Skip to main content

Porous Copper Electrodes Formed by the Constant and the Periodically Changing Regimes of Electrolysis

  • Chapter
  • First Online:
Electrochemical Production of Metal Powders

Part of the book series: Modern Aspects of Electrochemistry ((MAOE,volume 54))

Abstract

The formation of open and porous structures with extremely large surface area is of high technological significance, because this structure type is very suitable for electrodes in many electrochemical devices, such as fuel cells, batteries and sensors [1, 2], and in catalysis applications [3]. The template-directed synthesis method is most commonly used for the preparation of such electrodes. This method is based on a deposition of desired materials in interstitial spaces of disposable hard template. When interstitial spaces of template are filled by deposited material, the template is removed by combustion or etching, and then the deposited material with the replica structure of the template is obtained [4, 5]. The most often used hard templates are porous polycarbonate membranes [6, 7], anodic alumina membrane [8–10], colloidal crystals [11, 12], echinoid skeletal structures [13], and polystyrene spheres [14, 15].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shin H-C, Dong J, Liu M (2003) Adv Mater 15:1610

    Article  CAS  Google Scholar 

  2. Shin H-C, Liu M (2005) Adv Funct Mater 15:582

    Article  CAS  Google Scholar 

  3. Yin J, Jia J, Zhu L (2008) Int J Hydrogen Energy 33:7444

    Article  CAS  Google Scholar 

  4. Shin H-C, Liu M (2004) Chem Mater 16:5460

    Article  CAS  Google Scholar 

  5. Li Y, Jia W-Z, Song Y-Y, Xia XH (2007) Chem Mater 19:5758

    Article  CAS  Google Scholar 

  6. Guo YL, Yui H, Minamikawa H, Yang B, Masuda M, Ito K, Shimizu T (2006) Chem Mater 18:1577

    Article  CAS  Google Scholar 

  7. Kazeminezhad I, Barnes AC, Holbrey JD, Seddon KR, Schwarzacher W (2007) Appl Phys A Mater Sci Process 86:373

    Article  CAS  Google Scholar 

  8. Yuan JH, He FY, Sun DC, Xia XH (2004) Chem Mater 16:1841

    Article  CAS  Google Scholar 

  9. Yuan JH, Wang K, Xia XH (2005) Adv Funct Mater 15:803

    Article  CAS  Google Scholar 

  10. Qiu JD, Peng HZ, Liang RP, Li J, Xia XH (2007) Langmuir 23:2133

    Article  CAS  Google Scholar 

  11. Wang CH, Yang C, Song YY, Gao W, Xia XH (2005) Adv Funct Mater 15:1267

    Article  CAS  Google Scholar 

  12. Chen W, Xia XH (2007) Chemphyschem 8:1009

    Article  CAS  Google Scholar 

  13. Meldrum FC, Seshadri R (2000) Chem Commun 1:29

    Article  Google Scholar 

  14. Bartlett PN, Birkin PR, Ghanem MA, Toh C-S (2001) J Mater Chem 11:849

    Article  CAS  Google Scholar 

  15. Briseno AL, Han S, Rauda IE, Zhou F, Toh C-S, Nemanick EJ, Lewis NS (2004) Langmuir 20:219

    Article  CAS  Google Scholar 

  16. Nikolić ND, Popov KI, Pavlović LjJ, Pavlović MG (2006) J Electroanal Chem 588:88

    Article  Google Scholar 

  17. Nikolić ND, Popov KI, Pavlović LjJ, Pavlović MG (2006) Surf Coat Technol 201:560

    Article  Google Scholar 

  18. Nikolić ND, Popov KI, Pavlović LjJ, Pavlović MG (2007) J Solid State Electrochem 11:667

    Article  Google Scholar 

  19. Nikolić ND, Pavlović LjJ, Pavlović MG, Popov KI (2007) Electrochim Acta 52:8096

    Article  Google Scholar 

  20. Nikolić ND, Popov KI, Pavlović LjJ, Pavlović MG (2007) Sensors 7:1

    Article  Google Scholar 

  21. Nikolić ND, Pavlović LjJ, Krstić SB, Pavlović MG, Popov KI (2008) Chem Eng Sci 63:2824

    Article  Google Scholar 

  22. Nikolić ND, Branković G, Pavlović MG, Popov KI (2008) J Electroanal Chem 621:13

    Article  Google Scholar 

  23. Nikolić ND, Popov KI (2010) Hydrogen co-deposition effects on the structure of electrodeposited copper. In: Djokić SS (ed) Electrodeposition: theory and practice, vol 48, Modern aspects of electrochemistry. Springer, New York, pp 1–70

