Skip to main content

Electrodeposition of Copper Powders and Their Properties

  • Chapter
  • First Online:
Electrochemical Production of Metal Powders

Part of the book series: Modern Aspects of Electrochemistry ((MAOE,volume 54))

Abstract

A powder is a finely divided solid, smaller than 1,000 μm in its maximum dimension. A particle is defined as the smallest unit of a powder. The particles of a powder may assume various forms and sizes, whereas powders, an association of such particles, exhibit, more or less, the same characteristics as if they were formed under identical conditions and if the manipulation of the deposits after removal from the electrode was the same [1, 2]. The size of particles of many metal powders can vary in a quite wide range from a few nanometers to several hundreds of micrometers. The most important properties of a metal powder are the specific surface, the apparent density, the flowability, and the particle grain size and distribution. These properties, called decisive properties, characterize the behavior of a metal powder.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The elimination η from Eqs. (3.4) to (3.6), j i = 0.5 j L, and this dependence can also be found in the literature.

References

  1. German RM (1994) Powder metallurgy science, 2nd edn. Metal Powder Industries Federation, Princeton, NJ

    Google Scholar 

  2. Pavlović MG, Popov KI (2005) Electrochemistry encyclopedia. http://electrochem.cwru.edu/ed/encycl/

  3. Calusaru A (1979) Electrodeposition of metal powders, Materials science monographs. Elsevier, New York

    Google Scholar 

  4. Orhan G, Hapci G (2010) Powder Technol 201:57

    Article  CAS  Google Scholar 

  5. Popov KI, Djokić SS, Grgur BN (2002) Fundamental aspects of electrometallurgy. Kluwer Academic/Plenum, New York

    Google Scholar 

  6. Popov KI, Pavlović MG (1993) Electrodeposition of metal powders with controlled grain size and morphology. In: White RE, Bockris JO’M, Conway BE (eds) Modern aspects of electrochemistry, vol 24. Plenum, New York, pp 299–391

