Secondary Surgery Following Failed Forearm Reconstruction

  • Shushan Jacob
  • Tsu-Min Tsai
  • A. Lee OstermanEmail author


It is not uncommon for longitudinal forearm instability to be recognized quite late after the injury. Frequently, this injury is not appreciated until there have already been changes at both the wrist (ulnar carpal abutment) and the elbow (radiocapitellar abutment). These late cases frequently require an ulnar shortening osteotomy, as well as radial head prosthesis and/or reconstruction of the interosseous ligament. If continued problems result and there are degenerative changes or chronic pain at the radial capitellar joint, a radiocapitellar prosthesis can be considered. The final treatment for some patients may require creation of a one-bone forearm. This prevents any further longitudinal instability of the forearm; however, it obviously results in loss of forearm rotation. These injuries are best treated early and aggressively, as later reconstructive options will usually result in decreased function of the extremity. This chapter goes through the different reconstructive options that are available to the reoperative surgeon.


Forearm Interosseous Ligament Reconstruction Dissociation 

Supplementary material


  1. 1.
    Brockman EP. Two cases of disability at the wrist joint following excision of the head of the radius. Proc R Soc Med. 1931;24:904–5.PubMedGoogle Scholar
  2. 2.
    Curr JF, Coe WA. Dislocation of the inferior radioulnar joint. Br J Surg. 1946;34:74–7.PubMedCrossRefGoogle Scholar
  3. 3.
    Essex-Lopresti P. Fractures of the radial head with distal radio-ulnar dissociation; report of two cases. J Bone Joint Surg Br. 1951;33(2):244–7.Google Scholar
  4. 4.
    Karlstad R, Morrey BF, Cooney WP. Failure of fresh-frozen radial head allografts in the treatment of Essex-Lopresti injury. A report of four cases. J Bone Joint Surg Am. 2005;87(8):1828–33.PubMedCrossRefGoogle Scholar
  5. 5.
    Edwards Jr GS, Jupiter JB. Radial head fractures with acute distal radioulnar dislocation. Essex-Lopresti revisited. Clin Orthop Relat Res. 1988;234:61–9.PubMedGoogle Scholar
  6. 6.
    Trousdale RT, Amadio PC, Cooney WP, et al. Radioulnar dissociation. A review of twenty cases. J Bone Joint Surg Am. 1992;74(10):1486–97.PubMedGoogle Scholar
  7. 7.
    McGinley JC, Hopgood BC, Gaughan JP, et al. Forearm and elbow injury: the influence of rotational position. J Bone Joint Surg Am. 2003;85:2403–9.PubMedGoogle Scholar
  8. 8.
    Noda K, Goto A, Murase T, et al. Interosseous membrane of the forearm: an anatomical study of ligament attachment locations. J Hand Surg Am. 2009;34A:415–22.CrossRefGoogle Scholar
  9. 9.
    Skahen 3rd JR, Palmer AK, Werner FW, et al. The interosseous membrane of the forearm: anatomy and function. J Hand Surg Am. 1997;22(6):981–5.PubMedCrossRefGoogle Scholar
  10. 10.
    McGinley JC, Kozin SH. Interosseous membrane anatomy and functional mechanics. Clin Orthop Relat Res. 2001;383:108–22.PubMedCrossRefGoogle Scholar
  11. 11.
    Hotchkiss RN, An KN, Sowa DT, et al. An anatomic and mechanical study of the interosseous membrane of the forearm: pathomechanics of proximal migration of the radius. J Hand Surg Am. 1989;14(2 Pt 1):256–61.PubMedCrossRefGoogle Scholar
  12. 12.
    Rabinowitz RS, Light TR, Harvey RM, et al. The role of the interosseous membrane and triangular fibrocartilage complex in forearm stability. J Hand Surg Am. 1994;19(3):385–93.PubMedCrossRefGoogle Scholar
  13. 13.
    Manson TT, Pfaeffle HJ, Herdon JH, et al. Forearm rotation alters interosseous ligament strain distribution. J Hand Surg Am. 2000;25(6):1058–63.PubMedCrossRefGoogle Scholar
  14. 14.
    Fester EW, Murray PM, Sanders TG, et al. The efficacy of magnetic resonance imaging and ultrasound in detecting disruptions of the forearm interosseous membrane: a cadaver study. J Hand Surg Am. 2002;27(3):418–24.PubMedCrossRefGoogle Scholar
  15. 15.
