Skip to main content

Rapid Identification and Detection of Pathogenic Fungi by Padlock Probes

  • Chapter
  • First Online:
Laboratory Protocols in Fungal Biology

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Fungi are important pathogens of human diseases, as well as to agricultural crop and trees. Molecular diagnostics can detect diseases early, and improve identification accuracy and follow-up disease management. The use of padlock probe is effective to facilitate these detections and pathogen identification quickly and accurately. In this chapter we describe three diagnostic assays that utilize padlock probes in combination with various technologies for the detection of pathogenic fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Richardson M, Warnock D (2003) Fungal infection: diagnosis and management, 3rd edn. Blackwell, Oxford

    Book  Google Scholar 

  2. Agrios G (2005) Plant pathology, 5th edn. Elsevier Academic, London

    Google Scholar 

  3. Tsui CK, Wang B, Khadempour L, Alamouti SM, Bohlmann J, Murray BW et al (2010) Rapid identification and detection of pine pathogenic fungi associated with mountain pine beetles by padlock probes. J Microbiol Methods 83:26–33

    Article  PubMed  Google Scholar 

  4. Miller SA, Beed FD, Harmon CL (2009) Plant disease diagnostic capabilities and networks. Annu Rev Phytopathol 47:15–38

    Article  PubMed  CAS  Google Scholar 

  5. Lievens B, Thomma BP (2005) Recent developments in pathogen detection arrays: implications for fungal plant pathogens and use in practice. Phytopathology 95:1374–1380

    Article  PubMed  CAS  Google Scholar 

  6. Nilsson M, Malmgren H, Samiotaki M, Kwiatkowski M, Chowdhary BP, Landegren U (1994) Padlock probes: circularizing oligonucleotides for localized DNA detection. Science 265:2085–2088

    Article  PubMed  CAS  Google Scholar 

  7. Landegren U, Kaiser R, Sanders J, Hood L (1988) A ligase-mediated gene detection technique. Science 241:1077–1080

    Article  PubMed  CAS  Google Scholar 

  8. Nilsson M, Krejci K, Koch J, Kwiatkowski M, Gustavsson P, Landegren U (1997) Padlock probes reveal single-nucleotide differences, parent of origin and in situ distribution of centromeric sequences in human chromosomes 13 and 21. Nat Genet 16: 252–255

    Article  PubMed  CAS  Google Scholar 

  9. Prins TW, van Dijk JP, Beenen HG, Van Hoef AA, Voorhuijzen MM, Schoen CD et al (2008) Optimised padlock probe ligation and microarray detection of multiple (non-authorised) GMOs in a single reaction. BMC Genomics 9:584

    Article  PubMed  Google Scholar 

  10. Nilsson M, Dahl F, Larsson C, Gullberg M, Stenberg J (2006) Analyzing genes using closing and replicating circles. Trends Biotechnol 24:83–88

    Article  PubMed  CAS  Google Scholar 

  11. Baner J, Nilsson M, Mendel-Hartvig M, Landegren U (1998) Signal amplification of padlock probes by rolling circle replication. Nucleic Acids Res 26:5073–5078

    Article  PubMed  CAS  Google Scholar 

  12. Lizardi PM, Huang X, Zhu Z, Bray-Ward P, Thomas DC, Ward DC (1998) Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nat Genet 19:225–232

    Article  PubMed  CAS  Google Scholar 

  13. Szemes M, Bonants P, de Weerdt M, Baner J, Landegren U, Schoen CD (2005) Diagnostic application of padlock probes–multiplex detection of plant pathogens using universal microarrays. Nucleic Acids Res 33:e70

    Article  PubMed  Google Scholar 

  14. Kong F, Tong Z, Chen X, Sorrell T, Wang B, Wu Q et al (2008) Rapid identification and differentiation of Trichophyton species, based on sequence polymorphisms of the ribosomal internal transcribed spacer regions, by rolling-circle amplification. J Clin Microbiol 46:1192–1199

    Article  PubMed  CAS  Google Scholar 

  15. Zhou X, Kong F, Sorrell TC, Wang H, Duan Y, Chen SC (2008) Practical method for detection and identification of Candida, Aspergillus, and Scedosporium spp. by use of rolling-circle amplification. J Clin Microbiol 46:2423–2427

    Article  PubMed  CAS  Google Scholar 

  16. Wang H, Kong F, Sorrell TC, Wang B, McNicholas P, Pantarat N et al (2009) Rapid detection of ERG11 gene mutations in clinical Candida albicans isolates with reduced susceptibility to fluconazole by rolling circle amplification and DNA sequencing. BMC Microbiol 9:167

    Article  PubMed  Google Scholar 

  17. Kaocharoen S, Wang B, Tsui KM, Trilles L, Kong F, Meyer W (2008) Hyperbranched rolling circle amplification as a rapid and sensitive method for species identification within the Cryptococcus species complex. Electrophoresis 29:3183–3191

    PubMed  CAS  Google Scholar 

  18. Eriksson R, Jobs M, Ekstrand C, Ullberg M, Herrmann B, Landegren U et al (2009) Multiplex and quantifiable detection of nucleic acid from pathogenic fungi using padlock probes, generic real time PCR and specific suspension array readout. J Microbiol Methods 78:195–202

    Article  PubMed  CAS  Google Scholar 

  19. Fire A, Xu SQ (1995) Rolling replication of short DNA circles. Proc Natl Acad Sci U S A 92:4641–4645

    Article  PubMed  CAS  Google Scholar 

  20. Pickering J, Bamford A, Godbole V, Briggs J, Scozzafava G, Roe P et al (2002) Integration of DNA ligation and rolling circle amplification for the homogeneous, end-point detection of single nucleotide polymorphisms. Nucleic Acids Res 30:e60

