Skip to main content

Staining Techniques and Biochemical Methods for the Identification of Fungi

  • Chapter
  • First Online:
Laboratory Protocols in Fungal Biology

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

In the past, conventional identification of fungi relied on the combination of morphological and physiological properties. In recent years, morphological studies, supplemented with staining techniques and biochemical methods, still play an important role in the overall identification of fungi in the molecular era. In most instances, these tools are widely used to determine the correct identity of yeasts and molds at the genus and species levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jimenez L (2007) Microbial diversity in pharmaceutical product recalls and environments. PDA J Pharm Sci Tech 61:383–399

    CAS  Google Scholar 

  2. Meyer SAM, Payne RW, Yarrow D (1988) Candida. In: Kurtzman CP, Fell JW (eds) The yeasts: a taxonomic study. Elsevier Science Publishers, Amsterdam, The Netherlands, pp 476–477

    Google Scholar 

  3. Borman AM, Linton CJ, Miles SJ, Johnson EM (2008) Molecular identification of pathogenic fungi. J Antimicrob Chemother 61:i7–i12

    Article  PubMed  CAS  Google Scholar 

  4. Williamson PR (1994) Biochemical and molecular characterization of the diphenol oxidase of Cryptococcus neoformans: identification as a laccase. J Bacteriol 176:656–664

    PubMed  CAS  Google Scholar 

  5. Guo LD, Huang GR, Wang Y, He WH, Zheng WH, Hyde KD (2003) Molecular identification of white morphotype strains of endophytic fungi from Pinus tabulaeformis. Mycol Res 107:680–688

    Article  PubMed  CAS  Google Scholar 

  6. Hinrikson HP, Hurst SF, Lott TJ, Warnock DW, Morrison CJ (2005) Assessment of ribosomal large-subunit D1-D2, internal transcribed spacer 1, and internal transcribed spacer 2 regions as targets for molecular identification of medically important Aspergillus species. J Clin Microbiol 43:2092–2103

    Article  PubMed  CAS  Google Scholar 

  7. Flórez AB, Álvarez-Martín P, López-Díaz TM, Mayo B (2007) Morphotypic and molecular identification of filamentous fungi from Spanish blue-veined Cabrales cheese, and typing of Penicillium roqueforti and Geotrichum candidum isolates. Int Dairy J 17:350–357

    Article  CAS  Google Scholar 

  8. Nilsson RH, Kristiansson E, Ryberg M, Hallenberg N, Larsson KH (2008) Intraspecific ITS variability in the kingdom Fungi as expressed in the International Sequence Databases and its implications for molecular species identification. Evol Bioinform Online 4:193–201

    PubMed  Google Scholar 

  9. Rodriguez-Tudela JL, Diaz-Guerra TM, Mellado E, Cano V, Tapia C, Perkins A et al (2005) Susceptibility patterns and molecular identification of Trichosporon species. Antimicrob Agents Chemother 49:4026–4034

    Article  PubMed  CAS  Google Scholar 

  10. Cooke DEL, Drenth A, Duncan JM, Wagels G, Brasier CM (2000) A molecular phylogeny of Phytophthora and related Oomycetes. Fungal Genet Biol 30:17–32

    Article  PubMed  CAS  Google Scholar 

  11. Bertini L, Agostini D, Potenza L, Rossi I, Zeppa S, Zambonelli A et al (1998) Molecular markers for the identification of the ectomycorrhizal fungus, Tuber borchii. New Phytol 139:565–570

    Article  CAS  Google Scholar 

  12. Galagan JE, Calvo SE, Borkovich KA, Selker EU, Read ND, Jaffe D et al (2003) The genome sequence of the filamentous fungus Neurospora crassa. Nature 422:859–868

    Article  PubMed  CAS  Google Scholar 

  13. Brookman JL, Mennim G, Trinci APJ, Theodorou MK, Tuckwell DS (2000) Identification and characterization of anaerobic gut fungi using molecular methodologies based on ribosomal ITS1 and 18S rRNA. Microbiology 146:393–403

    PubMed  CAS  Google Scholar 

  14. Ciardo DE, Schär G, Böttger EC, Altwegg M, Bosshard PP (2006) Internal transcribed spacer sequencing versus biochemical profiling for identification of medically important yeasts. J Clin Microbiol 44:77–84

    Article  PubMed  CAS  Google Scholar 

  15. Hussain Z, Martin A, Youngberg GA (2001) Blastmyces dermatitides with large yeast forms. Arch Pathol Lab Med 125:663–664

