Skip to main content

Regulation of RAMP Expression in Diseases

  • Chapter
RAMPs

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 744))

Abstract

Receptor-activity modifying proteins (RAMPs) belong to a single family of transmembrane proteins. RAMPs determine ligand specificity of G-protein coupled receptors; calcitonin receptor and the calcitonin-receptor like receptor (CLR). To date, three members of RAMP family (RAMP-1, -2, -3) have been identified. The co-expression of RAMP-1 with CLR constitutes the calcitonin gene related peptide receptor whereas the association of the RAMP-2 or RAMP-3 with CLR forms the adrenomedullin (AM) receptor. Alterations in signaling and subcellular distribution of G-protein coupled receptors can be responsible for the regulation of many disease conditions. These changes may be mediated by the different isoforms of RAMPs associated with such receptors. In this chapter, we describe the differential responses associated with upregulation of RAMPs in disease conditions. For instance, the upregulation of all three RAMP isoforms contributes to the cardioprotective effects of the CLR/RAMP ligands. On the other hand, strong evidence exists for the involvement of AM in various cancers and that its action is mediated by the upregulation of RAMP isoforms, RAMP-2 and -3. Though limited, a few studies have been reported on the differential response associated with the upregulation of RAMP in other disease conditions such as sepsis, liver cirrhosis, glomerulonephritis, Type 1 diabetes and Parkinson’s disease. Thus, the regulation of RAMP expression is involved in the pathophysiology associated with various diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McLatchie LM, Fraser NJ, Main MJ et al. RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature 1998; 393:333–339.

    PubMed  CAS  Google Scholar 

  2. Fraser NJ, Wise A, Brown J et al. The amino terminus of receptor activity modifying proteins is a critical determinant of glycosylation state and ligand binding of calcitonin receptor-like receptor. Mol Pharmacol 1999; 55:1054–1059.

    PubMed  CAS  Google Scholar 

  3. Husmann K, Sexton PM, Fischer JA et al. Mouse receptor-activity-modifying proteins 1,-2 and-3: amino acid sequence, expression and function. Mol Cell Endocrinol 2000; 162:35–43.

    PubMed  CAS  Google Scholar 

  4. Kamitani S, Asakawa M, Shimekake Y et al. The RAMP2/CLR complex is a functional adrenomedullin receptor in human endothelial and vascular smooth muscle cells. FEBS Lett 1999; 448:111–114.

    PubMed  CAS  Google Scholar 

  5. Amara SG, Jonas V, Rosenfeld MG et al. Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products. Nature 1982; 298:240–244.

    PubMed  CAS  Google Scholar 

  6. FrancoCereceda A. Calcitonin gene-related peptide and tachykinins in relation to local sensory control of cardiac contractility and coronary vascular tone. Acta Physiol Scand Suppl 1988; 569:1–63.

    CAS  Google Scholar 

  7. Wharton J, Gulbenkian S, Mulderry PK et al. Capsaicin induces a depletion of calcitonin gene-related peptide (CGRP)-immunoreactive nerves in the cardiovascular system of the guinea pig and rat. J Auton Nerv Syst 1986; 16:289–309.

    PubMed  CAS  Google Scholar 

  8. Kallner G. Release and effects of calcitonin gene-related peptide in myocardial ischaemia. Scand Cardiovasc J Suppl 1998; 49:1–35.

    PubMed  CAS  Google Scholar 

  9. Peng CF, Li YJ, Deng HW et al. The protective effects of ischemic and calcitonin gene-related peptide-induced preconditioning on myocardial injury by endothelin-1 in the isolated perfused rat heart. Life Sci 1996; 59:1507–1514.

    PubMed  CAS  Google Scholar 

  10. Gennari C, Nami R, Agnusdei D et al. Improved cardiac performance with human calcitonin gene related peptide in patients with congestive heart failure. Cardiovasc Res 1990; 24:239–241.

