Skip to main content

Real-Time PCR Assay in Fungi

  • Chapter
  • First Online:
  • 6482 Accesses

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Traditional growth-based methods for characterizing environmental fungi are biased by selection of culture media and incapable of detecting non-cultivable fungi, which still retain allergenicity and/or pathogenicity. Meanwhile, real-time quantitative polymerase chain reaction (qPCR)-based methods have been recently developed and used to characterize fungal concentrations in environmental samples such as air and house dust. As qPCR-based methods are independent of fungal cultivability or viability, they are expected to be toxicologically more relevant than conventional growth-based methods for assessing health effects caused by environmental fungi. This chapter presents protocols for the collection of environmental fungal samples and subsequent qPCR analysis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://www.epa.gov/nerlcwww/moldtech.htm.

References

  1. Takahashi T (1997) Airborne fungal colony-forming units in outdoor and indoor environments in Yokohama, Japan. Mycopathologia 139:23–33

    Article  PubMed  CAS  Google Scholar 

  2. Shelton BG, Kirkland KH, Flanders WD, Morris GK (2002) Profiles of airborne fungi in buildings and outdoor environments in the United States. Appl Environ Microbiol 68:1743–1753

    Article  PubMed  CAS  Google Scholar 

  3. Meklin T, Haugland RA, Reponen T, Varma M, Lummus Z, Bernstein D et al (2004) Quantitative PCR analysis of house dust can reveal abnormal mold conditions. J Environ Monitor 6:615–620

    Article  CAS  Google Scholar 

  4. Lignell U, Meklin T, Rintala H, Hyvarinen A, Vepsalainen A, Pekkanen J et al (2008) Evaluation of quantitative PCR and culture methods for detection of house dust fungi and streptomycetes in relation to moisture damage of the house. Lett Appl Microbiol 47:303–308

    Article  PubMed  CAS  Google Scholar 

  5. Hirvonen MR, Ruotsalainen M, Savolainen K, Nevalainen A (1997) Effect of viability of actinomycete spores on their ability to stimulate production of nitric oxide and reactive oxygen species in RAW264.7 macrophages. Toxicology 124:105–114

    Article  PubMed  CAS  Google Scholar 

  6. Yamamoto N, Kimura M, Matsuki H, Yanagisawa Y (2010) Optimization of a real-time PCR assay to quantitate airborne fungi collected on a gelatin filter. J Biosci Bioeng 109:83–88

    Article  PubMed  CAS  Google Scholar 

  7. Goebes MD, Boehm AB, Hildemann LM (2011) Contributions of foot traffic and outdoor concentrations to indoor airborne Aspergillus. Aerosol Sci Technol 45:352–363

    Article  CAS  Google Scholar 

  8. Kaarakainen P, Meklin T, Rintala H, Hyvaerinen A, Karkkainen P, Vepsalainen A et al (2008) Seasonal variation in airborne microbial concentrations and diversity at landfill, urban and rural sites. Clean Soil Air Water 36:556–563

    Article  CAS  Google Scholar 

  9. Yamamoto N, Schmechel D, Chen BT, Lindsley WG, Peccia J (2011) Comparison of quantitative airborne fungi measurements by active and passive sampling methods. J Aerosol Sci 42:499–507

    Article  CAS  Google Scholar 

  10. Pitkaranta M, Meklin T, Hyvarinen A, Paulin L, Auvinen P, Nevalainen A et al (2008) Analysis of fungal flora in indoor dust by ribosomal DNA sequence analysis, quantitative PCR, and culture. Appl Environ Microbiol 74:233–244

    Article  PubMed  CAS  Google Scholar 

  11. Cai GH, Broms K, Malarstig B, Zhao ZH, Kim JL, Svardsudd K et al (2009) Quantitative PCR analysis of fungal DNA in Swedish day care centers and ­comparison with building characteristics and allergen levels. Indoor Air 19:392–400

    Article  PubMed  Google Scholar 

  12. Yamamoto N, Shendell DG, Peccia J (2011) Assessing allergenic fungi in house dust by floor wipe sampling and quantitative PCR. Indoor Air 21:521–530

    Article  PubMed  CAS  Google Scholar 

  13. Bustin SA, Beaulieu JF, Huggett J, Jaggi R, Kibenge FSB, Olsvik PA et al (2010) MIQE precis: Practical implementation of minimum standard guidelines for fluorescence-based quantitative real-time PCR experiments. BMC Mol Biol 11:74

    Article  PubMed  Google Scholar 

  14. Hospodsky D, Yamamoto N, Peccia J (2010) Accuracy, precision, and detection limits of quantitative PCR for airborne bacteria and fungi measurement. Appl Environ Microbiol 76:7004–7012

    Article  PubMed  CAS  Google Scholar 

  15. Yamamoto N, Qian J, Hospodsky D, Peccia J (2010) Particle size distribution and seasonal concentrations of selected airborne fungi in the northeastern United States. In: The American Association for aerosol research. 29th Annual conference, Portland, Oregon

    Google Scholar 

  16. Borneman J, Hartin RJ (2000) PCR primers that amplify fungal rRNA genes from environmental samples. Appl Environ Microbiol 66:4356–4360

    Article  PubMed  CAS  Google Scholar 

  17. Herrera ML, Vallor AC, Gelfond JA, Patterson TF, Wickes BL (2009) Strain-dependent variation in 18S ribosomal DNA copy numbers in aspergillus fumigatus. J Clin Microbiol 47:1325–1332

    Article  PubMed  CAS  Google Scholar 

  18. Haugland R, Vesper S (2002) Method of identifying and quantifying specific fungi and bacteria. US Patent 6,387,652

    Google Scholar 

  19. Wilson IG (1997) Inhibition and facilitation of nucleic acid amplification. Appl Environ Microbiol 63:3741–3751

    PubMed  CAS  Google Scholar 

  20. Kontanis EJ, Reed FA (2006) Evaluation of real-time PCR amplification efficiencies to detect PCR inhibitors. J Forensic Sci 51:795–804

    Article  PubMed  CAS  Google Scholar 

  21. Yuill E (1950) The numbers of nuclei in conidia of Aspergilli. Trans Br Mycol Soc 33:324–331

    Article  Google Scholar 

  22. Campbell TH, Backus MP, Stauffer JF (1956) Cytological studies on Penicillium chrysogenum Thom. Bull Torrey Bot Club 83:93–106

    Article  Google Scholar 

  23. Dolezel J, Bartos J, Voglmayr H, Greilhuber J (2003) Nuclear DNA content and genome size of trout and human. Cytometry 51A:127–128

    Article  Google Scholar 

Download references

Acknowledgment

I thank Karen Dannemiller at Yale University for invaluable comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naomichi Yamamoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Yamamoto, N. (2013). Real-Time PCR Assay in Fungi. In: Gupta, V., Tuohy, M., Ayyachamy, M., Turner, K., O’Donovan, A. (eds) Laboratory Protocols in Fungal Biology. Fungal Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-2356-0_28

Download citation

Publish with us

Policies and ethics