    PubMed  CAS  Google Scholar 

  16. Chandler FW, Watts JC (1987) Pathologic diagnosis of fungal infections. ACSP Press, Chicago, pp 193–263

    Google Scholar 

  17. Haque AK, McGinnis MR (2008) Dail and Hammer’s pulmonary pathology. Springer, New York

    Google Scholar 

  18. Woods GL, Walker DH (1996) Detection of infection or infectious agents by use of cytologic and histologic stains. Clin Microbiol Rev 9:382–404

    PubMed  CAS  Google Scholar 

  19. Ryan KJ, Ray CG (2004) Sherris medical microbiology. McGraw-Hill, New York

    Google Scholar 

  20. Kim SO (2003) Molds identification. Kor J Med Mycol 8:97–102

    Google Scholar 

  21. Nag DR, Chatterjee S, Chatterjee S, Khan M (2002) Role of potassium hydroxide mount in rapid diagnosis of fungal corneal ulcers. J Ind Med Assoc 100:18–20

    Google Scholar 

  22. Shearer CA, Langsam DM, Longcore JE (2004) Fungi in freshwater habitats. In: Mueller GM, Bills GF, Foster MS (eds) Biodiversity of fungi, inventory monitoring methods. Elsevier Science Publishers, New York, pp 520–521

    Google Scholar 

  23. Parija SC, Prabhakar PK (1995) Evaluation of lacto-phenol cotton blue for wet mount preparation of feces. J Clin Microbiol 33:1019–1021

    PubMed  CAS  Google Scholar 

  24. Larone DH (2002) Medically important fungi: a guide to identification. ASM Press, Washington, D.C

    Google Scholar 

  25. Chapin KC (2007) Principles of stains and media. In: Murray PR, Baron EJ, Landry ML, Jorgensen JH, Pfaller MA (eds) Manual of clinical microbiology. ASM Press, Washington, D.C., pp 182–191

    Google Scholar 

  26. Kern ME, Blevins KS (1997) Laboratory procedures for fungal culture and isolation in medical mycology. F.A. Davis, Philadelphia

    Google Scholar 

  27. Gurr E (1966) Rational use of dyes in biology. Williams & Wilkins, Baltimore, pp 276–277

    Google Scholar 

  28. Humason GL (1967) Animal tissue techniques. W.H. Freeman, San Francisco

    Google Scholar 

  29. Murray PR, Baron EJ, Pfaller MA, Tenover FC, Yolken RH (1999) Manual of clinical microbiology. ASM Press, Washington, D.C

    Google Scholar 

  30. Brucker MC (1986) Gram staining a useful laboratory technique. J Nurse Midwifery 31:156–158

    Article  PubMed  CAS  Google Scholar 

  31. Clark G (1981) Staining procedure. Williams & Wilkins, Baltimore

    Google Scholar 

  32. Clarridge JE, Mullins JM (1987) Microscopy and staining. In: Howard BJ, Klass J, Weissfeld AS, Tilton RC (eds) Clinical and pathogenic microbiology. C.V. Mosby, St. Louis, pp 87–103

    Google Scholar 

  33. Macher AM, Shelhamer J, MacLowery JD, Parker M, Masur H (1983) Pneumocystis carinii identified by Gram stain of lung imprints. Ann Intern Med 99:484–485

    PubMed  CAS  Google Scholar 

  34. Bottone EJ (1980) Cryptococcus neoformans: pitfalls in diagnosis through evaluation of Gram-stained smears of purulent exudates. J Clin Microbiol 12:790–791

    PubMed  CAS  Google Scholar 

  35. Felegie TP, Pasculle AW, Dekker A (1984) Recognition of Pneumocystis carinii by Gram stain in impression smears of lung tissue. J Clin Microbiol 2:1190–1191

    Google Scholar 

  36. Mahan CT, Sale GE (1978) Rapid methenamine silver stain for Pneumocystis and fungi. Arch Pathol Lab Med 102:351–352

    PubMed  CAS  Google Scholar 

  37. Ward EWB, Ciurysek KW (1961) Somatic mitosis in a basidiomycete. Can J Bot 39:1497–1503

    Article  Google Scholar 

  38. Wilson AD (1992) A versatile Giemsa protocol for permanent nuclear staining of fungi. Mycologia 84:585–588

    Article  Google Scholar 

  39. Lillie RD (1965) Histopathologic techniques and practical histochemistry. McGraw-Hill, New York

    Google Scholar 

  40. Lillie RD (1977) H. J. Conn’s biological stains. Williams & Wilkins, Baltimore, pp 289–291

    Google Scholar 

  41. Domingo J, Waksal HW (1984) Wright’s stain in rapid diagnosis of Pneumocystis carinii. Am J Clin Pathol 81:511–514

    PubMed  CAS  Google Scholar 

  42. Pattengale P (2005) Task for the veterinary assistants. Lippincott Williams & Wilkins, Baltimore, pp 258–260

    Google Scholar 

  43. Kiernan JA (2008) Histological and histochemical methods: theory and practice. Scion, Bloxham, UK

    Google Scholar 

  44. Lillie RD, Pizzolato P, Donaldson PT (1976) Nuclear stains with soluble metachrome mordant lake dyes - the effect of chemical endgroup blocking reactions and the artificial introduction of acid groups into tissues. Histochemistry 49:23–35

