Skip to main content

Production of Recombinant Proteins from Pichia pastoris: Interfacing Fermentation and Immobilized Metal Ion Affinity Chromatography

  • Chapter
  • First Online:
Laboratory Protocols in Fungal Biology

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

The methods describe a Pichia pastoris fermentation system for ­generation and purification of recombinant proteins. The proteins are secreted with hexahistidine tags and purified from feedstock by immobilized metal ion affinity chromatography (IMAC) using either radial flow or expanded bed adsorption. IMAC allows for an initial fast capture and isolation step that omits the need for filtration or centrifugation as primary procedures. The methods are applicable to production of recombinant protein in the laboratory and can be adapted to good manufacturing practice (GMP) compliant processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

     e.g., http://www2.dupont.com/DAHS_EMEA/en_GB/products/disinfectants/virkon_s/index.htmL.

  2. 2.

    e.g., http://www.newpig.com.

  3. 3.

     http://www.nalgenelabware.com/techdata/technical/FiltrationIndex.asp.

  4. 4.

    http://www.millipore.com/catalogue/item/xx42lss11.

  5. 5.

    http://www.pall.com/laboratory_53238.asp.

References

  1. Sreekrishna K, Tschopp JF, Thill GP, Brierley RA, Barr KA (1998) Expression of human serum albumin in Pichia pastoris. US Patent 5707828

    Google Scholar 

  2. Kobayashi K, Kuwae S, Ohya T, Ohda T, Ohyama M, Ohi H et al (2000) High-level expression of recombinant human serum albumin from the methylotrophic yeast Pichia pastoris with minimal protease production and activation. J Biosci Bioeng 89:55–61

    Article  PubMed  CAS  Google Scholar 

  3. Cregg JM, Cereghino JL, Shi J, Higgins DR (2000) Recombinant protein expression in Pichia pastoris. Mol Biotechnol 16:23–52

    Article  PubMed  CAS  Google Scholar 

  4. Daly R, Hearn MT (2005) Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production. J Mol Recognit 18:119–138

    Article  PubMed  CAS  Google Scholar 

  5. Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM (2005) Heterologous protein production using the Pichia pastoris expression system. Yeast 22:249–270

    Article  PubMed  CAS  Google Scholar 

  6. Baez J, Olsen D, Polarek JW (2005) Recombinant microbial systems for the production of human collagen and gelatin. Appl Microbiol Biotechnol 69:245–252

    Article  PubMed  CAS  Google Scholar 

  7. Xie T, Liu Q, Xie F, Liu H, Zhang Y (2008) Secretory expressin of insulin precursor in Pichia pastoris and simple procedure for producing recombinant human insulin. Prep Biochem Biotechnol 38:308–317

    Article  PubMed  CAS  Google Scholar 

  8. Murasugi A (2010) Review. Secretory expression of human protein in the yeast Pichia pastoris by controlled fermentor culture. Recent Pat Biotechnol 4:153–166

    Article  PubMed  CAS  Google Scholar 

  9. Zhang AL, Luo JX, Zhang TY, Pan YW, Tan YH, Fu CY et al (2008) Recent advances on the GAP promoter derived expression system of Pichia pastoris. Mol Biol Rep 36:1611–1619

    Article  PubMed  Google Scholar 

  10. Kovar K, Looser V, Hyka P, Merseburger T, Meier C (2010) Recombinant yeast technology at the cutting edge: robust tools for both designed catalysts and new biologicals. Chimia (Aarau) 64:813–818

    Article  CAS  Google Scholar 

  11. Meyer HP, Brass J, Jungo C, Klein J, Wenger J, Mommers R (2008) An emerging star for therapeutic and catalytic protein production. BioProcess Int 6(No. S6):10–21

    CAS  Google Scholar 

  12. Gerngross TU (2004) Review. Advances in the production of human therapeutic proteins in yeasts and filamentous fungi. Nat Biotechnol 11:1409–1414

    Article  Google Scholar 

  13. Kogelberg H, Tolner B, Sharma SK, Lowdell MW, Qureshi U, Robson M et al (2007) Clearance mechanism of a mannosylated antibody-enzyme fusion protein used in experimental cancer therapy. Glycobiology 17:36–45

    Article  PubMed  CAS  Google Scholar 

  14. Sharma SK, Pedley RB, Bhatia J, Boxer GM, El-Emir E, Qureshi U et al (2005) Sustained tumor regression of human colorectal cancer xenografts using a multifunctional mannosylated fusion protein in antibody-directed enzyme prodrug therapy. Clin Cancer Res 11:814–825

    PubMed  CAS  Google Scholar 

  15. Jefferis R (2005) Glycosylation of recombinant antibody therapeutics. Biotechnol Prog 2:11–16

    Google Scholar 

  16. Rothman RJ, Perussia B, Herlyn D, Warren L (1989) Antibody-dependent cytotoxicity mediated by natural killer cells is enhanced by castanospermine-induced alterations of IgG glycosylation. Mol Immunol 26:1113–1123