    Chapter  Google Scholar 

  7. Hirakoso K (1935) Denkikogaku Kyokoishi 3:7

    CAS  Google Scholar 

  8. Hirakoso K (1935) Chem Abst 29:5749u

    Google Scholar 

  9. Ibl N (1962) Advances in electrochemistry and electrochemical engineering, vol 2. Interscience, New York

    Google Scholar 

  10. Ibl N (1954) Helv Chim Acta 37:1149

    Article  CAS  Google Scholar 

  11. Kudra O, Lerner ME (1951) Ukrain Khim Zh 17:890

    CAS  Google Scholar 

  12. Kudra O, Gitman E (1952) Elektroliticheskoe Poluchenie Metallicheskiekh Poroshkov, Izd. Akad. Nauk Ukr. SSR, Kiev

    Google Scholar 

  13. Ibl N, Schadegg K (1967) J Electrochem Soc 114:54

    Article  Google Scholar 

  14. Calusaru A (1957) Revista de Chemie Bucuresti 8:369

    CAS  Google Scholar 

  15. Atanasiu I, Calusaru A (1957) Studii Cercet Met Bucuresti 2:237

    Google Scholar 

  16. Russev D (1981) J Appl Electrochem 11:177

    Article  CAS  Google Scholar 

  17. Theis G, Fassler C, Robertson PM, Dossenbach O, Ibl N (1981) 32nd ISEMeeting, Dubrovnik/Cavtat, vol 1, p 383

    Google Scholar 

  18. Popov KI, Maksimović MD, Trnjančev JD, Pavlović MG (1981) J Appl Electrochem 11:239

    Article  CAS  Google Scholar 

  19. Barton JL, Bockris JO’M (1962) Proc Roy Soc A268:485

    Google Scholar 

  20. Maksimović MD, Popov KI, Pavlović MG (1979) Bull Soc Chim 44:687

    Google Scholar 

  21. Maksimović MD, Popov KI, Jović LjJ, Pavlović MG (1979) Bull Soc Chim 44:47

    Google Scholar 

  22. Krichmar SI (1965) Electrokhim 1:609

    CAS  Google Scholar 

  23. Diggle JW, Despić AR, Bockris JO’M (1969) J Electrochem Soc 116:1503

    Article  CAS  Google Scholar 

  24. Despić AR, Diggle JW, Bockris JO’M (1968) J Electrochem Soc 115:507

    Article  Google Scholar 

  25. Popov KI, Despić AR (1971) Bull Soc Chim 36:173

    Google Scholar 

  26. Despić AR (1970) Croat Chim Acta 42:265

    Google Scholar 

  27. Despić AR, Popov KI (1972) Transport controlled deposition and dissolution of metals. In: Conway BE, Bockris JO’M (eds) Modern aspects of electrochemistry, vol 7. Plenum, New York, pp 199–313

    Google Scholar 

  28. Popov KI, Pavlović MG, Maksimović MD (1982) J Appl Electrochem 12:525

    Article  CAS  Google Scholar 

  29. Popov KI, Krstajić NV, Čekerevac MI (1996) The mechanism of formation of coarse and disperse electrodeposits. In: White RE, Conway BE, Bockris JO’M (eds) Modern aspects of electrochemistry, vol 30. Plenum, New York, pp 261–312

    Google Scholar 

  30. Nikolić ND, Popov KI, Pavlović LjJ, Pavlović MG (2006) J Electroanal Chem 588:88

    Article  Google Scholar 

  31. Nikolić ND, Popov KI, Pavlović LjJ, Pavlović MG (2007) Sensors 7:1

    Article  Google Scholar 

  32. Nikolić ND, Pavlović LjJ, Pavlović MG, Popov KI (2008) Powder Technol 185:195

    Article  Google Scholar 

  33. Lowenheim FA (1978) Electroplating. McGraw-Hill Book, New York, St. Louis

    Google Scholar 

  34. Wolery TJ (1992) EQ3NR – a computer program for geochemical aqueous speciation-solubility calculations: theoretical manual and user’s guide, version 7.0. Lawrence Livermore National Laboratory, Livermore, CA

    Google Scholar 

  35. Roine A (1999) HSC chemistry: chemical reaction and equilibrium software with extensive thermochemical database. 4.0. Outokumpu Research Oy, Finland

    Google Scholar 

  36. Casas JM, Alvarez F, Cifuentes L (2000) Chem Eng Sci 55:6223

    Article  CAS  Google Scholar 

  37. Pitzer KS (1991) Activity coefficients in electrolyte solutions, 2nd edn. CRC, Boca Raton, FL

    Google Scholar 

  38. Nikolić ND, Popov KI (2010) Hydrogen co-deposition effects on the structure of electrodeposited copper. In: Djokić SS (ed) Electrodeposition: theory and practice. Modern aspects of electrochemistry, vol 48. Springer, Berlin, pp 1–70

    Google Scholar 

  39. Nikolić ND, Pavlović LjJ, Krstić SB, Pavlović MG, Popov KI (2008) Chem Eng Sci 63:2824

    Article  Google Scholar 

  40. Nikolić ND, Pavlović LjJ, Branković G, Pavlović MG, Popov KI (2008) J Serb Chem Soc 73:753

    Article  Google Scholar 

  41. Nikolić ND, Branković G, Pavlović MG, Popov KI (2008) J Electroanal Chem 621:13

    Article  Google Scholar 

  42. Nikolić ND, Pavlović LjJ, Pavlović MG, Popov KI (2007) Electrochim Acta 52:8096

    Article  Google Scholar 

  43. Popov KI, Maksimović MD (1989) Theory of the effect of electrodeposition at periodically changing rate on the morphology of metal deposition. In: Conway BE, Bockris JO’M, White RE (eds) Modern aspects of electrochemistry, vol 19. Plenum, New York, pp 193–250