    Article  PubMed  CAS  Google Scholar 

  45. Llewellyn BD (2009) Nuclear staining with alum-hematoxylin. Biotech Histochem 84:159–177

    Article  PubMed  CAS  Google Scholar 

  46. Puchtler H, Meloan SN, Waldrop FS (1986) Application of current chemical concepts to metal-hamatein and -brazilein stains. Histochemistry 85:353–364

    Article  PubMed  CAS  Google Scholar 

  47. Bancroft JD, Stevens A (1982) Theory and practice of histological techniques. Churchill Livingstone, London, UK, pp 188–201

    Google Scholar 

  48. Kronvall G, Myhre E (1977) Differential staining of bacteria in clinical specimens using acridine orange buffered at low pH. Acta Pathol Microbiol Scand Sect B 85:249–254

    CAS  Google Scholar 

  49. De Brauwer E, Jacobs J, Nieman F, Bruggeman C, Drent M (1999) Test characteristics of acridine orange, Gram and May-Grunwald-Giemsa stains for enumeration of intracellular organisms in bronchoalveolar lavage fluid. J Clin Microbiol 37:427–429

    PubMed  Google Scholar 

  50. Lauer BA, Reller LB, Mirret S (1981) Comparison of acridine orange and Gram stains for detection of microorganisms in cerebrospinal fluid and other clinical specimens. J Clin Microbiol 14:201–205

    PubMed  CAS  Google Scholar 

  51. Culling CFA (1974) Handbook of histopathological and histochemical techniques. Butterworth, London, UK

    Google Scholar 

  52. Mote RF, Muhm RL, Gigstad DC (1975) A staining method using acridine orange and auramine O for fungi and mycobacteria in bovine tissue. Stain Technol 50:5–9

    PubMed  CAS  Google Scholar 

  53. Pickett JP, Bishop CM, Chick EW, Baker RD (1960) A simple fluorescent stain for fungi: selective staining of fungi by means of a fluorescent method for mucin. Am J Clin Pathol 34:197–202

    PubMed  CAS  Google Scholar 

  54. Drury RAB, Wallington EA (1980) Carleton’s histological technique. Oxford University Press, Oxford, UK

    Google Scholar 

  55. Luna L (1980) Manual of histologic staining methods. Armed Forces Institute of Pathology, Washington, D.C., pp 228–229

    Google Scholar 

  56. Hageage GJ, Harrington BJ (1984) Use of calcofluor white in clinical mycology. Lab Med 15:109–112

    CAS  Google Scholar 

  57. Monheit JE, Cowan DF, More DG (1984) Rapid detection of fungi in tissue using calcoflour white and fluorescence microscopy. Arch Pathol Lab Med 108:616–618

    PubMed  CAS  Google Scholar 

  58. McGowna KL (1987) Practical approaches to diagnosing fungal infections in immunocompromised patients. Clin Microbiol Newsletter 9:33–36

    Article  Google Scholar 

  59. Baselski VS, Robinson MK, Pifer LW, Woods DR (1990) Rapid detection of Pneumocystis carinii in bronchoalveolar lavage samples by using Celluflour staining. J Clin Microbiol 28:393–394

    PubMed  CAS  Google Scholar 

  60. Totty BA (2002) Mucins. In: Bancroft JD, Gamble M (eds) Theory and practice of histological techniques. Churchill Livingstone, Edinburgh, pp 163–200

    Google Scholar 

  61. Prophet EB, Mills B, Arrington JB, Sobin LH (1992) Laboratory methods in histotechnology. Armed Forces Institute of Pathology, Washington, D.C

    Google Scholar 

  62. Mikel UV (1994) Advanced laboratory methods in histology and pathology. Armed Forces Institute of Pathology, Washington, D.C

    Google Scholar 

  63. Mallory FB (1961) Pathological techniques. Hafner Publishing Co., New York

    Google Scholar 

  64. Sheehan D, Hrapchak B (1980) Theory and practice of histopathology. Battelle Press, Columbus, OH

    Google Scholar 

  65. Jackson JA, Kaplan W, Kaufman L (1983) Development of fluorescent-antibody reagents for demonstration of Pseudallescheria boydii in tissue. J Clin Microbiol 18:668–673