    PubMed  CAS  Google Scholar 

  11. Shekhar YC, Anand IS, Sarma R et al. Effects of prolonged infusion of human alpha calcitonin gene-related peptide on hemodynamics, renal blood flow and hormone levels in congestive heart failure. Am J Cardiol 1991; 67:732–736.

    PubMed  CAS  Google Scholar 

  12. Wimalawansa SJ. Amylin, calcitonin gene-related peptide, calcitonin, and adrenomedullin: a peptide superfamily. Crit Rev Neurobiol 1997; 11:167–239.

    PubMed  CAS  Google Scholar 

  13. Chang Y, Stover SR, Hoover DB. Regional localization and abundance of calcitonin gene-related peptide receptors in guinea pig heart. J Mol Cell Cardiol 2001; 33:745–754.

    PubMed  CAS  Google Scholar 

  14. Kitamura K, Kangawa K, Kawamoto M et al. Adrenomedullin: a novel hypotensive peptide isolated from human pheochromocytoma. Biochem Biophys Res Commun 1993; 192:553–560.

    PubMed  CAS  Google Scholar 

  15. Kitamura K, Sakata J, Kangawa K et al. Cloning and characterization of cDNA encoding a precursor for human adrenomedullin. Biochem Biophys Res Commun 1993; 194:720–725.

    PubMed  CAS  Google Scholar 

  16. Hay DL, Smith DM. Adrenomedullin receptors: molecular identity and function. Peptides 2001; 22:1753–1763.

    PubMed  CAS  Google Scholar 

  17. Kobayashi H, Yamamoto R, Kitamura K et al. Cyclic AMP-dependent synthesis and release of adrenomedullin and proadrenomedullin N-terminal 20 peptide in cultured bovine adrenal chromaffin cells. Eur J Biochem 1999; 263:702–708.

    PubMed  CAS  Google Scholar 

  18. Ishimitsu T, Nishikimi T, Saito Y et al. Plasma levels of adrenomedullin, a newly identified hypotensive peptide, in patients with hypertension and renal failure. J Clin Invest 1994; 94:2158–2161.

    PubMed  CAS  Google Scholar 

  19. Jougasaki M, Wei CM, McKinley LJ et al. Elevation of circulating and ventricular adrenomedullin in human congestive heart failure. Circulation 1995; 92:286–289.

    PubMed  CAS  Google Scholar 

  20. Miyao Y, Nishikimi T, Goto Y et al. Increased plasma adrenomedullin levels in patients with acute myocardial infarction in proportion to the clinical severity. Heart 1998; 79:39–44.

    PubMed  CAS  Google Scholar 

  21. Meeran K, O’Shea D, Upton PD et al. Circulating adrenomedullin does not regulate systemic blood pressure but increases plasma prolactin after intravenous infusion in humans: a pharmacokinetic study. J Clin Endocrinol Metab 1997; 82:95–100.

    PubMed  CAS  Google Scholar 

  22. Lainchbury JG, Nicholls MG, Espiner EA et al. Bioactivity and interactions of adrenomedullin and brain natriuretic peptide in patients with heart failure. Hypertension 1999; 34:70–75.

    PubMed  CAS  Google Scholar 

  23. Nagaya N, Satoh T, Nishikimi T et al. Hemodynamic, renal and hormonal effects of adrenomedullin infusion in patients with congestive heart failure. Circulation 2000; 101:498–503.

    PubMed  CAS  Google Scholar 

  24. Oie E, Vinge LE, Yndestad A et al. Induction of a myocardial adrenomedullin signaling system during ischemic heart failure in rats. Circulation 2000; 101:415–422.

    PubMed  CAS  Google Scholar 

  25. Cueille C, Pidoux E, de Vernejoul MC et al. Increased myocardial expression of RAMP1 and RAMP3 in rats with chronic heart failure. Biochem Biophys Res Commun 2002; 294:340–346.

    PubMed  CAS  Google Scholar 

  26. Totsune K, Takahashi K, Mackenzie HS et al. Increased gene expression of adrenomedullin and adrenomedullin-receptor complexes, receptor-activity modifying protein (RAMP)2 and calcitonin-receptor-like receptor (CLR) in the hearts of rats with congestive heart failure. Clin Sci (Lond) 2000; 99:541–546.

