Skip to main content

Quantitative PCR Analysis of Double-Stranded RNA-Mediated Gene Silencing in Fungi

  • Chapter
  • First Online:
Book cover Laboratory Protocols in Fungal Biology

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Gene silencing in fungi produces a range of phenotypes based on the different amounts of target mRNA that are degraded by the RNAi machinery in each transformed strain. Detection of this range of variation when analyzing groups of transformants requires a fast and sensitive method. Quantitative or real-time PCR of reverse-transcribed target mRNA is particularly well suited for this analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Check www.gene-quantification.info for examples and download links.

  2. 2.

    For example Invitrogen Trizol Reagent. Cat. Number: 15596-026. http://products.invitrogen.com/ivgn/product/15596026.

  3. 3.

    Optional: the addition of formaldehyde denatures the high secondary structure of the RNA molecule for a clear visualization.

  4. 4.

    Roche cat. Numbers: 05081955001/05091284001/05081963001. http://www.roche-applied-science.com/proddata/gpip/3_6_8_39_1_3.html.

  5. 5.

    Invitrogen cat. Numbers: 18080-093/18080-044/18080-085. http://www.invitrogen.com/site/us/en/home/Products-and-Services/Applications/Nucleic-Acid-Amplification -and-Expression-Profiling/Reverse-Transcription-and-cDNA-Synthesis/RT___cDNA_Synthesis-Misc/SuperScript.html.

  6. 6.

    For Roche Lightcycler 480 there is an import tool available in http://www.hartfaalcentrum.nl/index.php?main=files&sub=0

References

  1. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  PubMed  CAS  Google Scholar 

  2. Salame TM, Ziv C, Hadar Y, Yarden O (2011) RNAi as a potential tool for biotechnological applications in fungi. Appl Microbiol Biotechnol 89:501–512

    Article  PubMed  CAS  Google Scholar 

  3. Liu H, Cottrell T, Pierini L, Goldman W, Doering T (2002) RNA interference in the pathogenic fungus Cryptococcus neoformans. Genetics 160:463–470

    PubMed  CAS  Google Scholar 

  4. Ngô H, Tschudi C, Gull K, Ullu E (1998) Double-stranded RNA induces mRNA degradation in Trypanosoma brucei. Proc Natl Acad Sci U S A 95:14687–14692

    Article  PubMed  Google Scholar 

  5. Janus D, Hoff B, Hofmann E, Kück U (2007) An efficient fungal RNA-silencing system using the DsRed reporter gene. Appl Environ Microbiol 73:962–970

    Article  PubMed  CAS  Google Scholar 

  6. Nolan T, Hands RE, Bustin SA (2006) Quantification of mRNA using real-time RT-PCR. Nat Protoc 1:1559–1582

    Article  PubMed  CAS  Google Scholar 

  7. Bustin SA (2002) Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol 29:23–39

    Article  PubMed  CAS  Google Scholar 

  8. Thellin O, ElMoualij B, Heinen E, Zorzi W (2009) A decade of improvements in quantification of gene expression and internal standard selection. Biotechnol Adv 27:323–333

    Article  PubMed  CAS  Google Scholar 

  9. Vandesompele J, Kubista M, Pfaffl M (2009) Reference gene validation software for improved normalization. In: Logan J, Edwards K, Saunders N (eds) Real-time PCR: current technology and applications. Caister Academic, Norwich, pp 47–64

    Google Scholar 

  10. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A et al (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3(7):research0034.1–research0034.11

    Article  Google Scholar 

  11. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498

    Article  PubMed  CAS  Google Scholar 

  12. Van Maerken T, Mestdagh P, De Clercq S, Pattyn F, Yigit N, De Paepe A et al (2009) Using real-time qPCR to evaluate RNAi-mediated gene silencing. In: BioTechniques protocol guide 2009. p. 47. Biotechniques, NY, USA. DOI: 10.2144/000113006