    PubMed  CAS  Google Scholar 

  66. Grocott RG (1955) A stain for fungi in tissue sections and smears. Am J Clin Pathol 25:975–979

    PubMed  CAS  Google Scholar 

  67. Schumann GB, Swensen JJ (1991) Comparison of Papanicolaou’s stain with the Gomori methenamine silver (GMS) stain for the cytodiagnosis of Pneumocyctis catrinii in bronchoalveolar lavage (BAL) fluid. Am J Clin Pathol 95:583–586

    PubMed  CAS  Google Scholar 

  68. Hayashi I, Tome Y, Shimosato Y (1989) Thiosemicarbazide used after periodic acid makes methenamine silver staining of renal glomerular basement membranes faster and cleaner. Stain Technol 64:185–190

    PubMed  CAS  Google Scholar 

  69. Lazcano O, Speights VO Jr, Stickler JG, Bilbao JE, Becker J, Diaz J (1993) Combined histochemical stains in the differential diagnosis of Cryptococcus neoformans. Mod Pathol 6:80–84

    PubMed  CAS  Google Scholar 

  70. Witebsky FG, Andrews JWB, Gill VJ, MacLowry JD (1988) Modified toluidine blue O stain for Pnemocystis corinii: further evaluation of some technical factors. J Clin Microbiol 26:774–775

    PubMed  CAS  Google Scholar 

  71. Gosey LL, Howard RM, Witebsky FG, Ognibene FP, Wu TC, Gill VJ et al (1985) Advantages of a modified toluidine blue O stain and bronchoalveolar lavage for the diagnosis of Pneumocystis carinii pneumonia. J Clin Microbiol 22:803–807

    PubMed  CAS  Google Scholar 

  72. Crookham JN, Dapson RW (1991) Hazardous chemicals in the histopathology laboratory: regulations, risks, handling and disposal. Anatech Ltd., Battle Creek, MI

    Google Scholar 

  73. Furtado JS (1970) Alcoholic toluidine blue: a rapid method for staining nuclei in unfixed mycetozoa and fungi. Mycologia 62:406–407

    Article  PubMed  CAS  Google Scholar 

  74. Paterson RRM, Bridge PD (1994) Biochemical techniques for filamentous fungi. CAB International, Wallingford, UK

    Google Scholar 

  75. Wickerham LJ (1943) A simple technique for the detection of melibiose-fermenting yeasts. J Bacteriol 46:501

    PubMed  CAS  Google Scholar 

  76. Wickerham LJ (1946) A critical evaluation of the nitrogen assimilation tests commonly used in the classification of yeasts. J Bacteriol 52:293

    CAS  Google Scholar 

  77. Wickerham LJ, Burton KA (1948) Carbon assimilation tests for the classification of yeasts. J Bacteriol 56:363

    PubMed  CAS  Google Scholar 

  78. Schwarz P, Lortholary O, Dromer F, Dannaoui E (2007) Carbon assimilation profiles as a tool for identification of zygomycetes. J Clin Microbiol 45:1433–1439

    Article  PubMed  CAS  Google Scholar 

  79. Hobbie EA, Watrud LS, Maggard S, Shiroyama T, Rygiewicz PT (2003) Carbohydrate use and assimilation by litter and soil fungi assessed by carbon isotopes and BIOLOG® assays. Soil Biol Biochem 35:303–311

    Article  CAS  Google Scholar 

  80. Steadham JE, Geis PA, Simmank JL (1986) Use of carbohydrate and nitrate assimilations in the identification of dematiaceous fungi. Diagn Microbiol Infect Dis 5:71–75

    Article  PubMed  CAS  Google Scholar 

  81. Middelhoven WJ, Hoog GS, Notermans S (1989) Carbon assimilation and extracellular antigens of some yeast-like fungi. Antonie Van Leeuwenhoek 55:165–175

    Article  PubMed  CAS  Google Scholar 

  82. Murray IG (1968) Some aspects of the biochemical differentiation of pathogenic fungi: a review. J Gen Microbiol 52:213–221

    Article  CAS  Google Scholar 

  83. Sangtiean T, Schmidt S (2002) Growth of subtropical ECM fungi with different nitrogen sources using a new floating culture technique. Mycol Res 106:74–85