    CAS  Google Scholar 

  27. Vasan RS, Levy D. The role of hypertension in the pathogenesis of heart failure. A clinical mechanistic overview. Arch Intern Med 1996; 156:1789–1796.

    PubMed  CAS  Google Scholar 

  28. Levy D, Larson MG, Vasan RS et al. The progression from hypertension to congestive heart failure. JAMA 1996; 275:1557–1562.

    PubMed  CAS  Google Scholar 

  29. Nicholls MG. Hypertension, hypertrophy, heart failure. Heart 1996; 76:92–97.

    PubMed  CAS  Google Scholar 

  30. Morimoto A, Nishikimi T, Yoshihara F et al. Ventricular adrenomedullin levels correlate with the extent of cardiac hypertrophy in rats. Hypertension 1999; 33:1146–1152.

    PubMed  CAS  Google Scholar 

  31. Nishikimi T, Horio T, Sasaki T et al. Cardiac production and secretion of adrenomedullin are increased in heart failure. Hypertension 1997; 30:1369–1375.

    PubMed  CAS  Google Scholar 

  32. Yoshihara F, Nishikimi T, Horio T et al. Ventricular adrenomedullin concentration is a sensitive biochemical marker for volume and pressure overload in rats. Am J Physiol Heart Circ Physiol 2000; 278:H633–642.

    PubMed  CAS  Google Scholar 

  33. Nishikimi T, Tadokoro K, Mori Y et al. Ventricular adrenomedullin system in the transition from LVH to heart failure in rats. Hypertension 2003; 41:512–518.

    PubMed  CAS  Google Scholar 

  34. Qi YF, Shi YR, Bu DF et al. Changes of adrenomedullin and receptor activity modifying protein 2 (RAMP2) in myocardium and aorta in rats with isoproterenol-induced myocardial ischemia. Peptides 2003; 24:463–468.

    PubMed  CAS  Google Scholar 

  35. Pan CS, Jin SJ, Cao CQ et al. The myocardial response to adrenomedullin involves increased cAMP generation as well as augmented Akt phosphorylation. Peptides 2007; 28:900–909.

    PubMed  CAS  Google Scholar 

  36. Li J, Wang DH. Development of angiotensin II-induced hypertension: role of CGRP and its receptor. J Hypertens 2005; 23:113–118.

    PubMed  CAS  Google Scholar 

  37. Wang Y, Wang DH. Prevention of endothelin-1-induced increases in blood pressure: role of endogenous CGRP. Am J Physiol Heart Circ Physiol 2004; 287:H1868–1874.

    PubMed  CAS  Google Scholar 

  38. Sabharwal R, Zhang Z, Lu Y et al. Receptor activity-modifying protein 1 increases baroreflex sensitivity and attenuates Angiotensin-induced hypertension. Hypertension 2010; 55:627–635.

    PubMed  CAS  Google Scholar 

  39. Bunton DC, Petrie MC, Hillier C et al. The clinical relevance of adrenomedullin: a promising profile? Pharmacol Ther 2004; 103:179–201.

    PubMed  CAS  Google Scholar 

  40. Roh J, Chang CL, Bhalla A et al. Intermedin is a calcitonin/calcitonin gene-related peptide family peptide acting through the calcitonin receptor-like receptor/receptor activity-modifying protein receptor complexes. J Biol Chem 2004; 279:7264–7274.

    PubMed  CAS  Google Scholar 

  41. Takei Y, Inoue K, Ogoshi M et al. Identification of novel adrenomedullin in mammals: a potent cardiovascular and renal regulator. FEBS Lett 2004; 556:53–58.

    PubMed  CAS  Google Scholar 

  42. Hagiwara M, Bledsoe G, Yang ZR et al. Intermedin ameliorates vascular and renal injury by inhibition of oxidative stress. Am J Physiol Renal Physiol 2008; 295:F1735–1743.