    Google Scholar 

  13. Schmittgen T, Livak K (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101–1108

    Article  PubMed  CAS  Google Scholar 

  14. Livak K, Schmittgen T (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2ΔΔCT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  15. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  PubMed  CAS  Google Scholar 

  16. Ramakers C, Ruijter J, Deprez R, Moorman A (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339:62–66

    Article  PubMed  CAS  Google Scholar 

  17. Ruijter J, Ramakers C, Hoogaars W, Karlen Y, Bakker O, van den Hoff M et al (2009) Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res 37(6):e45

    Article  PubMed  CAS  Google Scholar 

  18. Nordgård O, Kvaløy JT, Farmen RK, Heikkilä R (2006) Error propagation in relative real-time reverse transcription polymerase chain reaction quantification models: the balance between accuracy and precision. Anal Biochem 356:182–193

    Article  PubMed  Google Scholar 

  19. Huggett J, Dheda K, Bustin S, ZumLa A (2005) Real-time RT-PCR normalisation; strategies and considerations. Genes Immun 6:279–284

    Article  PubMed  CAS  Google Scholar 

  20. Fleige S, Pfaffl MW (2006) RNA integrity and the effect on the real-time qRT-PCR performance. Mol Aspects Med 27:126–139

    Article  PubMed  CAS  Google Scholar 

  21. Antonov J, Goldstein DR, Oberli A, Baltzer A, Pirotta M, Fleischmann AR et al (2005) Reliable gene expression measurements from degraded RNA by quantitative real-time PCR depend on short amplicons and a proper normalization. Lab Invest 85:1040–1050

    Article  PubMed  CAS  Google Scholar 

  22. Nolan T, Bustin SA (2004) Pitfalls of Quantitative Real-Time Reverse-Transcription Polymerase Chain Reaction. J Biomol Tech 15:155

    PubMed  Google Scholar 

  23. Stahlberg A (2004) Properties of the Reverse Transcription Reaction in mRNA Quantification. Clin Chem 50:509–515

    Article  PubMed  CAS  Google Scholar 

  24. Bustin S, Benes V, Garson J, Hellemans J, Huggett J, Kubista M et al (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611

    Article  PubMed  CAS  Google Scholar 

  25. Bustin S, Beaulieu J, Huggett J, Jaggi R, Kibenge F, Olsvik P et al (2010) MIQE precis: Practical implementation of minimum standard guidelines for fluorescence-based quantitative real-time PCR experiments. BMC Mol Biol 11:74

    Article  PubMed  Google Scholar 

  26. Ramos B, Alves-Santos FM, García-Sánchez MA, Martín-Rodrigues N, Eslava AP, Díaz-Mínguez JM (2007) The gene coding for a new transcription factor (ftf1) of Fusarium oxysporum is only expressed during infection of common bean. Fungal Genet Biol 44:864–876

    Article  PubMed  CAS  Google Scholar 

  27. de Vega-Bartol JJ, Martín-Domínguez R, Ramos B, García-Sánchez MA, Díaz-Mínguez JM (2011) New virulence groups in Fusarium oxysporum f. sp. phaseoli: the expression of the gene coding for the transcription factor ftf1 correlates with virulence. Phytopathology 101:470–479

    Article  PubMed  Google Scholar 

  28. Alves-Santos F, Ramos B, García-Sánchez MA, Eslava AP, Díaz-Mínguez JMA (2002) DNA-based procedure for in-planta detection of Fusarium oxysporum f. sp. phaseoli. Phytopathology 92(3):237–244

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. Díaz-Mínguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

de Vega-Bartol, J.J., Tello, V., Niño, J., Casado, V., Díaz-Mínguez, J.M. (2013). Quantitative PCR Analysis of Double-Stranded RNA-Mediated Gene Silencing in Fungi. In: Gupta, V., Tuohy, M., Ayyachamy, M., Turner, K., O’Donovan, A. (eds) Laboratory Protocols in Fungal Biology. Fungal Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-2356-0_22

Download citation

Publish with us

Policies and ethics