    Article  PubMed  CAS  Google Scholar 

  17. Li H, Sethuraman N, Stadheim TA, Zha D, Prinz B, Ballew N et al (2006) Optimization of humanized IgGs in glycoengineered Pichia pastoris. Nat Biotechnol 24:210–215

    Article  PubMed  CAS  Google Scholar 

  18. Potgieter TI, Cukan M, Drummond JE, Houston-Cummings NR, Jiang Y, Li F et al (2009) Production of monoclonal antibodies by glycoengineered Pichia pastoris. J Biotechnol 139:318–325

    Article  PubMed  CAS  Google Scholar 

  19. De Pourcq K, De Schutter K, Callewaert N (2010) Review. Engineering of glycosylation in yeast and other fungi: current state and perspectives. Appl Microbiol Biotechnol 87:1617–1631

    Article  PubMed  Google Scholar 

  20. Jacobs PP, Geysens S, Vervecken W, Contreras R, Callewaert N (2009) Engineering complex-type N-glycosylation in Pichia pastoris using GlycoSwitch technology. Nat Protoc 4:58–70

    Article  PubMed  CAS  Google Scholar 

  21. De Schutter K, Lin YC, Tiels P, Van Hecke A, Glinka S, Weber-Lehmann J et al (2009) Genome sequence of the recombinant protein production host Pichia pastoris. Nat Biotechnol 27:561–566

    Article  PubMed  Google Scholar 

  22. Mattanovich D, Graf A, Stadlmann J, Dragosits M, Redl A, Maurer M et al (2009) Genome, secretome and glucose transport highlight unique features of the protein production host Pichia pastoris. Microb Cell Fact 8:29

    Article  PubMed  Google Scholar 

  23. Mattanovich D, Callewaert N, Rouzé P, Lin YC, Graf A, Redl A et al (2009) Open access to sequence: browsing the Pichia pastoris genome. Microb Cell Fact 16:53

    Article  Google Scholar 

  24. http://pichiagenome.org. Accessed 16 Sep 2011

  25. http://bioinformatics.psb.ugent.be/webtools/bogas. Accessed 16 Sep 2011

  26. Tolner B, Smith L, Begent RH, Chester KA (2006) Production of recombinant protein in Pichia pastoris by fermentation. Nat Protoc 1:1006–1021

    Article  PubMed  CAS  Google Scholar 

  27. Tolner B, Smith L, Begent RH, Chester KA (2006) Expanded-bed adsorption immobilized-metal affinity chromatography. Nat Protoc 1:1213–1222

    Article  PubMed  CAS  Google Scholar 

  28. Tolner B, Smith L, Hillyer T, Bhatia J, Beckett P, Robson L et al (2007) Review. From laboratory to Phase I/II cancer trials with recombinant biotherapeutics. Eur J Cancer 43:2515–2522

    Article  PubMed  CAS  Google Scholar 

  29. Vigor KL, Kyrtatos PG, Minogue S, Al-Jamal KT, Kogelberg H, Tolner B et al (2010) Nanoparticles functionalized with recombinant single chain Fv antibody fragments (scFv) for the magnetic resonance imaging of cancer cells. Biomaterials 31:1307–1315

    Article  PubMed  CAS  Google Scholar 

  30. Kogelberg H, Tolner B, Thomas GJ, Di Cara D, Minogue S, Ramesh B et al (2008) Engineering a single-chain Fv antibody to alpha v beta 6 integrin using the specificity-determining loop of a foot-and-mouth disease virus. J Mol Biol 382:385–401

    Article  PubMed  CAS  Google Scholar 

  31. Tolner B, Vigor K, Mather S, Robinson M, Adams G, Plueckthun A et al (2010) Anti-HER2 imaging agents for breast cancer imaging. Breast Cancer Research 2010 Conference. Breast Cancer Res 12(Suppl 1):P42

    Article  Google Scholar 

  32. Tolner B, Hodgson D, Smith L, Begent RHJ, Robinson M, Adams G et al (2008) Anti-HER2 diabody for breast cancer imaging: GMP-compliant production and preclinical analysis. In: (Proceedings) NCRI Cancer Conference Proceedings (http://www.ncri.org.uk/ncriconference)

  33. Sainz-Pastor N, Tolner B, Huhalov A, Kogelberg H, Lee YC, Zhu D et al (2006) Deglycosylation to obtain stable and homogeneous Pichia pastoris-expressed N-A1 domains of carcinoembryonic antigen. Int J Biol Macromol 39:141–150

    Article  PubMed  CAS  Google Scholar 

  34. Francis RJ, Mather SJ, Chester K, Sharma SK, Bhatia J, Pedley RB et al (2004) Radiolabelling of glycosylated MFE-23::CPG2 fusion protein (MFECP1) with 99mTc for quantitation of tumour antibody-enzyme localisation in antibody-directed enzyme pro-drug therapy (ADEPT). Eur J Nucl Med Mol Imaging 31:1090–1096