    PubMed  CAS  Google Scholar 

  43. Smith RS, Jr., Gao L, Bledsoe G et al. Intermedin is a new angiogenic factor. Am J Physiol Heart Circ Physiol 2009; 297:H1040–1047.

    PubMed  CAS  Google Scholar 

  44. Jia YX, Yang JH, Pan CS et al. Intermedin1-53 protects the heart against isoproterenol induced ischemic injury in rats. Eur J Pharmacol 2006; 549:117–123.

    PubMed  CAS  Google Scholar 

  45. Zhang HY, Jiang W, Liu JY et al. Intermedin is upregulated and has protective roles mouse ischemia/reperfusion model. Hypertens Res 2009; 32:861–868.

    PubMed  CAS  Google Scholar 

  46. Hinson JP, Thomson LM, Kapas S. Adrenomedullin and CGRP receptors mediate different effects in the rat adrenal cortex. Endocr Res 1998; 24:725–728.

    PubMed  CAS  Google Scholar 

  47. Miller MJ, Martinez A, Unsworth EJ et al. Adrenomedullin expression in human tumor cell lines. Its potential role as an autocrine growth factor. J Biol Chem 1996; 271:23345–23351.

    PubMed  CAS  Google Scholar 

  48. Rocchi P, Boudouresque F, Zamora AJ et al. Expression of adrenomedullin and peptide amidation activity in human prostate cancer and in human prostate cancer cell lines. Cancer Res 2001; 61:1196–1206.

    PubMed  CAS  Google Scholar 

  49. Ouafik L, Sauze S, Boudouresque F et al. Neutralization of adrenomedullin inhibits growth of human glioblastoma cell lines in vitro and suppresses tumor xenograft growth in vivo. Am J Pathol 2002; 160:1279–1292.

    PubMed  CAS  Google Scholar 

  50. Ishikawa T, Chen J, Wang J et al. Adrenomedullin antagonist suppresses in vivo of human pancreatic cancer cells in SCID mice by suppressing angiogenesis. Oncogene 2003; 22:1238–1242.

    PubMed  CAS  Google Scholar 

  51. Kato H, Shichiri M, Marumo F et al. Adrenomedullin as an autocrine/paracrine apoptosis survival factor for rat endothelial cells. Endocrinology 1997; 138:2615–2620

    PubMed  CAS  Google Scholar 

  52. Martinez A, Vos M, Guedez L et al. The effects of adrenomedullin overexpression in breast tumor cells. J Natl Cancer Inst 2002; 94:1226–1237.

    PubMed  CAS  Google Scholar 

  53. Oehler MK, Hague S, Rees MC et al. Adrenomedullin promotes formation of xenografted endometrial tumors by stimulation of autocrine growth and angiogenesis. Oncogene 2002; 21:2815–2821.

    PubMed  CAS  Google Scholar 

  54. Fernandez-Sauze S, Delfino C, Mabrouk K et al. Effects of adrenomedullin on endothelial cells in the multistep process of angiogenesis: involvement of CLR/RAMP2 and CLR/RAMP3 receptors. Int J Cancer 2004; 108:797–804.

    PubMed  CAS  Google Scholar 

  55. Kitamuro T, Takahashi K, Totsune K et al. Differential expression of adrenomedullin and its receptor component, receptor activity modifying protein (RAMP) 2 during hypoxia in cultured human neuroblastoma cells. Peptides 2001; 22:1795–1801.

    PubMed  CAS  Google Scholar 

  56. Ladoux A, Frelin C. Coordinated Up-regulation by hypoxia of adrenomedullin and one of its putative receptors (RDC-1) in cells of the rat blood-brain barrier. J Biol Chem 2000; 275:39914–39919.

    PubMed  CAS  Google Scholar 

  57. Qing X, Svaren J, Keith IM. mRNA expression of novel CGRP1 receptors and their activity-modifying proteins in hypoxic rat lung. Am J Physiol Lung Cell Mol Physiol 2001; 280:L547–554.