    Chandler JW, Stabile KJ, Pfaeffle HJ, et al. Anatomic parameters for planning of interosseous ligament reconstruction using ­computer assisted techniques. J Hand Surg Am. 2003;28(1):111–6.PubMedCrossRefGoogle Scholar
  16. 16.
    Marcotte AL, Osterman AL. Longitudinal radioulnar dissociation: identification and treatment of acute and chronic injuries. Hand Clin. 2007;23:195–208.PubMedCrossRefGoogle Scholar
  17. 17.
    Martin BF. The oblique cord of the forearm. J Anat. 1958;92:609–15.PubMedGoogle Scholar
  18. 18.
    Tubbs RS, O’Neil Jr JT, Key CD, Zarzour JG, Fulghum SB, Kim EJ, et al. The oblique cord of the forearm in man. Clin Anat. 2007;20:411–5.PubMedCrossRefGoogle Scholar
  19. 19.
    Patel BA. Form and function of the oblique cord (chorda obliqua) in anthropoid primates. Primates. 2005;46:47–57.PubMedCrossRefGoogle Scholar
  20. 20.
    Forster A. Uber den morphologischen Wert der Chorda oblique antebrachii anterior und der Chorda oblique antebrachii posterior. Z Morphol Anthropol. 1905;8:62–79.Google Scholar
  21. 21.
    Watanabe H, Berger RA, Berglund LJ, Zobitz ME, An KN. Contribution of the interosseous membrane to distal radioulnar joint constraint. J Hand Surg Am. 2005;30A:1164–71.CrossRefGoogle Scholar
  22. 22.
    Kihara H, Short WH, Werner FW, Fortino MD, Palmer AK. The stabilizing mechanism of the distal radioulnar joint during pronation and supination. J Hand Surg Am. 1995;20A:930–6.CrossRefGoogle Scholar
  23. 23.
    Skahen 3rd JR, Palmer AK, Werner FW, et al. Reconstruction of the interosseous membrane of the forearm in cadavers. J Hand Surg Am. 1997;22(6):986–94.PubMedCrossRefGoogle Scholar
  24. 24.
    Palmer AK, Werner FW. Biomechanics of the distal radioulnar joint. Clin Orthop Relat Res. 1984;187:26–35.PubMedGoogle Scholar
  25. 25.
    Birbeck DP, Failla JM, Hoshaw SJ, et al. The interosseous membrane affects load distribution in the forearm. J Hand Surg Am. 1997;22(6):975–80.CrossRefGoogle Scholar
  26. 26.
    Halls AA, Travill A. Transmission of pressures across the elbow joint. Anat Rec. 1964;150:243–7.PubMedCrossRefGoogle Scholar
  27. 27.
    Coleman DA, Blair WF, Shurr D. Resection of the radial head for fracture of the radial head. Long term follow up of seventeen cases. J Bone Joint Surg Am. 1987;69(3):385–92.PubMedGoogle Scholar
  28. 28.
    Goldberg I, Peylan J, Yosipovitch Z. Late results of excision of the radial head for an isolated closed fracture. J Bone Joint Surg Am. 1986;68(5):675–9.PubMedGoogle Scholar
  29. 29.
    Stephen IB. Excision of the radial head for closed fracture. Acta Orthop Scand. 1981;52(4):409–12.PubMedCrossRefGoogle Scholar
  30. 30.
    Morrey BF, Chao EY, Hui FC. Biomechanical study of the elbow following excision of the radial head. J Bone Joint Surg Am. 1979;61(1):63–8.PubMedGoogle Scholar
  31. 31.
    Radin EL, Riseborough EJ. Fractures of the radial head. A review of eighty-eight cases and analysis of the indications for excision of the radial head and non-operative treatment. J Bone Joint Surg Am. 1966;48(6):1055–64.PubMedGoogle Scholar
  32. 32.
    McDougall A, White J. Subluxation of the inferior radio-ulnar joint complicating fracture of the radial head. J Bone Joint Surg Br. 1957;39(2):278–87.PubMedGoogle Scholar
  33. 33.
    Pfaeffle HJ, Fischer KJ, Manson TT, et al. Role of the forearm interosseous ligament: is it more than just longitudinal load transfer? J Hand Surg Am. 2000;25(4):683–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Swanson AB, Jaeger SH, La Rochelle D. Comminuted fractures of the radial head. The role of silicone-implant replacement arthroplasty. J Bone Joint Surg Am. 1981;63(7):1039–49.PubMedGoogle Scholar
  35. 35.