    PubMed  CAS  Google Scholar 

  35. Mayer A, Francis RJ, Sharma SK, Tolner B, Springer CJ, Martin J et al (2006) A phase I study of single administration of antibody-directed enzyme prodrug therapy with the recombinant anti-carcinoembryonic antigen antibody-enzyme fusion protein MFECP1 and a bis-iodo phenol mustard prodrug. Clin Cancer Res 12:6509–6516

    Article  PubMed  CAS  Google Scholar 

  36. Sambrook J, MacCallum P (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  37. http://invitrogen.com. Accessed 16 Sep 2011

  38. http://faculty.kgi.edu/cregg/index.htm. Accessed 16 Sep 2011

  39. Tschopp JF, Brust PF, Cregg JM, Stillman CA, Gingeras TR (1987) Expression of the lacZ gene from two methanol-regulated promoters in Pichia pastoris. Nucleic Acids Res 15:3859–3876

    Article  PubMed  CAS  Google Scholar 

  40. Waterham HR, Digan ME, Koutz PJ, Lair SV, Cregg JM (1997) Isolation of the Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase gene and regulation and use of its promoter. Gene 186:37–44

    Article  PubMed  CAS  Google Scholar 

  41. Zhao W, Wang J, Deng R, Wang X (2008) Scale-up fermentation of recombinant Candida rugosa lipase expressed in Pichia pastoris using the GAP promoter. J Ind Microbiol Biotechnol 35:189–195

    Article  PubMed  CAS  Google Scholar 

  42. Heyland J, Fu J, Blank LM, Schmid A (2010) Quantitative physiology of Pichia pastoris during glucose-limited high-cell density fed-batch cultivation for recombinant protein production. Biotechnol Bioeng 107:357–368

    Article  PubMed  CAS  Google Scholar 

  43. Shen S, Sulter G, Jeffries TW, Cregg JM (1998) A strong nitrogen source-regulated promoter for controlled expression of foreign genes in the yeast Pichia pastoris. Gene 216:93–102

    Article  PubMed  CAS  Google Scholar 

  44. Vennapusa RR, Fernandez-Lahore M (2010) Effect of chemical additives on biomass deposition onto beaded adsorbents. J Biosci Bioeng 110:564–571

    Article  PubMed  CAS  Google Scholar 

  45. http://gelifesciences.com. Accessed 16 Sep 16, 2011

  46. http://upfront-dk.com/. Accessed 16 Sep 2011

  47. Gu J (2009) Chromatography, radial flow. In: Flickinger MC (ed) Encyclopedia of industrial biotechnology: bioprocess, bioseparation, and cell technology. John Wiley & Sons, New York

    Google Scholar 

  48. http://sepragen.com. Accessed 16 Sep 2011

  49. http://proxcys.nl. Accessed 16 Sep 2011

  50. Cabanne C, Raedts M, Zavadzky E, Santarelli X (2007) Evaluation of radial chromatography versus axial chromatography, practical approach. J Chromatogr B Analyt Technol Biomed Life Sci 845:191–199

    Article  PubMed  CAS  Google Scholar 

  51. Emberson LM, Trivett AJ, Blower PJ, Nicholls PJ (2005) Expression of an anti-CD33 single-chain antibody by Pichia pastoris. J Immunol Methods 305:135–151

    Article  PubMed  CAS  Google Scholar 

  52. Chen Z, Wang D, Cong Y, Wang J, Zhu J, Yang J et al (2011) Recombinant antimicrobial peptide hPAB-β expressed in Pichia pastoris, a potential agent active against methicillin-resistant Staphylococcus aureus. Appl Microbiol Biotechnol 89:281–291

    Article  PubMed  CAS  Google Scholar 

  53. Buensanteai N, Mukherjee PK, Horwitz BA, Cheng C, Dangott LJ, Kenerley CM (2010) Expression and purification of biologically active Trichoderma virens proteinaceous elicitor Sm1 in Pichia pastoris. Protein Expr Purif 72:131–138

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Cancer Research UK; Department of Health (ECMC, Experimental Cancer Medicine Network Centre); Engineering and Physical Sciences Research Council (EPSRC); The Breast Cancer Campaign; and UCL Cancer Institute Research Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Berend Tolner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Tolner, B., Bhavsar, G., Foster, B., Vigor, K., Chester, K. (2013). Production of Recombinant Proteins from Pichia pastoris: Interfacing Fermentation and Immobilized Metal Ion Affinity Chromatography. In: Gupta, V., Tuohy, M., Ayyachamy, M., Turner, K., O’Donovan, A. (eds) Laboratory Protocols in Fungal Biology. Fungal Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-2356-0_37

Download citation

Publish with us

Policies and ethics