    PubMed  CAS  Google Scholar 

  58. Keleg S, Kayed H, Jiang X et al. Adrenomedullin is induced by hypoxia and enhances pancreatic cancer cell invasion. Int J Cancer 2007; 121:21–32.

    PubMed  CAS  Google Scholar 

  59. Deville JL, Bartoli C, Berenguer C et al. Expression and role of adrenomedullin in renal tumors and value of its mRNA levels as prognostic factor in clear-cell renal carcinoma. Int J Cancer 2009; 125:2307–2315.

    PubMed  CAS  Google Scholar 

  60. Mazzocchi G, Malendowicz LK, Ziolkowska A et al. Adrenomedullin (AM) and AM receptor type 2 expression is up-regulated in prostate carcinomas (PC) and AM stimulates in vitro growth of a PC-derived cell line by enhancing proliferation and decreasing apoptosis rates. Int J Oncol 2004; 25:1781–1787.

    PubMed  CAS  Google Scholar 

  61. Hirata Y, Mitaka C, Sato K et al. Increased circulating adrenomedullin, a novel vasodilatory peptide, in sepsis. J Clin Endocrinol Metab 1996; 81:1449–1453.

    PubMed  CAS  Google Scholar 

  62. Nishio K, Akai Y, Murao Y et al. Increased plasma concentrations of adrenomedullin correlate with relaxation of vascular tone in patients with septic shock. Crit Care Med 1997; 25:953–957.

    PubMed  CAS  Google Scholar 

  63. Shoji H, Minamino N, Kangawa K et al. Endotoxin markedly elevates plasma concentration and gene transcription of adrenomedullin in rat. Biochem Biophys Res Commun 1995; 215:531–537.

    PubMed  CAS  Google Scholar 

  64. Wang P, Zhou M, Ba ZF et al. Up-regulation of a novel potent vasodilatory peptide adrenomedullin during polymicrobial sepsis. Shock 1998; 10:118–122.

    PubMed  CAS  Google Scholar 

  65. Ono Y, Okano I, Kojima M et al. Decreased gene expression of adrenomedullin receptor in mouse lungs during sepsis. Biochem Biophys Res Commun 2000; 271:197–202.

    PubMed  CAS  Google Scholar 

  66. Ornan DA, Chaudry IH, Wang P. Saturation of adrenomedullin receptors plays an important role in reducing pulmonary clearance of adrenomedullin during the late stage of sepsis. Biochim Biophys Acta 2002; 1586:299–306.

    PubMed  CAS  Google Scholar 

  67. Zhou M, Ba ZF, Chaudry IH et al. Adrenomedullin binding protein-1 modulates vascular responsiveness to adrenomedullin in late sepsis. Am J Physiol Regul Integr Comp Physiol 2002; 283:R553–560.

    PubMed  CAS  Google Scholar 

  68. Wang P, Chaudry IH. Mechanism of hepatocellular dysfunction during hyperdynamic sepsis. Am J Physiol 1996; 270:R927–938.

    PubMed  CAS  Google Scholar 

  69. Koo DJ, Chaudry IH, Wang P. Kupffer cells are responsible for producing inflammatory cytokines and hepatocellular dysfunction during early sepsis. J Surg Res 1999; 83:151–157.

    PubMed  CAS  Google Scholar 

  70. Wang P. Andrenomedullin and cardiovascular responses in sepsis. Peptides 2001; 22:1835–1840.

    PubMed  CAS  Google Scholar 

  71. Wang P, Ba ZF, Cioffi WG et al. The pivotal role of adrenomedullin in producing hyperdynamic circulation during the early stage of sepsis. Arch Surg 1998; 133:1298–1304.

    PubMed  CAS  Google Scholar 

  72. Fowler DE, Wang P. The cardiovascular response in sepsis: proposed mechanisms of the beneficial effect of adrenomedullin and its binding protein (review). Int J Mol Med 2002; 9:443–449.

    PubMed  CAS  Google Scholar 

  73. Yang S, Zhou M, Fowler DE et al. Mechanisms of the beneficial effect of adrenomedullin and adrenomedullin-binding protein-1 in sepsis: down-regulation of proinflammatory cytokines. Crit Care Med 2002; 30:2729–2735.