    Starch DW, Dabezies EJ. Magnetic resonance imaging of the interosseous membrane of the forearm. J Bone Joint Surg Am. 2001;83(2):235–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Failla JM, Jacobson J, van Holsbeeck M. Ultrasound diagnosis and surgical pathology of the torn interosseous membrane in forearm fractures/dislocations. J Hand Surg Am. 1999;24(2):257–66.PubMedCrossRefGoogle Scholar
  37. 37.
    Smith AM, Urbanosky LR, Castle JA, et al. Radius pull test: predictor of longitudinal forearm instability. J Bone Joint Surg Am. 2002;84(11):1970–6.PubMedGoogle Scholar
  38. 38.
    Geel CW, Palmer AK. Radial head fractures and their effect on the distal radioulnar joint. A rationale for treatment. Clin Orthop Relat Res. 1992;275:79–84.PubMedGoogle Scholar
  39. 39.
    Harman TW, Graham TJ, Bamberger HB. Contemporary management of fractures of the radial head and neck with implant arthroplasty. Curr Opin Orthop. 2005;16:285–92.CrossRefGoogle Scholar
  40. 40.
    Tejwani SG, Markolf KL, Benhaim P. Reconstruction of the interosseous membrane of the forearm with a graft substitute: a cadaveric study. J Hand Surg Am. 2005;30(2):326–34.PubMedCrossRefGoogle Scholar
  41. 41.
    Sellman DC, Seitz Jr WH, Postak PD, et al. Reconstructive strategies for radioulnar dissociation: a biomechanical study. J Orthop Trauma. 1995;6:516–22.CrossRefGoogle Scholar
  42. 42.
    Skahen 3rd JR, Palmer AK, Werner FW, et al. Reconstruction of the interosseous membrane of the forearm in cadavers. J Hand Surg Am. 1997;22A:986–94.CrossRefGoogle Scholar
  43. 43.
    Ruch DS, Change DS, Koman LA. Reconstruction of longitudinal stability of the forearm after disruption of interosseous ligament and radial head excision (Essex-Lopresti lesion). J South Orthop Assoc. 1999;8:47–52.PubMedGoogle Scholar
  44. 44.
    Chloros GD, Wiesler ER, Ruch DS, Kuzma GR, et al. Reconstruction of Essex-Lopresti injury of the forearm: technical note. J Hand Surg Am. 2008;33A:124–30.CrossRefGoogle Scholar
  45. 45.
    Skahen 3rd JR, Palmer AK, Werner FW, et al. Reconstruction of the interosseous membrane of the forearm in cadavers. J Hand Surg Am. 1997;22(6):986–94.PubMedCrossRefGoogle Scholar
  46. 46.
    Pfaeffle HJ, Stabile KJ, Li ZM, et al. Reconstruction of the interosseous ligament restores normal forearm compressive load transfer in cadavers. J Hand Surg Am. 2005;30(2):319–25.PubMedCrossRefGoogle Scholar
  47. 47.
    Tomaino MM, Pfaeffle J, Stabile K, et al. Reconstruction of the interosseous ligament of the forearm reduces load on the radial head in cadavers. J Hand Surg Br. 2003;28(3):267–70.PubMedCrossRefGoogle Scholar
  48. 48.
    Sellman DC, Seitz Jr WH, Postak PD, et al. Reconstructive strategies for radioulnar dissociation: a biomechanical study. J Orthop Trauma. 1995;9(6):516–22.PubMedCrossRefGoogle Scholar
  49. 49.
    Hey-Groves EW. Modern methods of treating fractures. 2nd ed. Bristol: John Wright and sons; 1921. p. 320.Google Scholar
  50. 50.
    Chen F, Culp RW, Schneider LH, Osterman AL. Revision of the ununited one bone forearm. J Hand Surg Am. 1998;23(6):1091–6.PubMedCrossRefGoogle Scholar
  51. 51.
    Peterson CA, Maki S, Wood MB. Clinical results of the one-bone forearm. J Hand Surg Am. 1998;23(6):1091–6.CrossRefGoogle Scholar
  52. 52.
    Allende C, Allende BT. Posttraumatic one bone forearm reconstruction. A report of seven cases. J Bone Joint Surg Am. 2004;86(2):364–9.PubMedGoogle Scholar
  53. 53.
    Murray PM. Free vascularized bone transfer in limb salvage surgery of the upper extremity. Hand Clin. 2004;20:203–11.CrossRefGoogle Scholar
  54. 54.
    Dell PC, Sheppard JE. Vascularized bone grafts in the treatment of infected forearm nonunions. J Hand Surg Am. 1984;9(5):653–8.PubMedGoogle Scholar
  55. 55.