    Google Scholar 

  44. Li Y, Jia W-Z, Song Y-Y, Xia XH (2007) Chem Mater 19:5758

    Article  CAS  Google Scholar 

  45. Shin H-C, Liu M (2004) Chem Mater 16:5460

    Article  CAS  Google Scholar 

  46. Kim J-H, Kim R-H, Kwon H-S (2008) Electrochem Commun 10:1148

    Article  CAS  Google Scholar 

  47. Nikolić ND, Branković G (2010) Electrochem Commun 12:740

    Article  Google Scholar 

  48. Shin H-C, Dong J, Liu M (2003) Adv Mater 15:1610

    Article  CAS  Google Scholar 

  49. Everhart JL (n.d) Copper and copper alloy powder metallurgy properties and applications. http://www.copper.org/resources/properties/129_6/homepage.html

  50. Walker R, Duncan SJ (1984) Surf Technol 23:301

    Article  CAS  Google Scholar 

  51. Maksimović VM, Pavlović LjJ, Pavlović MG, Tomić MV (2009) J Appl Electrochem 39:2545

    Article  Google Scholar 

  52. Owais A (2009) J Appl Electrochem 39:1587

    Article  CAS  Google Scholar 

  53. Pavlović MG, Pavlović LjJ, Maksimović VM, Nikolić ND, Popov KI (2010) Int J Electrochem Sci 5:1862

    Google Scholar 

  54. Djokić SS, Nikolić ND, Živković PM, Popov KI, Djokić NS (2011) ECS Trans 33:7

    Article  Google Scholar 

  55. Nikolić ND, Branković G, Pavlović MG (2012) Powder Technol. http://dx.doi.org/10.1016/j.powtec.2012.01.014

  56. Nikolić ND, Branković G, Maksimović VM, Pavlović MG, Popov KI (2009) J Electroanal Chem 635:111

    Article  Google Scholar 

  57. Nikolić ND, Popov KI, Pavlović LjJ, Pavlović MG (2007) J Solid State Electrochem 11:667

    Article  Google Scholar 

  58. Popov KI, Nikolić ND, Rakočević Z (2002) J Serb Chem Soc 67:635

    Article  CAS  Google Scholar 

  59. Popov KI, Nikolić ND, Rakočević Z (2002) J Serb Chem Soc 67:769

    Article  CAS  Google Scholar 

  60. Nikolić ND, Krstić SB, Pavlović LjJ, Pavlović MG, Popov KI (2008) The mutual relation of decisive characteristics of electrolytic copper powder and effect of deposition conditions on them. In: Hayashi K (ed) Electroanalytical chemistry research trends. Nova, New York, pp 185–209

