:160

    Google Scholar 

  128. Young CBF, Struyk C (1946) Trans Electrochem Soc 89:383

    Article  Google Scholar 

  129. Schoch EP, Hirsch A (1907) Trans Am Electrochem Soc 11:135

    CAS  Google Scholar 

  130. Jović VD, Tošić N, Stojanović M (1997) J Electroanal Chem 420:43

    Article  Google Scholar 

  131. Lönnberg B (1994) J Mater Sci 29:3224

    Article  Google Scholar 

  132. Hansen M, Andrenko K (1958) Constitution of binary alloys. Mc-Graw Hill, New York

    Google Scholar 

  133. Calusaru A (1979) Electrodeposition of powders from solutions. Elsevier, New York

    Google Scholar 

  134. Wranglen G (1960) Electrochim Acta 2:1845

    Article  Google Scholar 

  135. Kieling VC (1997) Surf Coat Technol 96:135

    Article  CAS  Google Scholar 

  136. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  137. Zhou XM, Wei XW (2009) Cryst Growth Des 9:7

    Article  CAS  Google Scholar 

  138. Popov KI, Djokić SS, Grgur BN (2002) Fundamental aspects of electrometallurgy. Kluwer, New York

    Google Scholar 

  139. Chassaing E, Portal N, Levy AF, Wang G (2004) J Appl Electrochem 34:1085

    Article  CAS  Google Scholar 

  140. Sanches LS, Domingues SH, Marino CEB, Mascaro LH (2004) Electrochem Commun 6:543

    Article  CAS  Google Scholar 

  141. Donten M, Celsiulis H, Stojek Z (2005) Electrochim Acta 50:1405

    Article  CAS  Google Scholar 

  142. Morgenstern T, Lienhardt JL, Reichelt W, Koenig U, Oppermann H (1993) Mater Sci Forum 133–136:627

    Article  Google Scholar 

  143. Pejryd L (1985) Scand J Metall 14:268

    CAS  Google Scholar 

  144. Hussain OM, Ramana CV, Zaghib K, Julien CM (2006) In: Chowdari BVR et al (eds) Proceedings of the 10th Asian conference on solid state ionics: advanced materials for emerging technologies. World Scientific, River Edge, NJ, p 136

    Google Scholar 

  145. McCarron EM III (1986) J Chem Soc Chem Commun 336

    Google Scholar 

  146. Parise JB, McCarron EM III, Sleight W (1987) Mater Res Bull 22:803

    Article  CAS  Google Scholar 

  147. Smith GW (1962) Acta Cryst 15:1054

    Article  CAS  Google Scholar 

  148. Smith GW, Ibers JA (1965) Acta Cryst 19:269

    Article  CAS  Google Scholar 

  149. Abrahams SC, Reddy JM (1965) J Chem Phys 43:2533

    Article  CAS  Google Scholar 

  150. Sleight AW, Chamberland BL (1968) Inorg Chem 7:1672

    Article  CAS  Google Scholar 

  151. Plyasova LM, Ivanchenko IYu, Andrushkevich MM, Buyanov RA, Itenberg ISh, Khramova GA, Karakchiev LG, Kustova GN, Stepanov GA, Tsailingold AL, Pilipenko FS (1973) Kinet Catal 14:1010

    CAS  Google Scholar 

  152. Harker D (1944) J Chem Phys 12:315

    Article  CAS  Google Scholar 

  153. Parise JB et al (1991) J Solid State Chem 93:193

    Article  CAS  Google Scholar 

  154. Zeng Y, Li Z, Ma M, Zhou S (2000) Electrochem Commun 2:36

    Article  CAS  Google Scholar 

  155. Min X, Zhou M, Chai L, Wang Y, Shu Y (2009) Trans Nonferrous Met Soc China 19:1360

    Article  CAS  Google Scholar 

  156. Younes O, Gileadi E (2002) J Electrochem Soc 149:C100

    Article  CAS  Google Scholar 

  157. Palmer DA, Benezeth P, Wesolowski DJ (2005) In: Proceedings of the 14th international conference on the properties of water and steam, Kyoto, p 264

    Google Scholar 

  158. Trambouze Y, Colleuille Y, The TH, Hebd CR (1956) Seances Acad Sci Ser C 242:497

    CAS  Google Scholar 

  159. Yanushkevich TM, Zhukovskii VM, Ust’yantsev VM (1974) Russ J Inorg Chem 19:1056

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Ministry of Education and Science of the Republic of Serbia through the Projects No. 1806/2002, No. 142032G/2006, and No. 172054/2011.

The authors are indebted to D. Poleti from the Faculty of Technology and Metallurgy University of Belgrade, Serbia, for DSC-TGA analysis.

The authors are also indebted to V.M. Maksimović from the Institute of Nuclear Sciences—Vinča, Belgrade, Serbia, for the XRD analysis of all investigated systems.

Special thanks to A. Rečnik from the Jožef Stefan Institute, Ljubljana, Slovenia, for TEM analysis of as-deposited samples.

The authors also wish to express their gratitude to M.G. Pavlović, Institute of Electrochemistry ICTM, Belgrade, Serbia, for useful discussions in the case of the Co–Ni system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. D. Jović .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Jović, V.D., Lačnjevac, U.Č., Jović, B.M. (2012). Morphology, Chemical, and Phase Composition of Electrodeposited Co–Ni, Fe–Ni, and Mo–Ni–O Powders. In: Djokić, S. (eds) Electrochemical Production of Metal Powders. Modern Aspects of Electrochemistry, vol 54. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-2380-5_5

Download citation

Publish with us

Policies and ethics