    Duffy GP, Wood MB, Rock MG, et al. Vascularized free fibula transfer combined with autografting for the management of fracture nonunions associated with radiation therapy. J Bone Joint Surg Am. 2000;82(4):544–54.PubMedGoogle Scholar
  56. 56.
    Taylor GI, Miller GD, Ham FJ. The free vascularized bone graft. A clinical extension of microvascular techniques. Plast Reconstr Surg. 1975;55(5):533–44.PubMedCrossRefGoogle Scholar
  57. 57.
    Taylor GI. Microvascular free bone transfer. Orthop Clin North Am. 1977;8:425–47.PubMedGoogle Scholar
  58. 58.
    Taylor GI, Townsend P, Corlett R. Superiority of the deep circumflex iliac vessels as a supply for free groin flaps: clinical study. Plast Reconstr Surg. 1979;64:745.PubMedCrossRefGoogle Scholar
  59. 59.
    Weiland AJ, Moore JR, Daniel RK. Vascularized bone autografts: experience with 41 cases. Clin Orthop. 1983;174:87.PubMedGoogle Scholar
  60. 60.
    Sempuku T, Tamai S, Mizumoto S, Yajima H. Vascularized tail bone grafts in rats. Plast Reconstr Surg. 1993;91(3):502–10.PubMedCrossRefGoogle Scholar
  61. 61.
    Phemister DB. The fate of transplanted bone and regenerative powers of its various constituents. Surg Gynecol Obstet. 1914;19:303–33.Google Scholar
  62. 62.
    Cutting CB, McCarthy JG. Comparison of residual osseous mass between vascularized and nonvascularized onlay bone transfers. Plast Reconstr Surg. 1983;72(5):672–5.PubMedCrossRefGoogle Scholar
  63. 63.
    Weiland AJ. Current concepts review vascularized free bone transplants. J Bone Joint Surg Am. 1981;63(1):166–9.PubMedGoogle Scholar
  64. 64.
    de Boer HH, Wood MB. Bone changes in the vascularized fibular graft. J Bone Joint Surg Br. 1989;71(3):374–8.PubMedGoogle Scholar
  65. 65.
    Han CS, Wood MB, Bishop AT, Cooney III WP. Vascularized bone transfer. J Bone Joint Surg Am. 1992;74(10):1441–9.PubMedGoogle Scholar
  66. 66.
    Enneking WF, Eady JL, Burchardt H. Autogenous cortical bone grafts in the reconstruction of segmental skeletal defects. J Bone Joint Surg Am. 1980;62(7):1039–58.PubMedGoogle Scholar
  67. 67.
    Mankin HJ, Gebhardt MC, Tomford WW. The use of frozen cadaveric allografts in the management of patients with bone tumors of the extremities. Orthop Clin North Am. 1987;18(2):275–89.PubMedGoogle Scholar
  68. 68.
    Hsu RW, Wood MB, Sim FH, Chao EY. Free vascularized fibular grafting for reconstruction after tumor resection. J Bone Joint Surg Br. 1997;70(1):36–42.CrossRefGoogle Scholar
  69. 69.
    Shea KG, Coleman DA, Scott SM, et al. Microvascularized free fibula grafts for reconstruction of skeletal defects after tumor resection. J Pediatr Orthop. 1997;17(4):424–32.PubMedGoogle Scholar
  70. 70.
    Davis PK, Mazur JM, Coleman GN. A torsional strength comparison of vascularized and nonvascularized bone grafts. J Biomech. 1982;15(11):875–80.PubMedCrossRefGoogle Scholar
  71. 71.
    Gao YH, Ketch LL, et al. Upper limb salvage with microvascular bone transfer for major long-bone segmental tumor resections. Ann Plast Surg. 2001;47:240–6.PubMedCrossRefGoogle Scholar
  72. 72.
    Weiland AJ, Kleinert HE, Kutz J, Daniel RK. Free vascularized bone graft in surgery of the upper extremity. J Hand Surg Am. 1979;4A:129–44.Google Scholar
  73. 73.
    Gerwin M, Weiland AJ. Vascularized bone grafts to the upper extremity: indications and technique. Microsurgery. 1992;8:509.Google Scholar
  74. 74.
    Yijima H, Tamai S, Ono H, Kizaki K. Vascularized bone grafts to the upper extremities. Plast Reconstr Surg. 1998;101:727.CrossRefGoogle Scholar
  75. 75.
    Tang C. Reconstruction of the bones and joints of the upper extremity by vascularized free fibula graft: a report of 46 cases. J Reconstr Microsurg. 1992;8:285.PubMedCrossRefGoogle Scholar
  76. 76.