    Article  CAS  Google Scholar 

  84. Watkinson S, Bebber D, Darrah P, Fricker M, Tlalka M (2006) The role of wood decay fungi in the carbon and nitrogen dynamics of the forest floor. In: Gadd GM (ed) Fungi in biogeochemical cycles. Cambridge University Press, Cambridge, UK, pp 151–181

    Chapter  Google Scholar 

  85. Crawford NM, Arst HN (1993) The molecular genetics of nitrate assimilation in fungi and plants. Annu Rev Genet 27:115–146

    Article  PubMed  CAS  Google Scholar 

  86. Krappmann S, Braus GH (2005) Nitrogen metabolism of Aspergillus and its role in pathogenicity. Med Mycol 43:S31–S40

    Article  PubMed  CAS  Google Scholar 

  87. Gorfer M, Blumhoff M, Klaubauf S, Urban A, Inselsbacher E, Bandian D, et al. (2011) Community profiling and gene expression of fungal assimilatory nitrate reductases in agricultural soil. ISME J. Accessed 12 May 2011; doi: 10.1038/ismej.2011.53

  88. Keller G (1996) Utilization of inorganic and organic nitrogen sources by high-subalpine ectomycorrhizal fungi of Pinus cembra in pure culture. Mycol Res 100:989–998

    Article  CAS  Google Scholar 

  89. Ye ZH, Garrad RC, Winston MK, Bhattacharjee JK (1991) Use of α-aminoadipate and lysine as sole nitrogen source by Schizosacharomyces pombe and selected pathogenic fungi. J Basic Microbiol 31:149–156

    Article  PubMed  CAS  Google Scholar 

  90. Bhavan PS, Rajkumar R, Radhakrishnan S, Seenivasan C, Kannan S (2010) Culture and identification of Candida albicans from vaginal ulcer and separation of enolase on SDS-PAGE. Int J Biol 2:84–93

    Google Scholar 

  91. Freydiere AM, Robert R, Ploton C, Marot-Leblond A, Monerau F, Vandenesch F (2003) Rapid identification of Candida glabrata with a new commercial test, GLABRATA RTT. J Clin Microbiol 41:3861–3863

    Article  PubMed  CAS  Google Scholar 

  92. Felek S, Asci Z, Kilic SS, Yilman M, Kokcamm I (1989) Yeasts and yeast like fungi as causative agents in diarrhea. J Islam Acad Sci 2:182–184

    Google Scholar 

  93. Fontes CO, Carvalho MAR, Nicoli JR, Hamdan JS, Mayrink W, Genaro O et al (2005) Identification and antimicrobial susceptibility of micro-organisms recovered from cutaneous lesions of human American tegumentary leishmaniasis in Minas Gerais, Brazil. J Med Microbiol 54:1071–1076

    Article  PubMed  CAS  Google Scholar 

  94. Bonfante R, Barroeta S (1966) Development and evaluation of a rapid identification test for Candida albicans. Mycopathologia 34:33–39

    Google Scholar 

  95. Sandven P (1990) Laboratory identification and sensitivity testing of yeast isolates. Acta Odontol Scand 48:27–36

    Article  PubMed  CAS  Google Scholar 

  96. Waltimo TMT, Sirén EK, Torkko HLK, Olsen I, Haapasalo MPP (2003) Fungi in therapy-resistant apical periodontitis. Int Endodont J 30:96–101

    Google Scholar 

  97. Land GA, Salkin IF, Zaatari ME, McGinnis MR, Hashem G (1991) Evaluation of the Baxter-MicroScan 4-hour enzyme-based yeast identification system. J Clin Microbiol 29:718–722

    PubMed  CAS  Google Scholar 

  98. Huppert M, Harper G, Sun SH, Delanerolle V (1975) Rapid methods for identification of yeasts. J Clin Microbiol 2:21–34

    PubMed  CAS  Google Scholar 

  99. Merheb CW, Cabral H, Gomes E, Da-Silva R (2007) Partial characterization of protease from a thermophillic fungus, Thermoascus auranthacus, and its hydrolytic activity on bovine casein. Food Chem 104:127–131

    Article  CAS  Google Scholar 

  100. Rodarte MP, Dias DR, Vilela DM, Schwan RF (2011) Proteolytic activities of bacteria, yeast and filamentous fungi isolated form coffee fruit (Coffea arabica L.). Acta Scientiarum Agron 33:457–464

    CAS  Google Scholar 

  101. Eriksson K (1978) Enzyme mechanisms involved in cellulose hydrolysis by the rot fungus Sporotrichum pulverulentum. Biotechnol Bioengineer 20:317–332

    Article  CAS  Google Scholar 

  102. Hankin L, Anagnostakis SL (1977) Solid media containing carboxymethyl cellulose to detect Cx cellulose activity of micro-organisms. J Gen Microbiol 98:109–115

