Skip to main content

Fluorescence In Situ Hybridization of Uncultured Zoosporic Fungi

  • Chapter
  • First Online:

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Recently, molecular environmental surveys of the eukaryotic microbial community in lakes have revealed a high diversity of sequences belonging to uncultured zoosporic fungi. Although they are known as saprobes and algal parasites in freshwater systems, zoosporic fungi have been neglected in microbial food web studies. Recently, it has been suggested that zoosporic fungi, via the consumption of their zoospores by zooplankters, could transfer energy from large inedible algae and particulate organic material to higher trophic levels. However, because of their small size and their lack of distinctive morphological features, traditional microscopy does not allow the detection of zoosporic organisms such as chytrids in the field. We have designed an oligonucleotidic probe specific to Chytridiales (i.e., the largest group of the true-fungal division of Chytridiomycota) and provide simplified step-by-step protocols for its application to natural samples using both the classical monolabeled-FISH and the CARD-FISH approaches, for the assessment of uncultured zoosporic fungi and other zoosporic microbial eukaryotes in natural samples.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Jobard M, Rasconi S, Sime-Ngando T (2010) Diversity and functions of microscopic fungi: a missing component in pelagic food webs. Aquat Sci 72:255–268

    Article  CAS  Google Scholar 

  2. Lefèvre E, Bardot C, Noël C, Carrias JF, Viscogliosi E, Amblard C et al (2007) Unveiling fungal zooflagellates as members of freshwater picoeukaryotes: evidence from a molecular diversity study in a deep meromictic lake. Environ Microbiol 9:61–71

    Article  PubMed  Google Scholar 

  3. Monchy S, Jobard M, Sanciu G, Rasconi S, Gerphagnon M, Chabe M et al (2011) Exploring and quantifying fungal diversity in freshwater lake ecosystems using rDNA cloning/sequencing and SSU tag pyrosequencing. Environ Microbiol 13(6):1433–1453. doi:10.1111/j.1462-2920.2011.02444.x. Epub 2011 Mar 9

    Article  PubMed  Google Scholar 

  4. Gachon C, Sime-Ngando T, Strittmatter M, Chambouvet A, Hoon Kim G (2010) Algal diseases: spotlight on a black box. Trends Plant Sci 15:633–640

    Article  PubMed  CAS  Google Scholar 

  5. Rasconi S, Jobard M, Sime-Ngando T (2011) Parasitic fungi of phytoplankton: ecological roles and implications for microbial food webs. Aquat Microb Ecol 62:123–137

    Article  Google Scholar 

  6. Gleason FH, Kagami M, Marano AV, Sime-Ngando T (2009) Fungal zoospores are valuable food resources in aquatic ecosystems. Inoculum (Suppl Mycologia) 60:1–3

    Google Scholar 

  7. Kagami M, Von Elert R, Ibelings BW, de Bruin A, Van Donk E (2007) The parasitic chytrid, Zygorhizidium, facilitates the growth of the cladoceran zoosplankter, Daphnia, in cultures of the inedible alga, Asterionella. Proc Soc Biol 274:1561–1566

    Article  Google Scholar 

  8. Kagami M, Helmsing NR, Van Donk E (2011) Parasitic chytrids could promote copepod survival by mediating material transfer from inedible diatoms. In: Sime-Ngando T, Niquil N (eds) Disregarded microbial diversity and ecological potentials in aquatic systems. Springer, Heidelberg, pp 49–54

    Google Scholar 

  9. James TY, Letcher PM, Longcore JE, Mozley-Standridge SE, Porter D, Powell MJ et al (2006) A molecular phylogeny of the flagellated fungi (Chytridiomycota) and description of a new phylum (Blastocladiomycota). Mycologia 98:860–871

    Article  PubMed  Google Scholar 

  10. Lefèvre E, Roussel B, Amblard C, Sime-Ngando T (2008) The molecular diversity of freshwater picoeukaryotes reveals high occurrence of putative parasitoids in the plankton. PlosOne 3(6):e2324

    Google Scholar 

  11. Sime-Ngando T, Lefèvre E, Gleason FH (2011) Hidden diversity among aquatic heterotrophic flagellates: ecological potentials of zoosporic fungi. In: Sime-Ngando T, Niquil N (eds) Disregarded microbial diversity and ecological potentials in aquatic systems. Springer, Heidelberg, pp 5–22

    Google Scholar 

  12. Jobard M, Rasconi S, Sime-Ngando T (2010) Fluorescence in situ hybridization of uncultured zoosporic fungi: testing with clone-FISH and application to freshwater samples using CARD-FISH. J Microbiol Methods 83:236–243