    PubMed  CAS  Google Scholar 

  74. Carrizo GJ, Wu R, Cui X et al. Adrenomedullin and adrenomedullin-binding protein-1 downregulate inflammatory cytokines and attenuate tissue injury after gut ischemia-reperfusion. Surgery 2007; 141:245–253.

    PubMed  Google Scholar 

  75. Shah KG, Rajan D, Jacob A et al. Attenuation of renal ischemia and reperfusion injury by human adrenomedullin and its binding protein. J Surg Res 163:110–117.

    Google Scholar 

  76. Wu R, Dong W, Zhou M et al. A novel approach to maintaining cardiovascular stability after hemorrhagic shock: beneficial effects of adrenomedullin and its binding protein. Surgery 2005; 137:200–208.

    PubMed  Google Scholar 

  77. Yang J, Wu R, Qiang X et al. Human adrenomedullin and its binding protein attenuate organ injury and reduce mortality after hepatic ischemia-reperfusion. Ann Surg 2009; 249:310–317.

    PubMed  Google Scholar 

  78. Cheung B, Leung R. Elevated plasma levels of human adrenomedullin in cardiovascular, respiratory, hepatic and renal disorders. Clin Sci (Lond) 1997; 92:59–62.

    CAS  Google Scholar 

  79. Hirano S, Imamura T, Matsuo T et al. Differential responses of circulating and tissue adrenomedullin and gene expression to volume overload. J Card Fail 2000; 6:120–129.

    PubMed  CAS  Google Scholar 

  80. Guevara M, Gines P, Jimenez W et al. Increased adrenomedullin levels in cirrhosis: relationship with hemodynamic abnormalities and vasoconstrictor systems. Gastroenterology 1998; 114:336–343.

    PubMed  CAS  Google Scholar 

  81. Fernandez-Rodriguez CM, Prada IR, Prieto J et al. Circulating adrenomedullin in cirrhosis: relationship to hyperdynamic circulation. J Hepatol 1998; 29:250–256.

    PubMed  CAS  Google Scholar 

  82. Kojima H, Tsujimoto T, Uemura M et al. Significance of increased plasma adrenomedullin concentration in patients with cirrhosis. J Hepatol 1998; 28:840–846.

    PubMed  CAS  Google Scholar 

  83. Bendtsen F, Schifter S, Henriksen JH. Increased circulating calcitonin gene-related peptide (CGRP) in cirrhosis. J Hepatol 1991; 12:118–123.

    PubMed  CAS  Google Scholar 

  84. Tahan V, Avsar E, Karaca C et al. Adrenomedullin in cirrhotic and noncirrhotic portal hypertension. World J Gastroenterol 2003; 9:2325–2327.

    PubMed  CAS  Google Scholar 

  85. Hwang IS, Tang F, Leung PP et al. The gene expression of adrenomedullin, calcitonin-receptor-like receptor and receptor activity modifying proteins (RAMPs) in CCl4-induced rat liver cirrhosis. Regul Pept 2006; 135:69–77.

    PubMed  CAS  Google Scholar 

  86. Owada A, Nonoguchi H, Terada Y et al. Microlocalization and effects of adrenomedullin in nephron segments and in mesangial cells of the rat. Am J Physiol 1997; 272:F691–697.

    PubMed  CAS  Google Scholar 

  87. Jougasaki M, Wei CM, Aarhus LL et al. Renal localization and actions of adrenomedullin: a natriuretic peptide. Am J Physiol 1995; 268:F657–663.

    PubMed  CAS  Google Scholar 

  88. Yoshihara F, Nishikimi T, Okano I et al. Alterations of intrarenal adrenomedullin and its receptor system in heart failure rats. Hypertension 2001; 37:216–222.

    PubMed  CAS  Google Scholar 

  89. Chini EN, Chini CC, Bolliger C et al. Cytoprotective effects of adrenomedullin in glomerular cell injury: central role of cAMP signaling pathway. Kidney Int 1997; 52:917–925.