    Article  PubMed  CAS  Google Scholar 

  103. Tomme P, Warren RA, Gilkes NR (1995) Cellulose hydrolysis by bacteria and fungi. Adv Microb Physiol 37:1–81

    Article  PubMed  CAS  Google Scholar 

  104. Ali-Shtayeh MS, Jamous RMF, Abu-Ghdeib SI (1999) Ecology of cycloheximide-resistant fungi in field soils receiving raw city wastewater or normal irrigation water. Mycopathologia 144:39–55

    Article  CAS  Google Scholar 

  105. Crouzet M, Begueret J (1980) A new mutant form of the ribosomal protein L21 in the fungus Podospora anserina: identification of the structural gene for this protein. Mol Gen Genet 180:177–183

    Article  PubMed  CAS  Google Scholar 

  106. Bagy MM, El-Shanawany AA, Abdel-Mallek AY (1998) Saprophytic and cycloheximide resistant fungi isolated from golden hamster. Acta Microbiol Immunol Hung 45:195–207

    PubMed  CAS  Google Scholar 

  107. Caldwell BA, Castellano MA, Griffiths RP (1991) Fatty acid esterase production by ectomycorrhizal fungi. Mycology 83:233–236

    Article  CAS  Google Scholar 

  108. Brunke S, Hube B (2006) MfLIP1, a gene encoding an extracellular lipase of the lipid-dependent fungus Malassezia furfur. Microbiology 152:547–554

    Article  PubMed  CAS  Google Scholar 

  109. Byrde RJW, Fielding AH (1955) Studies on the acetylesterase of Sclerotinia laxa. Biochemistry 61:337–341

    CAS  Google Scholar 

  110. Rapp P, Backhaus S (1992) Formation of extracellular lipases by filamentous fungi, yeasts and bacteria. Enzyme Microbiol Technol 14:938–943

    Article  CAS  Google Scholar 

  111. Shishiyama J, Araki F, Akai S (1970) Studies on cutin-esterase II. Characeteristics of cutin-esterase from Botrytis cinerea and its activity on tomato cutin. Plant Cell Physiol 11:937–945

    CAS  Google Scholar 

  112. Singh R, Gupta N, Goswami VK, Gupta R (2006) A simple activity staining protocol for lipases and esterases. Appl Microbiol Biotechnol 70:679–682

    Article  PubMed  CAS  Google Scholar 

  113. Valiente C, Quesada E (1991) Morphologic and physiologic characteristics of Costa Rica pathogenic fungi (Dermatiaceae). Rev Biol Trop 39:103–106

    PubMed  CAS  Google Scholar 

  114. Kitancharoen N, Hatai K (1998) Some biochemical characteristics of fungi isolated from salmonid eggs. Mycoscience 39:249–255

    Article  CAS  Google Scholar 

  115. Reddy NG, Ramakrishna DPN, Gopal SVR (2011) A morphological, physiological and biochemical studies of marine Streptomyces rochei (MTCC 10109) showing antagonistic activity against selective human pathogenic microorganisms. Asian J Biol Sci 4:1–14

    Article  CAS  Google Scholar 

  116. Abrusci C, Martín-González A, Amo AD, Catalina F, Collado J, Platas G (2005) Isolation and identification of bacteria and fungi from cinematographic films. Int Biodeterior Biodegrad 56:58–68

    Article  CAS  Google Scholar 

  117. Pointin SB (1999) Qualitative methods for the determination of lignocellulolytic enzyme production by tropical fungi. Fungal Divers 2:17–33

    Google Scholar 

  118. Hayanko K, Tubaki K (1985) Origin and properties of β-glucosidase activity of tomato-field soil. Soil Biol Biochem 17:553–557

    Article  Google Scholar 

  119. Zanoelo FF, Moraes MLT, Terenzi HF, Jorge JA (2004) β-glucosidase activity from the thermophilin fungus Scytalidium thermophilium is stimulated by glucose and xylose. FEMS Microbiol Letters 240:137–143

    Article  CAS  Google Scholar 

  120. Breuil C, Mayers P, Saddler JN (1986) Substrate conditions that influence the assays used for determining the β-glucosidase activity of cellulolytic microorganisms. Biotechnol Bioengineer 28:1653–1656

    Article  CAS  Google Scholar 

  121. Kakde RB, Chavan AM (2011) Effect of carbon, nitrogen, sulfur, phosphorus, antibiotic and vitamin sources on hydrolytic enzyme production by storage fungi. Recent Res Sci Technol 3:20–28