    Google Scholar 

  61. Pavlović MG, Pavlović LjJ, Ivanović ER, Radmilović V, Popov KI (2001) J Serb Chem Soc 66:923

    Google Scholar 

  62. Popov KI, Pavlović LjJ, Ivanović ER, Radmilović V, Pavlović MG (2002) J Serb Chem Soc 67:61

    Article  CAS  Google Scholar 

  63. Popov KI, Nikolić ND, Rakočević Z (2002) J Serb Chem Soc 67:861

    Article  CAS  Google Scholar 

  64. Popov KI, Krstić SB, Pavlović MG (2003) J Serb Chem Soc 68:511

    Article  CAS  Google Scholar 

  65. Popov KI, Krstić SB, Obradović MČ, Pavlović MG, Pavlović LjJ, Ivanović ER (2003) J Serb Chem Soc 68:771

    Article  CAS  Google Scholar 

  66. Popov KI, Pavlović MG, Pavlović LjJ, Ivanović ER, Krstić SB, Obradović MČ (2003) J Serb Chem Soc 68:779

    Article  CAS  Google Scholar 

  67. Popov KI, Živković PM, Krstić SB (2003) J Serb Chem Soc 68:903

    Article  CAS  Google Scholar 

  68. Popov KI, Krstić SB, Obradović MČ, Pavlović MG, Pavlović LjJ, Ivanović ER (2004) J Serb Chem Soc 69:43

    Article  CAS  Google Scholar 

  69. Popov KI, Krstić SB, Pavlović MG, Pavlović LjJ, Maksimović VM (2004) J Serb Chem Soc 69:817

    Article  CAS  Google Scholar 

  70. Popov KI, Nikolić ND, Krstić SB, Pavlović MG (2006) J Serb Chem Soc 71:397

    Article  CAS  Google Scholar 

  71. Nikolić ND, Popov KI, Pavlović LjJ, Pavlović MG (2007) Mater Prot 48:3 (in Serbian)

    Google Scholar 

  72. Pavlović MG, Nikolić ND, Popov KI (2003) J Serb Chem Soc 68:649

    Article  Google Scholar 

  73. Pavlović MG, Pavlović LjJ, Doroslovački ID, Nikolić ND (2004) Hydrometallurgy 73:155

    Article  Google Scholar 

  74. Popov KI, Pavlović LjJ, Pavlović MG, Čekerevac MI (1988) Surf Coat Technol 35:39

    Article  CAS  Google Scholar 

  75. Popov KI, Pavlović MG, Pavlović LjJ, Čekerevac MI, Remović GŽ (1988) Surf Coat Technol 34:355

    Article  CAS  Google Scholar 

  76. Popov KI, Maksimović MD, Pavlović MG, Lukić DT (1980) J Appl Electrochem 10:299

    Article  CAS  Google Scholar 

  77. Nikolić ND, Rakočević Z, Popov KI (2005) Nanostructural analysis of bright metal surfaces in relation to their reflectivities. In: Conway BE, Vayenas CG, White RE, Gamboa-Adelco ME (eds) Modern aspects of electrochemistry, vol 38. Kluwer Academic/Plenum, New York, pp 425–474

    Google Scholar 

  78. Nikolić ND, Rakočević Z, Popov KI (2001) J Electroanal Chem 514:56

    Article  Google Scholar 

  79. Nikolić ND, Popov KI, Pavlović LjJ, Pavlović MG (2006) Surf Coat Technol 201:560

    Article  Google Scholar 

  80. Chassaing E, Rosso M, Sapoval B, Chazalviel J-N (1993) Electrochim Acta 38:1941

    Google Scholar 

  81. Schatt W, Wierters KP (1997) Powder metallurgy – processing and materials. European Powder Metallurgy Association, Technical University Dresden, Dresden, p 8

    Google Scholar 

  82. Peissker E (1984) Int J Powder Metallurgy Powder Technol 20:87

    CAS  Google Scholar 

  83. Popov KI, Pavlović MG, Maksimović MD, Krstajić SS (1978) J Appl Electrochem 8:503

    Article  CAS  Google Scholar 

  84. Pavlović LjJ, Nikolić ND, Popov KI (2000) Mater Sci Forum 352:65

    Article  Google Scholar 

  85. Murashova I, Pomosov B (1989) In: Polukarov YuM (ed) Itogi nauki i tehniki, Seria Elektrokhimiya, vol 30. Acad. Sci., Moscow, p 90

    Google Scholar 

  86. Nikolić ND, Novaković G, Rakočević Z, Djurović DR, Popov KI (2002) Surf Coat Technol 161:188

    Article  Google Scholar 

  87. Nikolić ND, Rakočević Z, Popov KI (2004) J Solid State Electrochem 8:526

    Article  Google Scholar 

  88. Nikolić ND, Rakočević Z, Djurović DR, Popov KI (2006) Russ J Electrochem 42:112

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Goran Branković and Dr. Ljubica Pavlović for SEM analysis of investigated systems, as well as to Dr. Snežana Krstić and Dr. Miomir Pavlović for helpful discussions.

The work was supported by the Ministry of Education and Science of the Republic of Serbia under the research project “Electrochemical synthesis and characterization of nanostructured functional materials for application in new technologies” (No. 172046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nebojša D. Nikolić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Nikolić, N.D., Popov, K.I. (2012). Electrodeposition of Copper Powders and Their Properties. In: Djokić, S. (eds) Electrochemical Production of Metal Powders. Modern Aspects of Electrochemistry, vol 54. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-2380-5_3

Download citation

Publish with us

Policies and ethics