    Taylor GI, Wilson KR, Rees MD, et al. The anterior tibial vessels and their role in epiphyseal and diaphyseal transfer of the fibula: experimental study and clinical applications. Br J Plast Surg. 1988;41:451.PubMedCrossRefGoogle Scholar
  77. 77.
    Pho RWH. Free vascularized fibula transplantation for replacement of lower radius. J Bone Joint Surg Br. 1979;61B:362.Google Scholar
  78. 78.
    Tsai T, Ludwig L, Tonkin M. Vascularized fibula epiphyseal transfer: a clinical study. Clin Orthop. 1986;210:228.PubMedGoogle Scholar
  79. 79.
    Beppu M, Hanel DP, Johnston GHF, Carmo JM, Tsai TM. The osteocutaneous fibula flap: an anatomic study. J Reconstr Microsurg. 1992;8(3):215–23.PubMedCrossRefGoogle Scholar
  80. 80.
    Ihara K, Doi K, Yamamoto M, et al. Free vascularized fibular grafts for large bone defects in the extremities after tumor excision. J Reconstr Microsurg. 1998;14(6):371–6.PubMedCrossRefGoogle Scholar
  81. 81.
    Minanmi A, Kasashima T, Iwasaki N, et al. Vascularized fibula grafts. An experience of 102 patients. J Bone Joint Surg Br. 2000;82(7):1022–5.CrossRefGoogle Scholar
  82. 82.
    Ceruso M, Falcone C, Innocenti M, et al. Skeletal reconstruction with a free vascularized fibula graft associated to bone allograft after resection of malignant bone tumor of limbs. Handchir Mikrochir Plast Chir. 2001;33(4):277–82.PubMedCrossRefGoogle Scholar
  83. 83.
    Youdas JW, Wood MB, Cahalan TD, et al. A quantitative analysis of donor site morbidity after vascularized fibula transfer. J Orthop Res. 1988;6(5):621–9.PubMedCrossRefGoogle Scholar
  84. 84.
    Shpitzer T, Neligan P, Boyd B, et al. Leg morbidity and function following fibular free flap harvest. Ann Plast Surg. 1997;38(5):460–4.PubMedCrossRefGoogle Scholar
  85. 85.
    Babovic S, Johnson CH, Finical SJ. Free fibula donor site morbidity: the Mayo experience with 100 consecutive harvests. J Reconstr Microsurg. 2000;16(2):107–10.PubMedCrossRefGoogle Scholar
  86. 86.
    Vail TP, Urbaniak JR. Donor site morbidity with use of vascularized autogenous fibular grafts. J Bone Joint Surg Am. 1996;78(2):204–11.PubMedGoogle Scholar
  87. 87.
    Bodde EW, de Visser E, Duysens JE, et al. Donor site morbidity after free vascularized autogenous fibular transfer: subjective and quantitative analysis. Plast Reconstr Surg. 2003;111(7):2237–42.PubMedCrossRefGoogle Scholar
  88. 88.
    Kellam JF, Jupiter JB. Diaphyseal fractures of the forearm. In: Browner BD, Jupiter JB, Levine AM, Trafton PG, editors. Skeletal trauma. 1st ed. Philadelphia: Saunders; 1992. p. 1095–122.Google Scholar
  89. 89.
    Parikh SN. Bone graft substitutes: past, present, future. J Postgrad Med. 2002;48:142.PubMedGoogle Scholar
  90. 90.
    Geesink RGT, Hoefnagels NHM, Bulstra SK. Osteogenic activity of OP-1 bone morphogenetic protein (BMP-7) in a human fibular defect. J Bone Joint Surg Br. 1999;81:710–8.PubMedCrossRefGoogle Scholar
  91. 91.
    Boden SD, Zdeblick TA, Sandhu HS, Heim SE. The use of rhBMP-2 in interbody fusion cages. Spine. 2000;25:376–81.PubMedCrossRefGoogle Scholar
  92. 92.
    Morrey BF, Schneeberger AG. Anconeus arthroplasty: a new ­technique for reconstruction of the radiocapitellar and/or proximal radioulnar joint. J Bone Joint Surg Am. 2002;84:1960–9.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Orthopedic Surgery, Division of Hand and MicrosurgeryUT Southwestern Medical CenterDallasUSA
  2. 2.Department of Hand and Microsurgery, Christine M. Kleinert Institute of Hand and MicrosurgeryUniversity of Louisville School of MedicineLouisvilleUSA
  3. 3.Department of Orthopedic Surgery, Philadelphia Hand CenterThomas Jefferson UniversityKing of PrussiaUSA

Personalised recommendations