    Article  PubMed  Google Scholar 

  21. Faruqi AF, Hosono S, Driscoll MD, Dean FB, Alsmadi O, Bandaru R et al (2001) High-throughput genotyping of single nucleotide polymorphisms with rolling circle amplification. BMC Genomics 2:4

    Article  PubMed  CAS  Google Scholar 

  22. Wang B, Dwyer DE, Chew CB, Kol C, He ZP, Joshi H et al (2009) Sensitive detection of the K103N non-nucleoside reverse transcriptase inhibitor resistance mutation in treatment-naive HIV-1 infected individuals by rolling circle amplification. J Virol Methods 161:128–135

    Article  PubMed  CAS  Google Scholar 

  23. Wang B, Dwyer DE, Blyth CC, Soedjono M, Shi H, Kesson A et al (2010) Detection of the rapid emergence of the H275Y mutation associated with oseltamivir resistance in severe pandemic influenza virus A/H1N1 09 infections. Antiviral Res 87:16–21

    Article  PubMed  CAS  Google Scholar 

  24. Tong Z, Kong F, Wang B, Zeng X, Gilbert GL (2007) A practical method for subtyping of Streptococcus agalactiae serotype III, of human origin, using rolling circle amplification. J Microbiol Methods 70:39–44

    Article  PubMed  CAS  Google Scholar 

  25. van Doorn R, Szemes M, Bonants P, Kowalchuk GA, Salles JF, Ortenberg E et al (2007) Quantitative multiplex detection of plant pathogens using a novel ligation probe-based system coupled with universal, high-throughput real-time PCR on OpenArrays®. BMC Genomics 8:276

    Article  PubMed  Google Scholar 

  26. Morrison T, Hurley J, Garcia J, Yoder K, Katz A, Roberts D et al (2006) Nanoliter high throughput quantitative PCR. Nucleic Acids Res 34:e123

    Article  PubMed  Google Scholar 

  27. van Doorn R, Slawiak M, Szemes M, Dullemans AM, Bonants P, Kowalchuk GA et al (2009) Robust detection and identification of multiple oomycetes and fungi in environmental samples by using a novel cleavable padlock probe-based ligation detection assay. Appl Environ Microbiol 75:4185–4193

    Article  PubMed  Google Scholar 

  28. Call DR, Brockman FJ, Chandler DP (2001) Detecting and genotyping Escherichia coli O157:H7 using multiplexed PCR and nucleic acid microarrays. Int J Food Microbiol 67:71–80

    Article  PubMed  CAS  Google Scholar 

  29. Gonzalez SF, Krug MJ, Nielsen ME, Santos Y, Call DR (2004) Simultaneous detection of marine fish pathogens by using multiplex PCR and a DNA microarray. J Clin Microbiol 42:1414–1419

    Article  PubMed  CAS  Google Scholar 

  30. Wilson WJ, Strout CL, DeSantis TZ, Stilwell JL, Carrano AV, Andersen GL (2002) Sequence-specific identification of 18 pathogenic microorganisms using microarray technology. Mol Cell Probes 16: 119–127

    Article  PubMed  CAS  Google Scholar 

  31. Vora GJ, Meador CE, Stenger DA, Andreadis JD (2004) Nucleic acid amplification strategies for DNA microarray-based pathogen detection. Appl Environ Microbiol 70:3047–3054

    Article  PubMed  CAS  Google Scholar 

  32. Holmberg A, Blomstergren A, Nord O, Lukacs M, Lundeberg J, Uhlen M (2005) The biotin-streptavidin interaction can be reversibly broken using water at elevated temperatures. Electrophoresis 26:501–510

    Article  PubMed  CAS  Google Scholar 

  33. Hirsch JD, Eslamizar L, Filanoski BJ, Malekzadeh N, Haugland RP, Beechem JM (2002) Easily reversible desthiobiotin binding to streptavidin, avidin, and other biotin-binding proteins: uses for protein labeling, detection, and isolation. Anal Biochem 308:343–357

    Article  PubMed  CAS  Google Scholar 

  34. Gregory KJ, Bachas LG (2001) Use of a biomimetic peptide in the design of a competitive binding assay for biotin and biotin analogues. Anal Biochem 289:82–88

    Article  PubMed  CAS  Google Scholar 

  35. White T, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninski JJ, White TJ (eds) PCR-protocols a guide to methods and applications. Academic, San Diego, pp 315–320

    Google Scholar 

  36. Watson RJ, Blackwell B (2000) Purification and characterization of a common soil component which inhibits the polymerase chain reaction. Can J Microbiol 46:633–642

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Drs. N. Saksena, S. Chen, and F. Kong (Westmead Hospital, Australia) for assistance and advice. Part of the funding for this research has been provided by Genome Canada and Genome British Columbia in support of The Tria I and Tria II Projects http://www.thetriaproject.ca.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Tsui, C.K.M., Wang, B., Schoen, C.D., Hamelin, R.C. (2013). Rapid Identification and Detection of Pathogenic Fungi by Padlock Probes. In: Gupta, V., Tuohy, M., Ayyachamy, M., Turner, K., O’Donovan, A. (eds) Laboratory Protocols in Fungal Biology. Fungal Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-2356-0_49

Download citation

Publish with us

Policies and ethics