    PubMed  CAS  Google Scholar 

  90. Kohno M, Yasunari K, Minami M et al. Regulation of rat mesangial cell migration by platelet-derived growth factor, angiotensin II and adrenomedullin. J Am Soc Nephrol 1999; 10:2495–2502.

    PubMed  CAS  Google Scholar 

  91. Matsumoto M, Fujimoto S, Iwatsubo S et al. Adrenomedullin (AM) and receptor-activity-modifying proteins in glomeruli with Thy.1 glomerulonephritis. Clin Exp Nephrol 2004; 8:316–321.

    PubMed  CAS  Google Scholar 

  92. Hostetter TH, Rennke HG, Brenner BM. The case for intrarenal hypertension in the initiation and progression of diabetic and other glomerulopathies. Am J Med 1982; 72:375–380.

    PubMed  CAS  Google Scholar 

  93. Wada J, Kanwar YS. Characterization of mammalian translocase of inner mitochondrial membrane (Tim44) isolated from diabetic newborn mouse kidney. Proc Natl Acad Sci USA 1998; 95:144–149.

    PubMed  CAS  Google Scholar 

  94. Hiragushi K, Wada J, Eguchi J et al. The role of adrenomedullin and receptors in glomerular hyperfiltration in streptozotocin-induced diabetic rats. Kidney Int 2004; 65:540–550.

    PubMed  CAS  Google Scholar 

  95. Dobrzynski E, Montanari D, Agata J et al. Adrenomedullin improves cardiac function and prevents renal damage in streptozotocin-induced diabetic rats. Am J Physiol Endocrinol Metab 2002; 283:E1291–1298.

    PubMed  CAS  Google Scholar 

  96. Lang AE, Lozano AM. Parkinson’s disease. First of two parts. N Engl J Med 1998; 339:1044–1053.

    PubMed  CAS  Google Scholar 

  97. Schapira AH, Bezard E, Brotchie J et al. Novel pharmacological targets for the treatment of Parkinson’s disease. Nat Rev Drug Discov 2006; 5:845–854.

    PubMed  CAS  Google Scholar 

  98. Hay DL, Poyner DR, Sexton PM. GPCR modulation by RAMPs. Pharmacol Ther 2006; 109:173–197.

    PubMed  CAS  Google Scholar 

  99. Frayon S, Cueille C, Gnidehou S et al. Dexamethasone increases RAMP1 and CLR mRNA expressions in human vascular smooth muscle cells. Biochem Biophys Res Commun 2000; 270:1063–1067.

    PubMed  CAS  Google Scholar 

  100. Marquez-Rodas I, Longo F, Aras-Lopez R et al. Aldosterone increases RAMP1 expression in mesenteric arteries from spontaneously hypertensive rats. Regul Pept 2006; 134:61–66.

    PubMed  CAS  Google Scholar 

  101. Oliver KR, Kane SA, Salvatore CA et al. Cloning, characterization and central nervous system distribution of receptor activity modifying proteins in the rat. Eur J Neurosci 2001; 14:618–628.

    PubMed  CAS  Google Scholar 

  102. Ueda T, Ugawa S, Saishin Y et al. Expression of receptor-activity modifying protein (RAMP) mRNAs in the mouse brain. Brain Res Mol Brain Res 2001; 93:36–45.

    PubMed  CAS  Google Scholar 

  103. Lee J, Gomez-Ramirez J, Johnston TH et al. Receptor-activity modifying protein 1 expression is increased in the striatum following repeated L-DOPA administration in a 6-hydroxydopamine lesioned rat model of Parkinson’s disease. Synapse 2008; 62:310–313.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Jacob, A., Wu, R., Wang, P. (2012). Regulation of RAMP Expression in Diseases. In: Spielman, W.S., Parameswaran, N. (eds) RAMPs. Advances in Experimental Medicine and Biology, vol 744. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-2364-5_8

Download citation

Publish with us

Policies and ethics