    Google Scholar 

  24. Nikolić ND, Maksimović V, Pavlović MG, Popov KI (2009) J Serb Chem Soc 74:689

    Article  Google Scholar 

  25. Casas JM, Alvarez F, Cifuentes L (2000) Chem Eng Sci 55:6223

    Article  CAS  Google Scholar 

  26. Nikolić ND, Pavlović LjJ, Branković G, Pavlović MG, Popov KI (2008) J Serb Chem Soc 73:753

    Article  Google Scholar 

  27. Nikolić ND, Pavlović LjJ, Pavlović MG, Popov KI (2007) J Serb Chem Soc 72:1369

    Article  Google Scholar 

  28. Amadi A, Gabe DR, Goodenough M (1991) J Appl Electrochem 21:1114

    Article  CAS  Google Scholar 

  29. Vogt H, Balzer RJ (2005) Electrochim Acta 50:2073

    Article  CAS  Google Scholar 

  30. Nikolić ND, Branković G, Popov KI (2011) Mater Chem Phys 125:587

    Article  Google Scholar 

  31. Kim J-H, Kim R-H, Kwon H-S (2008) Electrochem Commun 10:1148

    Article  CAS  Google Scholar 

  32. Oniciu L, Muresan L (1991) J Appl Electrochem 21:565

    Article  CAS  Google Scholar 

  33. Muresan L, Varvara S (2005) Leveling and brightening mechanisms in metal electrodeposition. In: Nunez M (ed) Metal electrodeposition. Nova Science, New York, pp 1–45

    Google Scholar 

  34. Popov KI, Maksimović MD (1989) Theory of the effect of electrodeposition at periodically changing rate on the morphology of metal deposition. In: Conway BE, Bockris JO’M, White RE (eds) Modern aspects of electrochemistry, vol 19. Plenum, New York, pp 193–250

    Google Scholar 

  35. Popov KI, Djokić SS, Grgur BN (2002) Fundamental aspects of electrometallurgy. Kluwer Academic/Plenum, New York

    Google Scholar 

  36. Nikolić ND, Branković G, Pavlović MG, Popov KI (2009) Electrochem Commun 11:421

    Article  Google Scholar 

  37. Nikolić ND, Branković G, Maksimović VM, Pavlović MG, Popov KI (2010) J Solid State Electrochem 14:331

    Article  Google Scholar 

  38. Popov KI, Nikolić ND, Živković PM, Branković G (2010) Electrochim Acta 55:1919

    Article  CAS  Google Scholar 

  39. Popov KI, Stojilković ER, Radmilović V, Pavlović MG (1997) Powder Technol 93:55

    Article  CAS  Google Scholar 

  40. Barton L, Bockris JO’M (1962) Proc Roy Soc A 268:485

    Article  CAS  Google Scholar 

  41. Nikolić ND, Branković G, Maksimović VM, Pavlović MG, Popov KI (2009) J Electroanal Chem 635:111

    Article  Google Scholar 

  42. Ko W-Y, Chen W-H, Tzeng S-D, Gwo S, Lin K-J (2006) Chem Mater 18:6097

    Article  CAS  Google Scholar 

  43. Popov KI, Pavlović MG (1993) Electrodeposition of metal powders with controlled grain size and morphology. In: White RE, Bockris JO’M, Conway BE (eds) Modern aspects of electrochemistry, vol 24. Plenum, New York, pp 299–391

    Chapter  Google Scholar 

  44. Nikolić ND, Branković G, Maksimović V (2012) J Solid State Electrochem 16:321

    Google Scholar 

  45. Nikolić ND, Branković G (2010) Electrochem Commun 12:740

    Article  Google Scholar 

  46. Dima GE, de Vooys ACA, Koper MTM (2003) J Electroanal Chem 554–555:15

    Google Scholar 

  47. Ko W-Y, Chen W-H, Cheng C-Y, Lin K-J (2009) Sens Actuators B Chem 137:437

    Article  Google Scholar 

  48. Pletcher D, Poorbedi Z (1979) Electrochim Acta 24:1253

    Article  CAS  Google Scholar 

  49. Gorgievski M, Božić D, Stanković V, Bogdanović G (2009) J Hazard Mater 170:716

    Article  CAS  Google Scholar 

  50. Chandrasekar MS, Pushpavanam M (2008) Electrochim Acta 53:3313

    Article  CAS  Google Scholar 

  51. Sun BK, O’Keefe TJ (1998) Surf Coat Technol 106:44

    Article  CAS  Google Scholar 

  52. Nikolić ND, Branković G, Maksimović VM (2011) J Electroanal Chem 661:309

    Google Scholar 

  53. Nikolić ND, Branković G (2012) Mater Lett 70:11

    Google Scholar 

Download references

Acknowledgments

The author is grateful to Prof. Dr. Konstantin I. Popov for helpful discussion during the preparation of this chapter.

Also, the author is grateful to Dr. Goran Branković and Dr. Ljubica Pavlović for SEM analysis of investigated systems, as well as to Dr. Vesna Maksimović for the cross section analysis of the obtained deposits.

The work was supported by the Ministry of Education and Science of the Republic of Serbia under the research project “Electrochemical synthesis and characterization of nanostructured functional materials for application in new technologies” (No. 172046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nebojša D. Nikolić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Nikolić, N.D. (2012). Porous Copper Electrodes Formed by the Constant and the Periodically Changing Regimes of Electrolysis. In: Djokić, S. (eds) Electrochemical Production of Metal Powders. Modern Aspects of Electrochemistry, vol 54. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-2380-5_4

Download citation

Publish with us

Policies and ethics