    Article  PubMed  CAS  Google Scholar 

  13. Niquil N, Kagami M, Urabe J, Christaki U, Viscogliosi E, Sime-Ngando T (2011) Potential role of fungi in plankton food web functioning and stability: a simulation analysis based on Lake Biwa inverse model. In: Sime-Ngando T, Niquil N (eds) Disregarded microbial diversity and ecological potentials in aquatic systems. Springer, Heidelberg, pp 65–79

    Google Scholar 

  14. Rasconi S, Jobard M, Jouve L, Sime-Ngando T (2009) Use of calcofluor white for detection, identification, and quantification of phytoplanktonic fungal parasites. Appl Environ Microbiol 75:2545–2553

    Article  PubMed  CAS  Google Scholar 

  15. Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    PubMed  CAS  Google Scholar 

  16. Baschien C, Manz W, Neu TR, Marvanová L, Szewzyk U (2008) In situ detection of freshwater fungi in an alpine stream by new taxon-specific fluorescence in situ hybridization probes. Appl Environ Microbiol 74:6427–6436

    Article  PubMed  CAS  Google Scholar 

  17. Glöckner FO, Amann A, Alfreider R, Pernthaler J, Psenner R, Trebesius K et al (1996) An in situ hybridization protocol for detection and identification of planktonic bacteria. Syst Appl Microbiol 19:403–406

    Article  Google Scholar 

  18. Schönhuber W, Zarda B, Eix S, Rippka R, Herdman M, Ludwig W et al (1999) In situ identification of cyanobacteria with horseradish peroxidase-labeled, rRNA targeted oligonucleotide probes. Appl Environ Microbiol 65:1259–1267

    PubMed  Google Scholar 

  19. Schmidt B, Chao J, Zhu Z, DeBiasio RL, Fisher G (1997) Signal amplification in the detection of single-copy DNA and RNA by enzyme-catalyzed deposition (CARD) of the novel fluorescent reporter substrate Cy3.29-tyramide. J Histochem Cytochem 45:365–373

    Article  PubMed  CAS  Google Scholar 

  20. Not F, Simon N, Biegala IC, Vaulot D (2002) Application of fluorescent in situ hybridization coupled with tyramide signal amplification (FISH-TSA) to assess eukaryotic picoplankton composition. Aquat Microb Ecol 28:157–166

    Article  Google Scholar 

  21. Pernthaler J, Glöckner FO, Schönhuber W, Amann R (2001) Fluorescence in situ hybridization (FISH) with rRNA-targeted oligonucleotide probe. Methods Microbiol 30:207–226

    Article  CAS  Google Scholar 

  22. Behrens S, Rühland C, Inácio J, Huber H, Fonseca Á, Spencer-Martins I et al (2003) In situ accessibility of small-subunit rRNA of members of the domains Bacteria, Archaea, and Eucarya to Cy3-Labeled Oligonucleotide Probes. Appl Environ Microbiol 69:1748–1758

    Article  PubMed  CAS  Google Scholar 

  23. Schramm A, Fuchs BM, Nielsen JL, Tonolla M, Stahl DA (2002) Fluorescence in situ hybridization of 16S rRNA gene clones (Clone-FISH) for probe validation and screening of clone libraries. Environ Microbiol 4:713–720

    Article  PubMed  CAS  Google Scholar 

  24. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang A, Miller W et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  25. Lefèvre E, Carrias J-F, Bardot C, Amblard C, Sime-Ngando T (2005) A preliminary study of heterotrophic picoflagellates using oligonucleotidic probes in Lake Pavin. Hydrobiologia 55:61–67

    Article  Google Scholar 

Download references

Acknowledgements

M. Jobard and S. Rasconi were supported by Ph.D. Fellowships from the Grand Duché du Luxembourg (Ministry of Culture, High School, and Research) and from the French Ministère de la Recherche et de la Technologie (MRT), respectively. This study receives grant-aided support from the French ANR Programme Blanc # ANR 07 BLAN 0370 titled DREP: Diversity and Roles of Eumycetes in the Pelagos.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Télesphore Sime-Ngando .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sime-Ngando, T., Jobard, M., Rasconi, S. (2013). Fluorescence In Situ Hybridization of Uncultured Zoosporic Fungi. In: Gupta, V., Tuohy, M., Ayyachamy, M., Turner, K., O’Donovan, A. (eds) Laboratory Protocols in Fungal Biology. Fungal Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-2356-0_18

Download citation

Publish with us

Policies and ethics