    CAS  Google Scholar 

  122. Iftikhar T, Niaz M, Hussain Y, Abbas SQ, Ashraf I, Zia MA (2010) Improvement of selected strains through gamma irradiation for enhanced lipolytic potential. Pak J Bot 42:2257–2267

    Google Scholar 

  123. Kakde RB, Chavan AM (2011) Extracellular lipase enzyme production by seed-borne fungi under the influence of physical factors. Int J Biol 3:94–100

    CAS  Google Scholar 

  124. Mateos JC, Ruiz K, Rodriguez JA, Cordova J, Baratti J (2007) Mapping substrate selectivity of lipases from thermophilic fungi. J Mol Catal B: Enzymatics 49:104–112

    Article  CAS  Google Scholar 

  125. Philpot C (1967) The differentiation of Trichophyton mentagrophytes from T. rubrum by a simple urease test. Sabouraudia 5:189

    Article  PubMed  CAS  Google Scholar 

  126. Shepard MC, Lunceford CD (1970) Urease color test medium U-9 for the detection and identification of “T” mycoplasmas in clinical material. Appl Microbiol 20:539–543

    PubMed  CAS  Google Scholar 

  127. Rosenthal SA, Sokolsky H (1965) Enzymatic studies with pathogenic fungi. Int J Dermatol 4:72–79

    Article  CAS  Google Scholar 

  128. Mahmoud ALE, El-Shanawany AA, Omar SA (1996) Factors affecting growth and urease production by Trichophyton spp. Mycopathologia 135:109–113

    Article  PubMed  CAS  Google Scholar 

  129. Wise MG, Healy M, Reece K, Smith R, Walton D, Dutch W et al (2007) Species identification and strain differentiation of clinical Candida isolates using the DiversiLab system of automated repetitive sequence-based PCR. J Med Microbiol 56:778–787

    Article  PubMed  CAS  Google Scholar 

  130. Healy M, Reece K, Walton D, Huong J, Frye S, Raad II et al (2005) Use of the DiversiLab system for species and strain differentiation of Fusarium species isolates. J Clin Microbiol 43:5278–5280

    Article  PubMed  CAS  Google Scholar 

  131. Jackson CJ, Barton RC, Evans GV (1999) Species identification and strain differentiation of dermatophyte fungi by analysis of ribosomal-DNA intergenic spacer regions. J Clin Microbiol 37:931–936

    PubMed  CAS  Google Scholar 

  132. Shin JH, Sung JH, Park SJ, Kim JA, Lee JH, Lee DY et al (2003) Species identification and strain differentiation of dermatophyte fungi using polymerase chain reaction amplification and restriction enzyme analysis. J Am Acad Dermatol 48:857–865

    Article  PubMed  Google Scholar 

  133. Gherbawy Y, Voigt K (2010) Molecular identification of fungi. Springer, Heidelberg

    Book  Google Scholar 

  134. Bhardwaj S, Sutar R, Bachhawat AK, Singhi S, Chakrabarti A (2007) PCR-based identification and strain typing of Pichia anomala using the ribosomal intergenic spacer region IGS1. J Med Microbiol 56:185–189

    Article  PubMed  CAS  Google Scholar 

  135. Lopes MB, Soden A, Martens AL, Henschke PA, Langridge P (1998) Differentiation and species identification of yeasts using PCR. Int J Syst Evol Microbiol 48:279–286

    CAS  Google Scholar 

  136. Gupta AK, Kohli Y, Summerbell RC (2000) Molecular differentiation of seven Malassezia species. J Clin Microbiol 38:1869–1875

    PubMed  CAS  Google Scholar 

  137. Hopfer RL, Walden P, Setterquist S, Highsmith WE (1993) Detection and differentiation of fungi in clinical specimens using polymerase chain reaction (PCR) amplification and restriction enzyme analysis. Med Mycol 31:65–75

    Article  CAS  Google Scholar 

  138. Odds FC, Abbott AB (1980) A simple system for the presumptive identification of Candida albicans and differentiation of strains within the species. Med Mycol 18:301–317

    Article  CAS  Google Scholar 

  139. Land GA, Harrison BA, Hulme KL, Cooper BH, Byrd JC (1979) Evaluation of the New API 20C strip for yeast identification against a conventional method. J Clin Microbiol 10:357–364

    PubMed  CAS  Google Scholar 

  140. McGinnis MR (1980) Laboratory handbook of medical mycology. Academic, New York

    Google Scholar 

  141. Wadlin JK, Hanko G, Stewart R, Pape J, Nachamkin I (1999) Comparison of three commercial systems for identification of yeasts commonly isolated in the clinical microbiology laboratory. J Clin Microbiol 37:1967–1970

    PubMed  CAS  Google Scholar 

  142. Sand C, Rennie RP (1999) Comparison of three commercial systems for the identification of germ-tube negative yeast species isolated from clinical specimens. Diagn Microbiol Infect Dis 33:223–229

    Article  PubMed  CAS  Google Scholar 

  143. Espinel-Ingroff A, McGinnis MR, Pincus DH, Goldson PR, Kerkering TM (1989) Evaluation of the API 20C Yeast Identification System for the differentiation of some dematiaceous fungi. J Clin Microbiol 27:2565–2569

    PubMed  CAS  Google Scholar 

  144. Rath AC, Carr CJ, Graham BR (1995) Characterization of Metarrhizium anisopliae strains by carbohydrate utilization (API 50 CH). J Invertebr Pathol 65:152–161

    Article  Google Scholar 

  145. Wasfy EH, Bridge PD, Brayford D (1987) Preliminary studies on the use of biochemical and physiological tests for the characterization of Fusarium isolates. Mycopathologia 99:9–13

    Article  Google Scholar 

  146. Heelan JS, Sotomayor E, Coon K, D’Arezzo JB (1998) Comparison of the rapid yeast plus panel with the API20C Yeast System for identification of clinically significant isolates of Candida species. J Clin Microbiol 36:1443–1445

    PubMed  CAS  Google Scholar 

  147. Aubertine CL, Rivera M, Rohan SM, Larone DH (2006) Comparative study of the new colorimetric VITEK 2 yeast identification card versus the older fluorometric card and of CHROM agar Candida as a source medium with the new card. J Clin Microbiol 44:227–228

    Article  PubMed  CAS  Google Scholar 

  148. Fricker-Hidalgo H, Vandapel O, Duchesne MA, Mazoyer MA, Monget D, Lardy B et al (1996) Comparison of the new API Candida System to the ID 32C system for identification of clinically important yeast species. J Clin Microbiol 34:1846–1848

    PubMed  CAS  Google Scholar 

  149. Ahmad S, Khan Z, Mustafa AS, Khan ZU (2002) Seminested PCR for diagnosis of Candidemia: comparison with culture, antigen detection, and biochemical methods for species identification. J Clin Microbiol 40:2483–2489

    Article  PubMed  CAS  Google Scholar 

  150. Moghaddas J, Truant AL, Jordan C, Buckley HR (1999) Evaluation of the RapID Yeast Plus System for the identification of yeast. Diagn Microbiol Infect Dis 35:271–273

    Article  PubMed  CAS  Google Scholar 

  151. Costa AR, Silva F, Henriques M, Azeredo J, Oliveira R, Faustino A (2010) Candida clinical species identification: molecular and biochemical methods. Ann Microbiol 60:105–112

    Article  CAS  Google Scholar 

  152. Rohm H, Lechner F, Lehner M (1990) Evaluation of the API ATB 32C System for the rapid identification of foodborne yeasts. Int J Food Microbiol 11:215–223

    Article  PubMed  CAS  Google Scholar 

  153. Sekhon AS, Padhye AA, Garg AK, Pruitt WR (1987) Evaluation of the Abbott Quantum II yeast identification system. Mycoses 30:408–411

    Article  CAS  Google Scholar 

  154. Qadri SMH, Flournoy DJ, Qadri SGM, Ramirez EG (1986) Rapid identification of yeasts by semi-automated and conventional methods. Med Microbiol Immunol 175:307–316

    Article  PubMed  CAS  Google Scholar 

  155. Kiehn TE, Edwards FF, Tom D, Lieberman G, Bernard EM, Armstrong D (1985) Evaluation of the Quantum II yeast identification system. J Clin Microbiol 22:216–219

    PubMed  CAS  Google Scholar 

  156. Salkin IF, Schadow KH, Bankaitis LA, McGinnis MR, Kemna ME (1985) Evaluation of Abbott Quantum II yeast identification system. J Clin Microbiol 22:442–444

    PubMed  CAS  Google Scholar 

  157. Cooper BH, Prowant S, Alexander B, Brunson DH (1984) Collaborative evaluation of the Abbott yeast identification system. J Clin Microbiol 19:853–856

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeyabalan Sangeetha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sangeetha, J., Thangadurai, D. (2013). Staining Techniques and Biochemical Methods for the Identification of Fungi. In: Gupta, V., Tuohy, M., Ayyachamy, M., Turner, K., O’Donovan, A. (eds) Laboratory Protocols in Fungal Biology. Fungal Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-2356-0_19

Download citation

Publish with us

Policies and ethics